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INVESTIGATION 3:  With damped oscillatory external force

20K T
o ) F(e) = 2700te™ cos 31,
Hig
a0 we have a still more complicated resonance situation. The Mathemalica commands
¢ de3 = 25 x’'[t] + 10 x'[&] + 226 x[t] ==
3 2700 & Exp[-t/5] Cos[3t]
HIO seln = DSolvel{del, x[0] == 0, x'[0] == 0}, =itl, &l
150 - - x = Firstix{t] /. soln]
0 L }1{} i 4!0 ’2”——36 amp = Expl-t/5} Sgrt[(3t)~2 + (9"2 - 1372}
oo e Plot]{x, amp, -amp}, {t, O, 10 Pi}];
FIGURE 3.6.15.  The solution produce the plot shown in Fig. 3.6.15. We see the solution
SAf) == - 5 ;
CY[3rcost + (91— £ sin 3] x()y=e [3? cos 31 A+ (97 — 1) sin 33‘}

+nd the envelope curves
ety = Ze 7G0T+ (97 — 1 oscillating up-and-down between the envelope curves
with external force

o — Y e P
#iey = 2700re ™7 cos 3t = e GO+ (92 — DA

- Here we examine the RLC circuit that is a basic building block in more complicated
L Swich electrical circuits and networks. As shown in Fig. 3.7.1, it consists of

A resistor with a resistance of R ohss,
An inductor with an inductance of L henries. and
A capacitor with a capacitance of € Jarads

R
FIGURE 3.7.1. The series RLC 10 series with a source of electromotive force (such as a battery or a generator)

that supplies a voltage of E(f) volts at time 7. [f the switch shown in the circuit

crcutt.
of Fig. 3.7.1 is closed, this resulls in a current of [(f) amperes in the circuit and
a charge of Q) coulombs on the capacitor at time 1. The relation between the
functions @ and [ is
Circait Voltage
Element Drep dQ
A F O ()
dl di
fnductor “dt We will always use mks electric units, in which time is measured in seconds.
Resistor RY According to elementary principles of electricity, the voltage drops across
Capacitor | the three gircuif c!e;z&cr%[s are tiagsc ;s‘h‘{")wn in the Fabie in Flg {3‘7:2, We can a;zalyze.
- ' E:Q the behavior of the series circuit of Fig. 3.7.1 with the aid of this table and one of
s Kirchioff's laws:
FIGURE 3.7.2. Table ofvoltage The (algebraic) sum of the voltage drops ucross the clements in a

Jdrops. . . . L ; .
simple loop of an electrical cireuit s equai to the applied voltage.

As a consequence, the current and charge in the simpie RLC circuit of Fig. 3.7.1
satisfy the basic circuit equation

df !
L— + BRI+ =0 =El. (2
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we substitute (1) n Bq. (20 we get the second-order hnear differentizl equation

I

LO 4+ RO —+ ;;w O o= Eir (3

tor the charge ({7}, under the assumption that the voltage £1{1) is known,

in most practical problems it is the current 7 rather than the charge ¢ that is
ol primary interest. so we ditferentiate both sides of Eq. {3) and substituie 7 for ¢
to obtain

i

-7 = F(15. (4
{

LI"+ RI'+

We do sor assume here a prior familiarity with elecirical circuits. It suffices ¢
repard the resistor, inductor. apd capucitor in an elecirical circuit as “black boxes”
that are calibrated by the constants R, L. and C. A battery or generator is described
by the voltage £(7) that it supplies. When the switch is open. no current Sows in the
circuit: when the switch is ciosed. there is a current /(1) in the circuil and a charge
(11 on the capacitor. All we nced 10 know about these constants and functions is
that they satisfy Egs. (1) through (4). cur mathematical model for the RLC circuit,
We can then learn a good deal about electricity by studving this mathematical model.

Itis seriking that Egs. (3) and (4) have precisely the same form as the equation

ma” ey b ky = Fi) (3)

of a mass—spring-dashpot system with external force £ (7). The table in Fig. 3.7.3
details this important mechanical-electrical analogy. As a consequence. most of
the results derived in Section 3.6 for mechanical systems can be applied at once o
electrical circuits. The fact that the same differential equation serves as a mathemat-
ical model for such different physical systems is a powerful illustration of the unify-
ing role of mathematics in the investigation of natural phenomena. More concretely,
the correspondences in Fig. 3.7.3 can be used to construct an electrical model of a
given mechanical system. using inexpensive and readily available circuit elements.
The performance of the mechanical system can then be predicted by means of ac-
curate but simple measurcments in the electrical model. This is especially useful
when the actual mechanicai system would be expensive o construct or when mea-
surements of displacements and velocities would be inconvenient, inaccurate, or
even dangerous. This idea is the basis of analag compurers—electrical models of
mechanical systems. Analog computers medeled the first nuclear reactors for com-
mercial power and submarine propulsion before the reactors themselves were built,

Mechanical System Electrical System

Mass m Inductance L

Damping constant ¢ Resistance R

Spring constant £ Reciprocal capacitance 1/C

Position x Charge O {using {3) (or current / using {4)))
Force F Electromotive force £ {or its derivative E')

FIGURE 3.7.3. Mechanical-electrical analogies.
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In the typical case of an alternating current voltage E() = Epsinot, Eq. (4)
takes the form

i H
Li"%R['%AE[:wEocoswt. (6)

As in a mass—spring—dashpot system with a simple harmeonic external force, the
solution of Eq. (6) is the sum of a transient current 7, that approaches zero as
{ — +oo {under the assumption that the coefficienss in Eq. (6) are all positive.
so the roots of the characteristic equation have negative real parts), and a steady
periodic current [y thus

[ = Iy + L. (7

Recall from Section 3.6 (Eas. (19) through (22) there) that the steady periodic solu-
tion of Bq. (5) with F (1) = Focoswt is
Fy cos{wf — a)

V ik —mw?)? + (r;'a))z.

xsp@ )=

where

cw
! 0<a <o

o == tan -7,
ke — mow-~

If we make the substitutions L for m, R fore, 1/C for k, and wEy for £y, we get
the steady periodic current

Fpy cos(at — o)

[p(t) = —= - 8
1 N2
R'+ |wl — —=
(” wC>
with the phase angle
RC
=t e 0 S (9)
| — LCw-

sacinnls and impd

The quantity in the denominator in (8).

[E2L W9

/ i 2
7z = \/R3 b (wL — T) (ohms), {1h

is called the impedance of the circuit. Then the steady periodic current

Ey
[y = — cosfad — o} (h
A
has amplitude
, £
fn = z“l (12)

reminiscent of Ohm's faw. [ = E/R.
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FIGURE 3.7.5. Time lag of
current behind imposed voltage.

TERUS @ CONING TUncHOn. wheres

fowns aosioe funciion, To convers {10 sing

irst introduce the reactance

S=wl ~ —.

"

S7ound we see from g (93t ¢ is as in Fig. 3.7.4. with dela
angie & = ¢ — «. Fguation (1 1) now vields

L{lé . A
iw\(f b= 7((_‘05 GEOS @ 4 SN s on )

E, ( s Rk
= b T COSwl - o— sined
Z\ Z 7 )

£y . .
= e Q0SS SNl ~ SIS Con i )

Therefore.

lalih = — sinfewt — &), {14;

where

3 LCw™ —

w e

§=tan"' = = g’ (15}
R

This finally gives the time lag d/es {in seconds) of the steady periodic current Ln
behind the input voltage (Fig. 3.7.5).

When we want to find the transient current. we are usually given the initinl vatues
HOy and @(0). So we must first find 7(0). To do so. we substitute 7 = 0 in Eg, (2}
to oblain the equation

I
LI + RI(O) + ?Q(ﬂ} = E{{h (16;
o determine /7(0) in terms of the initial valaes of current. charge. and voliage.

Consider an RLC circuit with B = 50 ohms (§2). L = 0.1 henry (H), and ¢ =
5% 107 farad (F). At time 7 = 0. when both £ (0) and @(0) are zero. the cirenit is
connected 10 a 110-V, 60-Hz alternaling current generator. Find the current in the
circuit and the time lag of the steady periodic current behind the voltage.

A frequency of 60 Hz means that o) = (2 }{60) rad/s, approximately 377 rad/s. So
we take £(7) = 116sin 3777 and use equality in place of the symbol for approximate

equaiity in this discussion. The differential equation in (6) takes the form

0.7 + 501" 4 20007 = (3773(110) cos 3771
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We substitule the given values of 8. L, C.and w = 377 in Eq. {140 to find that the
impedance is Z = 59,58 §2. so the steady periodic amplitude i3

10 (volis)

Iy = ——m ez | 846 amperes (A).
59.58 {ohms)

With the same data, Eq. (13) gives the sine phase angle:
§ = tan” ' (0.648) = 0.575.

Thus the time lag of current behind voliage is

and the sieady periodic current is
I = (1.846) sin(377; — 0.575).

The characteristic equation (0,172 4 50r + 2000 = 0 has the two roots ry A
w44 and 2 22 —456. With these approximations. the general solution is

Ty = cre ™ e 4 (1.846) sin(3771 — 0.575).
with derivative

(16) gives [7(0) = 0 as well. With these initia]

Because 70y = 0y = 0. Eq.
e equations

vilues substituted. we oblain th

iy

i

o o — 10D = 8.
Iy e —dde) - 35600 + 384 = (&
thelr solution is ¢y =

0,307, ¢» = |.311. Thus the transient solution 1s

Lo = 0307 T = (13 e P

Phe observation that after one-Afth of @ second we have H(0.2)7 < 0L.000037 A
tcompurable to the current in a single human aerve #iber) indicates that the transient
solution dies out very rapidly, indeed.

Suppose that the RLEC circuit of Example 1 st with 740 = Q1 = (L i con-

accled wt time 7 o= O 1o a battery supplying a constant 1

{3 ¥, Now find the curent

CRNTTNEH
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FIGURE 3.7.6.
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Consider again the current dilfereniial equation in 163 correspending (o a sinusoids]

wpul voltage By = Fosined. We luve seen that the amplitude of ity sicad
perodic current is

f‘:“

ffs pues == - - (

it -

e i | )

\ R+ (cr.;!_, - UI_)

sstants K L0 C and Byl the graph ol Jy as o lunction of e

~1

For typieal values of the o
reseimbies the one shown oy Fig, 3.7.60 Ioreaches a maximumvadue wm,, = VL
- +owt the eritical Trequencey sy, is the resenance

and then approaches oo as o
Irequency of the circui

In Section 3.6 we emphasized the importance of avoiding resonance in most
mechanical systems (the cello is an example of o mechanicul system in which reso-
sance is soughny. By contrast, many common electrical devices could not function
properly without taking advantage of the phenomenon ol resonance. The radio is 2
famibiar example. A highly simphificd modet of is wining circuit is the KLC cireuit
we have discussed. s inductance Loand resistance B are constant. but its capaci-
tance O s varied as one operates the tuning dial

Suppose that we wanted o pick up ¢ particular vadio station that s broad-
casting af frequeney w. and thereby tin effect) provides an inpul voltage F{/y =
Ly sine to the wning cireeit of the radio. The resulting steady periodic current 1,
in the tuping circait drives its amphilier. and in wen its Joudspeaker, with the volume
of sound we hear roughly proportional o the amplirude 1y of 1,0 To heuar vur pre-
ferred station (ol frequency wi the loudest—uand simultancously tune out stutions
broadcasting ut other frequencies—we therelore wanit o choose C o maximize 4.
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But examine Eg. (17), thinking of w as a constant with € the only variable. We see
at a glance—no calcuius required—that I is maximal when

that is, when

H
L—— =1
@ wC '
C = l (18
T Ler ‘

So we merely turn the dial to set the capacitance to this value.

This is the way that old crystal radios worked, but modern AM radios have a
more sophisticated design. A pair of variable capacitors are used. The first controls
the frequency selected as described earlier: the second controls the frequency of a

signal that the radio itself

generates, kept close to 455 kilohertz (kHz) above the

desired frequency. The resulting bear frequency of 433 kHz, known as the inferme-
diate frequency, is then amplified in several stages. This technique has the advantage
that the several RLC circuits used in the amplification stages easily can be designed
to resonate at 455 kHz and reject other frequencies, resulting in far more selectivity
of the receiver as well as better amplification of the desired signal.

Problems

Froblems | through 6 deal with the RL circuit of Fig. 3.7.7. u
series circuit containing an inductor with an inductance of L

henries, o resistor with a resistance of R ohms, and a source of

dlectromotive force femf), but no capacitor. It this case Eq. (2)
rechices to the linear first-order equation

LI+ RI = E{n,.

L Switch
[ SRR
2

R”

FIGURE 3.7.7. The circuit for
Problems | through 6.

¢ In the circuit of Fig. 3.7.7. suppose that L = S H R = 25
. and the source £ of eml is a battery supplying 100 V
1o the circuit. Suppose also that the switch has been in po-
sitior: | for 4 long time, so that a steady current of 4 Als
fowing in the circuit, At time 1 = (), the switch is thrown
1o position 2, so that Jiy = 4 and £ = O forr 2 0, Find
I(n.

@Given the same circeit as in Problem 1. suppose that the
switch is initiaily in position 2, but is thrown o posttion |
af time ¢ o= 0, so that 700 = Gand £ = 100 for ¢ 2 0.
Tind { () and show that f 7y — dasi — +20.

3. Suppose that the battery in Problem 2 is replaced with
an alternating-current generator that supplies a voltage of
E(r)y = 100cos 60t volts, With everything else the same,
now find (/).

4. In the circuit of Fig. 3.7.7. with the switch in position |,
suppose that L = 2, R = 40, E(n) = 100e="", and
[{0y = 0. Find the maximum current in the circuit for
i 20

h

In the cireuit of Fig. 3.7.7, with the switch in position L.
suppose that (1) = 100e 7" cos60r. R = 20. L = 2,
and 7(0) = Q. Find #{t}.

6. In the cireuit of Fig. 3.7.7, with the switch in position I,
ke L = 1. R = 10, and E{ty = 30cos60r + 40 sin 607
(a) Substinse [o{t) = Acos &0 4 Bsin6dr and then
determine A and B to find the steady-state current /y, in
the cirewit, (by Write the solution in the form {,(f) =
C coslewt — ol

Problems 7 through 10 deal with the RC circuit in Fig. 3.7.8
containing « iesisior (R ohmsi a capacitor (C Sfaradsh, «a
switch, a sowrce of emf b no inducton Substitution of L = 0
in Eq. (3) gives the linear first-order differeniial equation

dg 1 .
R— + — () == £{1)
di C

for the charge = Q1) on the capacitor al fimie £, Nowe that

firy = i
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FIGURE 3.7.8. The circuit (or
Problems 7 through 101

(a) Find the charge (17) and current /(71 in the RC cireui

iTE@) = £y (o constant vollage sepplied by o battery)

and the switch is closed at time 1 = 0. 50 dat QU = O,

(b} Show that

Hm )y = E,C and that fim 77y = Q.
I LRl i

8. Suppoese that in the cireutt of Fig, 3.7 8. we have R = 10,
Co= 002 Q) = 0 and EGF = 10077 (volts), ()
Find (1) and 7 (1), (b} What is the maximum charge on
the capacitor for 1 2 (3 and when does it ocour?

9. Suppose that in the circuit of Fig, 378, B = 200,
C o= 25 107° O = O, and {7y = 100cos 1207,
{a) Find O«) and I(r). (b} What is the amplitude of the
steady-state current?

10, Anemf of voltage E(r) = E;coswr is applied to the RO
circuit of Fig. 3.7.8 at time ¢ = 0 (with the switch closed),
and QM = 0. Substitute Q.,(F) = A cos ! + B sinwi in
the differential equation 1o show that the steady periodic
charge on the capacitor is

ELC
L RIC:

Oy () = cosiew? — B)

where # = tan" {wRC}.

In Problems 11 through 10, the parameters of an RLC circuit
with inpui voltage E(r) are given. Subsiitute

fopl} = Acoswi + Bsinwr

in Eq. (4), using the appropriate value of w, 1o find the sieady
periodic curveitt br the form Lolly = Iysin(ewt — ).

= L0Z F Ly e Ssin 2y

L R=30 L=HHC
L =0.001 5

LR e HHY2 L = 5 H
Fioy= {0sin Hn v

LK =208 L = OH. € =001 F
Firy = 20cos ™ ¥

4 R=3500.L =5H.C =0.005 F

LAy = 300 cos HM + 4000 1007 V

I3 R=1000. L=2H =510

Eoy=10sim6har v
16, R=230.L=02H =5« 107
Ly = 1200083770 ¥

i Problems 17 through 22, an RLO civenit with it vels
age Edryis deseribed. Find the current 1) using the given
fidtiad current {fn amperes and charee o the cupuciior i
coufoniy .

7. R=16Q. L=2H C=002F
Etiy =100V /(0 =0, Q0 = 5
1B, R=00Q L =2H ¢ = 00025 F:
Etry=100e"" V:  [(0) =0, Qi0) = @
19 R=60Q. L=2HC =00025F
E() = 100e™ ™ Vi Jq0) == 0. ((0) = |

fn cach of Probiems 20 through 22, plot both the steady peri-
adie current Lolty aned the wevial carrent 11y = Fapdty + i)

20. The circuit and input voltage of Problem 11 with 7(0) = 0
and G =0

21 The circuit and input voltage of Problem 13 with 74(0) = 0
and Q{0) = 3

22, The cireutt and input voltage of Problem 15 with /(3 = O

and Q) = ¢

. Consider an LC cireuit—that is. an REC circuit with B =

O-—with input voltage E(/) = Eysinawr. Show that un-
bounded oscillations of current occur for a certain reso-
nance frequency: express this frequency in terms of L and
C.

24, Ir was stated in the text that, if R, L, and C are positive.
then any selution of LI" + R+ 71/C = 0is o transient
solution—it approaches zero as 1 — 0. Prove this.

25, Prove that the amplitude /, of the steady periodic solution
of kq. (6) is maximal at frequency w = 1/LC.

o
Lad

You are now familiar with the fact that a solution of a second-order linear differential
equation is umquely determined by two initial conditions. In particular. the only
solution of the initial value problem

Mok pleny gy =0

yay=0. Yo =0 (H

18 the trivial solution vix) = 0. Most of Chapter 3 has been based. directly or indi-
rectly. on the uniqueness of solutions of iinear initial value problems (as guaranteed
by Theorem 2 of Section 3.2).




