7.5 Application’

TGURE 7.5.18. Response x(f)
ypericd 1 square wave inpul.
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Periodic piecewise linear functions occur so frequently as input functions in engi-
neering applications that they are sometimes called engineering functions. Com-
putations with such functions are readily handled by computer algebra systems. In
Muathematica, for instance, we can define

SawTooth{t_1 1= 2 t - 2 Floorit] - 1
TriangularWave[t_] := Bbs[2 SawTooth{(Z & ~ 1}/43] - 1}
SquareWave[t_] := Sign{ TriangularWave[t] }

Plot each of the functions to verify that it has period 2 and that its name is aptly
chosen. For instance, the resuit of

Plot| SquareWave[t], {t, ©, 6}1;

should jook like Fig. 7.5.9. If f{r) is one of these engineering functions and p > 0,
then the function f(2:/ py will have period p. To illustrate this, try

Plot| TriangulazrWave[ 2 t/p I, {t, 0, 3 p}l:

with various values of p.
Now let’s consider the mass-spring-dashpot equation

diffBq = m x''{t} + ¢ x'{t] + k x[t] == input

with selected parameter values and an input forcing function with period p and
amplitude Fy.

m=4; ¢ = 8; k=5; p=1; FO = 4;
input = F0O SgquareWave[2 t/p]:

You can plot this input function to verify that it has period 1:
plot|[ input, {t, O, 10}];

Finatly, let’s suppose that the mass is initially at rest in its equilibrium position and
solve numerically the resulting initial value problem.

1

response = NDSolve| {diffEq, x{0] == 0, x'[0} == 0},
x, {£, 0, 10}, MaxSteps —> 1000 }
Plot|{ x{t] /. response, {t, O, 10}];

In the resulting Fig. 7.5.18 we see that after an initial transient dies out, the
response function x{7) setties down (as expected?) to a periodic oscillation with the
sume period as the input.

lavestivate this initial value problem with several mass—spring--dashpot para-
meters—for instance. selected digits of vour student D number—and with input
engineering functions having various amplitudes and periods.

Consider a force f(r} that acts only during o very short time interval ¢ = ¢ = b,
with f(7y = 0 outside this mterval. A typical example would be the impulsive

force of a bat striking a ball—the impact is atmost instantaneous. A quick surge

of voltage (resulting from a lightning bolt. for instance) is an analogous electrical
phenomenan. In such a situation it often happens that the principal effect of the
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FIGURE 7.6.1. The graph of the
impulse function d,..{f).
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force depends only on the value of the integrai

b
P f firydr (1
it
and does not depend otherwise on precisely how [ (1) varies with time 7. The num-
ber p in Eq. (1) is called the impuise of the force f(1) over the interval [a, bl
in the case of a force F(r) that acts on a particle of mass m in linear motion,
integration of Newton's law

{
fly=me'(H) = g}w [mvir]
yields

b j
P o= f 2 imv{n)l di = mu{b) - muvla). (2
dt

o

Thus the impulse of the force is equal to the change in momentum of the particie,
So if change in momentum is the only effect with which we are concerned, we need
know only the impulse of the force; we need know neither the precise function f(1}
nor even the precise time interval during which it acts. This is fortunate, because
in a situation such as that of a batted ball, we are unlikely to have such detailed
information about the impulsive force that acts on the ball.

Our strategy for handling such a situation is to set up 4 reasonable mathemat-
ical model in which the unknown force f(7) is replaced with a simple and explicit
force that has the same impulse. Suppose for simplicity that f(z) has impulse T and
acts during some brief time interval beginning at time 1 = « Z . Then we can
select a fixed number € > ( that approximates the length of this time interval anl
replace f (1) with the specific function

{
- Hfaslr<a+te,
da.f(f} = € (3)

0  otherwise.

This is a function of ¢, with a and € being parameters that specify the time interval
la.a +€]. If b Z a + e, then we see (Fig. 7.6.1) that the impulse of d, . over [a. I7]

5 b b€ i
I mf dy Atydr :/ —dr = 1.
£ [ 6

Thus d, . has a unit impulse, whatever the number € may be. Essentially the sanw
computation gives

=
f dyArydt = 1. ]
it

Because the precise time interval during which the force acts seems unimpor
tant, it is tempting to think of an instanianeous impulse that occurs precisely at the
instant £ = a. We might try to model such an instantaneous unit impulse by taking
the limit as € — 0, thereby defining

5.4y = lin?)d{,‘g(i}, I}
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where ¢ = 0. If we could also take the limit under the integral sign in Bg. (43, then
it would follow that

J[ Suftydr = L. (6)
0
Bat the limit in Eq. (5) gives
‘oo Hir=w,
8 (1) = . (N
0 it ==,

Obviously. no actual funciion can satisfy both (6) and (7)—if a function is zero
except al a single point. then its integral is not [ but zero. Nevertheless, the symbaol
&, {1} is very useful. However interpreted, it is called the Dirac delta function at o
after the British theoretical physicist P A. M. Dirac {1902-1984), who in the early
1930s introduced o “function” allegediy enjoying the properties in Eqgs, (0) and (7).

The foliowing computation motivates the meaning that we will attach here to the
symbol 4, (7). If g(r) is continuous function, then the mean value theorem for inte-

grals implies that
a+e
/ glndr =eg (7}

o

for some point 7 inla, o + €. It follows that

X o 3¢ ]
?i%ﬁf glthd, Arydt = Hm [ gy —dr = limg (1) = gl (%)
et) fiy etd J & ¢ — )
by continuity of g at ¢+ = a. If 8,(7} were a function in the strict sense of the
definition, and if we could interchange the limit und the integral in Eq. (8). we
therefore could conclude that

[ gl)S, (1h et = glu. (9)
[§]

We take Eq. (9) as the definition (1) of the symbol 8, (7). Atthough we call it
the delta function. it is not & genuine function: instead. it specifies the aperdiion

[ cee by d
40

which-—when applied to a continuous function g(7)—sifts out or selects the value
gledy of this function al the point @ = (. This idea is shown schematicaily in
Fig. 7.6.2. Note that we will use the symbol 8,ir) ealy in the context of integrals
such as that in Eq. (9% or when it will appear subsequently in such an integral.

For mstance, i we take gi/) = ¢ in Eqg. (9). the result is
N
/ TS AN = (1)
1)

We therefore define the Laplace transiorm of the delt function to be

LS =™ g . (1
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i we wrile
(1) = Splry and B — ay = dalfh (1
then {11}y with g == ) gives
LM =1 (1%

Note that if {7} werean aciual funciion satisfying the usual conditions for existence
of its Laplace transform, then Eq. (13) would contradict the corollary 1© Theorem 2
of Section 7.1. But there is no problem here: S{fyisnota function. and Eq. (13} is
our definition of LB

Nelta Function Inputs

Now, finally, suppase that we are given & mechanical system whose response x{!}
10 the external force fleys determined by the differential egquation

Ax" 4+ Bx A4 Cx = ). (14

To investigate the response of this system to a unit impulse at the instant © = 4, i
seems reasonable to replace f{r} with 8,{7) and begin with the equation

Ax” + Bx' 4 Cx = 8.40)- (1%

But what is meant by the sotution of such an equation? We will call x{7) a solution
of Eqg. (15) pmvided that

(1) = }E%xé(j}’ {16
where x.{1)1s 8 solution of
Ax" 4+ Bx' 4 Cx = da (1) (1
Because
dy () = %[uam 0] (18

is an ordinary function, Eq. (17) makes sense. For simplicity supposeé the initial
conditions to be x0) = X' = 0. When we transform Eg. (17, writing X, =
Lix.), we getthe equation

\ 1 /e E*{a-i«s)s - —5€
{AS“ -+ Bs + C)XG(S) m (w-— — ) == (g“m’) __.,,af-—m-_
€ b N S€
If we take the limit in the last equation as € —> 0, and note that
1 — —5€

fim e == 1

e} Se
by P Hopiial’s ule, we get the equation

(As?+ Bs+O)X(s) =€, (9

if
X(s) = hm X A%,
&l
Note that this is precisely the same result that we would obtain if we transformed
Ea. (15} directly, using the fact that £{8, (0} = e,
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On this basis it is reasonable to solve a differential equation invelving a delta
function by empioying the Laplace transform method exactly as if §,(¢) were an
ordinary function. It is important to verify that the soluiion so obtained agrees
with the one defined in Eq. (16}, but this depends on a highly technical analysis of
the limiting procedures involved: we consider it beyond the scope of the present
discussion. The formal method is valid in all the examples of this section and will
produce correct results in the subsequent problem set.

A mass m = | is attached to a spring with consiant k = 4; there is no dashpot. The
mass is released from rest with x{0) = 3. Atthe instant # = 27 the mass is struck
with a hammer, providing an impulse p = 8. Determine the motion of the mass.

According to Problem 13, we need to solve the initial value problem
Ok dr o= B (1 ¥y =3, Xy =0

We apply the Laplace transform io get
SSX{(sy—3s+4X(s) = 8o T

50 ,

38 Be

7 T

744 st4
Recalling the transforis of sine and cosing, as well as the theorem on translations
on the 7-axis {Theorem [ of Section 7.5}, we see that the inverse transform is

X{s) =

() = 3cos 2t + du(t — 2y sin2{r — 27)
= 3¢co82r + dun (1) sin 2L

Because 3 cos 2t + 4sin2f = 5cos(2t — o) with o = tan~'(4/3) == 0.9273, sepa-
ration of the cases 1 < 2 and ¢t 2 27 gives

3cos 2t ifr = 2,

() ~
FO R S cos(2r — 0.9273) if ¢

15 HA

2.

The resulting motion is shown in Fig. 7.6.3. Note that the impulse at ¢+ = 2w resuits
in 2 visible discontinuity in the velocity at 7 = 2, as it instantangously increases
the amplitude of the oscillations of the mass from 3 to 5. =

FIGURE 7.6.3. The motion of the mass of Example ©.
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FIGURE 7.6.4. Approximation

of u, (1) by u, (1)

Seoxiuton

itis useful to regard the delta function &, (1) as the derivative of the unit step function
i, (). To see why this is reasonable, consider the continuous approximation i, , U
10 1,44 shown in Fig. 7.6.4, We readily verily that

d

iy AEY =y Y
di

Because

Uy = E%zz{s}uw (ty and 8,003 = E%n(])dz,‘, {53,
£ LS

an interchange of limits and derivatives yields

d i )
— i 1} = iy —ye, (1) = Iim d{:.{ {1).
(f’f ¢ i) —
and therelore
«f
—t, (1) = 8,(1) = 8(f — a). (20
di

We may regard this as the formal definition of the derivative of the unit step function.
although u,, {7} is not differentiable in the ordinary sense at § = a.

We return to the RLC circuit of Example 5 of Section 7.5, with R = 10 &, L -

[ H. € = 0.001 E and a battery supplying e, = 90 V. Suppose that the circuit o
initially passive—no current and no charge. At time ¢ = {} the switch is closed and
at time ¢ = 1 it is opened and left open. Find the resulting current i (1) in the circuil.

In Section 7.5 we circumvented the discontinuity in the voltage by employing the in
tegrodifferential form of the circuit equation. Now that delta functions are available.
we may begin with the ordinary circuit equation

Li" + Ri' + %r‘ = e (t}).
In this example we have
e(r) = 90 — 90u(t — 1) = 90 — 90u (1),
soe'(1) = —908{r— 1) by Eq. (20). Hence we want to solve the initial value problen:
i H0E 4 1000i = —908(r — 1); 7¢0) =0,  (0) = 90. (21

The fact that 7/(0y = 90 comes from substitution of 7 = 0 in the equation
i
Li'(ry+ Ritr) + Eg(r) = (1)

with the numerical values i () = ¢(0) = O and ¢{(3) = 90
When we transform the problem in (21}, we get the equation

$21(s) — 90 + 11051 (s) + 10007 (5) = —90¢ .

Hence

GO(1 —e™"
f{3) = — .
s+ 110s + 1000
This is precisely the same transform /(s) we found in Example 5 of Section 7.5. s0
inversion of 7{s) yields the same solution i (1} recozded there.
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Consider a mass on a spring withm =& = | and () = x(0) = 0. Ateachofthe
instanis £ = . 7., 2. 3w, ... A, . ... the mass is struck g hammer blow with 2
unit impuise. Determine the resuiting motion.

We need 1o solve Lhe initial value problem

e

PR ‘Z Sonlf) X (0) = 0 = 2 (0.

pr=={}

Because L8, (1)) = ¢ 777, the transformed equation is

SZX(‘\") + X{S‘) — z{}—sm’.ﬁ"
Jr=id
50
R
Xisy = R
} Z 8'2 + I

=t

We compute the inverse Laplace transform term by term; the result is

N
X{fy = Zu(z‘ — Ry Sin{l — AT},

FE_Y

Because sin(f — nr) = {(—Esing and u(t —nm) = 0 forr < am, we see that if
nm o<t (n -+ Dim, then

X(f) = sinf —sint s~ -+ (=" sint

that is,
_ sing i o is even.
x{f) = e
0 if 1 is odd.
Hence +(7) is the half-wave rectification of sins shown in Fig. 7.6.5. The physical
explanation is that the first hammer hlow {at time 1 = 0} starts the mass moving (o
the right; just as it returns to the origin, the second hammer blow stops it dead; it
remains motioniess until the third hammer blow starts it moving again, and so on.
Of eourse. if the hanymer blows are not perfectly synchronized then the motion of
the mass witl be guite difterent. E

Consider a physical system in which the ontpur or response x (1) 0 the input func-
tion fi1) is described by the differential eguation

av’ E by ey = fU) (22)
where the constant coefticients «, #. and ¢ are determined by the physical parameters

of the system and are independent of /(73 The mass-spring-dashpot system and the
series RLC ¢ircuit are familiar examples of this general situation.
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For simplicity we assume that the system is initlally passiver 1 (0} = X0y =
1. Then the transform of Bg. (221 4

s X {5y e X sy o X sy = Fivh

503

X Fils} . . .
Xi{s) = ———— = W{s)Fis. RN
as= by + o

The function

H

eSS — (24
(s by + ¢

is called the transfer function of the system. Thus the transform of the response 1
the input f(r) is the product of W(s) and the transform F{s).
The function

wit)y = LW (25

is called the weight function of the system. From Eq. (24) we see by convolution
that

X)) = / w{t) j(r—1)dr. (201
Jo

This formula is Duhamel’s principte for the system. What is important is thal
the weight function w(7) is determined completely by the parameters of the systen
Once wi{7) has been determined, the integral in (26) gives the response of the system
to an arbitrary input function f(7).

In principle—that is, via the convolution integral—Duhamel’s principle re
duces the problem of finding a system’s outputs for all possible inputs to calcuiation
of the single inverse Laplace transform in (25) that is needed to find its weight func
tion. Hence, a computational analogue for a physical mass—spring~dashpot system
described by {22) can be constructed in the form of a “black box™ that is hard-wirced
to calculate (and then tabulate or graph, for instance) the response x(r) given by (20
automatically whencver a desired force function f(7) is input. In engineering prac
tice, all manner of physical systems are “modeled™ in this manner, so their behaviors
can be studied without need for expensive or time-consuming experimentation.

Consider a mass-spring—dashpot system (initially passive) that responds to the ex
ternal force f(7) in accord with the equation x” + 6x' -+ [x = f{r}. Then '

i B i
s2k 65 10 (s 37+ 1

Wisy =

so the weight function is w(7) = ¢~ sin7. Then Duhamel’s principle implies thal
the response x(7) to the force f(r)is

!
xity = [ ¢ isin i —1ydr.
1
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Note that

] L1541}
W(s) m oo = e .
as+ by +c¢  ast+bs-+c

Consequently, it follows from Eq. (23) that the weight function is simply the re-
sponse of the system to the delta function input 8(r). For this reason w(z) is some-
times called the unit impulse response, A response that is usuaily easier to measure
in practice is the response A(r) to the unit step function n(r): h{r) is the unit step
response. Because L{u(f)} = I/s, we see from Eq. (23) that the transform of f(1}

is
Wis
His) = (s}‘

It follows from the formula for transforms of integrals that

7
!?(f}:j wir)dr, sothat w{t)=h'(1). (2N

8]

Thus the weight function, or unit impulse response, is the derivative of the unit step
response. Substitution of (27} in Duhamel’s principle gives

(= j Ry fia—nyde (28

it

for the response of the system to the input f{f).

APPLICATIONS: To describe a typical application of Eg. (28), suppose that we
are given a complex series circuit containing many inductors, resistors, and capac-
itors. Assume that its circuit equation is a lingar equation of the form in (22}, but
with i in place of x. What if the coefficients a. b. and ¢ are unknown, perhaps
only because they are too difficult to compute? We would still want to know the
current i (1) corresponding Lo any input f (1) = ¢'{r). We connect the circuit to a
linearly increasing voltage e(t) =s ¢, so that ity = €'ty = | = ulr), and measure
the response fi(t) with an ammeter. We then compute the derivative f'{r), either
numericalty or graphically. Then according to Eq. {28). the output current i ({} cor-
responding to the input voltage ¢(7) will be given by

I
iry= f iy (t — 1ydr
£

(using the fact that f (1) = ).

HISTORICAL REMARK:  In conclusion, we remark that around 1950, after engi-
neers and physicists had been using delta functions widely and froitfully for about
20 years without rigorous justification. the French mathematician Laurent Schwartz
developed a rigorous mathematical theory of veneralized funcrions that supplied the
missing logical foundation for delta function technigues. Every piecewise continu-
ous ordinary function is a generalized function. but the dela function is an example
ol a generalized function that is notan ordinary function.




Solve the initicd value problems in Problems 1 thiough 8 aad

grapin el solution junciion x{i k.

Ay = S @)= a0 =0

K Ar AU 8 — ) (0) = T = 0

Pk Ay A = L SE = 2l =) = 0
N2 b v = S (0 = B =

AR 2y =280 — mnal =4 =0

Gy =80 — 3y deos i@ = 0 =0

F A 8 = S =S -2y (0) = O T = 2
x7 e 2y Y = S(i) — 5(1‘ P {({}) =y =2

Apply Duficanel's principle o write an integral formula for the
solution of each imitial valwe problent in Problems Y thiough

2.

9.
16,
il.
12
i3

14.

15,

16,

M4y = Fn @ =20 =90

b Oy = fy vty = iy =0

by 4By = Ui =h) =0

A 8 = funay =20 =10

This problem deals with a mass m. initially at rest at the
origin. that receives an impulse p at time 1 = . {a) Find
the solution x, (1} of the problem

v
v

mx” = pdy ) (=) =0

(by Show that Iém}xe{f) agrees with the solution of the
£t
problem

mx” = pSiry, xi0) = £(0) = 0.

(¢} Show that mv = p fors = Qv = dx/di.
Verify that u'(f — g} = (1 — a) by solving the problem

V=80 —a)y x{0)=0

1o obtain x(1) = ult — a).

This problem deals with a mass m on a spring (with con-
stant k) that receives an impulse po = mug at time 7 = 0.
Show that the initial value problems

ke =0 x( =0 20 =1y

and

iy b kxom ped(ty x{0) =0, x'(0) =1

have the same solution. Thus the effect of pyd{f) is. in-
deed, to impart to the particle an initial momentum zx,.
This is a eeneralization of Problem 15. Show that the
problems

ax” by ex = flry x(@ =0, x'(0)=uy

and
ax’ 4 by +ex = fiyfavedtty x(0) =x(0) =0

have the same solution for 7 > (. Thus the etfect of the
term avyd (7} is to supply the initial condition x'(0Q) = v,
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7.

i3

i9.

Consider an nitially passive RO circuit (no inductan.
with a baitery supplying en volts.  {a} 1f the switch 1
the hatlery is closed at time ¢ = ¢ and opened at L
¢ = b = ¢ tand left open thereafter), show that the curen
in the circuil sutisties the initial value problem

i
Ri 4 E;‘ moegd it -y — egblr - by Hy =1

(b} Solve this problem if & = 100 2. C = 10"}
ey = 100V g = | (s) and b = 2 {s). Show thati(s) v
Wi << Zandthat {1y = Gif7 = 2.

Consider an initially passive L cireuit (no resistance
with a batiery supplying ey volts.  (a) I the switch
closed at Gme 1 = O and opened at time 1 = g > §, show
that the current in the circuit satisfies the initial value prob
fem

3
Li" b =i = eod(i) = epdll —a;

HOy = ¢y =0,

by WL =1H. € =10"Fe = 10V.anda = 7
show that
sin 107 it = .

.
"=y

it =,
Thus the current oscillates through five cycles and then
staps abruptly when the switch is opened (Fig. 7.6.6).

i)
e

I

FIGURE 7.6.6. The current function of
Problem 18.

Consider the LC circuit of Problem 18(b), except supposw
that the switch is alternately closed and opened at tines
¢ = 0,7/10. 27 /10, .... (a) Show that i{r) satisfies the
initial value problem

1000 = 103 (—1y5(r — f%) HO) = i(0) = 0

n={}

{h) Solve this initial value problem to show that

nw (n+ Dm

i{fy =1 ysin 108 #f 1
Hty={n+ 1)s1 i 1(}< < T

Thus a resonance phenomenon oceurs (see Fig. 7.6.7),
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FIGURE 7.6.7.
Problem 19.

Repeat Problem 19, except suppose that the switch is al-
ternately closed and opened at times 1 = 0. /3, 2m/5,

The currvent function of

o /5, ... Now show that if
A {(n+4 D
R
5
then
sin 1 if n s even;

i(f) == e
( G if n is odd.
Thus the current in alternate cycles of length 7/5 first ex-
ecutes a sine oscillation during one cycle. then is dormant
during the next cycle, and so on (see Fig. 7.6.8).
in
fi i
1 H if {
| [

i
i

FIGURE 7.6.8. The current function of
Problem 20.

22.
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. Consider an RLC circuit in series with a battery, with

L= 1H R=600Q C=10"Fande = 10V (a}
Suppose that the switch is aliernately closed and opened
at dmes ¢ = 0. /10, 2m/10, ... . Show that i{r) satisfies
the initial value problem

7 601" + 10007 = 103 (=181 - To):

PE=i]
F{0) == 0 = 0.
(b} Solve this problem to show that if

BT {n+ 1w

10 10

then
gl

[

Py e e gin 108,

e ]

Construct a figure showing the graph of this current func-
tion.

Consider 2 mass m = | on a spring with constant & = 1.
initially at rest, but struck with a hammer at euach of the in-
stants 1= 0, 2, 4w, L Suppose that each hammer blow
imparts an impuise of 4 1. Show that the position function
x(r) of the mass satisfies the initial value probiem

X
Xk o= Zﬁ(r —2nry. () =x(0) =0

==t}

Solve this problem to show that if 2am < ¢ < 2(n + N
then x{t} = (1 -+ 1) sinf. Thus resonance occurs because
the mass is struck each time it passes through the origin
moving to the right—in contrast with Example 3, 11 which
the mass was struck each time it returned to the origin. Fi-
nally, construct a figure showing the araph of this position
function.




