
Maple Command list
Fall 2008

Helpful commands for Math 2250, 2280. Suggest more and I will add them to this list!

If you see a command "foo" that you like, try it! If you want more information or extra options for foo,
type ?foo in a math field and hit enter...the "foo" help window should open. (You can also find out
about "foo" from the help directory, at the upper right of your Maple window.)

Constants
> c:=3; #defines c to be 3, then shift-enter

 #for another line

 #before executing an entire command field

d:=4; #to define d to be 4 (could leave both on

 #one line too)

c;d; c+d; #should list 3, then 4, then 7.

unassign(’c’,’d’); #turn c, d back into letters

 #(forward quotes!)

c; d; c+d; #should be symbols c,d, c+d.

 #Maple ignores spaces

c: d: c+d: #with a colon, Maple does the math,

 #but doesn’t show you!

Text fields
I Made a text field here by first hitting the math prompt [> button in the menu bar, and then turning that
field into a text field by putting my cursor into it and hitting the T button. I erased the bracket (which
originally looked like the ones surrounding math fields) by highlighting the bracket with my mouse and
hitting the delete key.

Functions
> restart: #clears ALL memory. You can then reload

 #any commands you want by putting your

 #cursor anywhere into the command field and

 #hitting enter.

f:=t->t^2*exp(t); #define the function f(t)=t^2*exp(t)

f(z); #should return f(z)

f(2); #should return f(2)

evalf(f(2)); #should be decimal value (i.e. floating
point)

g:=(z,w)->z^2+w^2; #a function of two variables

ggg:=(a,b,c)->a^2+b*exp(c); #or of three variables

g(2,1); #should be 5

ggg(1,2,0); #should be 3

ggg(1,2,c); #should be 1+2*exp(c)

z:=3; #set z equal to 3

z; #should be 3

g(z,w); #should be g(3,w), i.e. 9+w^2

unassign(’z’); #undefine z, and set it back to a letter

z; #should be z again

unassign(’f’); #turn f back into a variable!

f(t); #maple echos f(t) because f no longer

 #has meaning as a function

>

Integrals and Derivatives
> f:=t->t^2; #define f(t) to be t^2

int(f(z),z); #should be z^3/3 (Maple doesn’t

 #include the +C)

int(f(x),x=0..1); #definite integral, should be 1/3

diff(f(y),y); #should be 2*y

diff(f(t)^4,t); #should equal 4*(f(t)^3)*2*t, by the

 #chain rule

int(t^3*exp(5*t)*sin(3*t),t); #maple is good!

int(exp(sin(t)),t); #but not every integral has an

 #answer in terms

 #of elelmentary functions -

 #if maple can’t do a computation,

 #it just echos what you typed.

int(exp(sin(t)),t=0..1); #no symbolic answer

evalf(int(exp(sin(t)),t=0..1)); #decimal (approximate) answer

Plots
> restart:
> with(plots): #loads the plotting library (to see all the

 #commands in this library replace colon with

 #semicolon

> f:=theta->sin(theta); #f(x)=sin(x)

plot(f(t),t=0..2*Pi,color=green,title=‘sinusoidal!‘);

 #plain vanilla plot of a graph in the plane

 #click on the plot, then on a point in

 #the plot, and a window at upper left says

 #where you are!

 #resize plots as if you were in MSWord -

 #grab a corner with your mouse, and move it.

> plot1:=plot(f(t),t=-2*Pi..2*Pi,color=green): #use colon or maple

 #will list all the points in the plot!

plot2:=plot(.2*t^2,t=-5..5,color=black):

plot3:=plot([cos(s),s,s=0..2*Pi],color=blue): #parametric curve

display({plot1,plot2,plot3},title=‘three curves at once!‘);

> f:=(x,y)->x^2-y^2; #function of two variables

plot1:=plot3d(f(x,y),x=-1..1,y=-1..1,color=blue):

 #graph of z=x^2-y^2

plot2:=plot3d([.5*cos(theta),.5*sin(theta),z],

 theta=0..2*Pi,z=0..1,color=pink): #vertical cylinder,

 #defined parametrically!

plot3:=plot3d(.5,x=-1..1,y=-1..1,color=brown):

 #horizontal plane z=0.5

display({plot1,plot2,plot3},axes=boxed); #if you click

 #on the plot you can move it around in space!

 #and a box in upper left of window will give you

 #the spherical coordinates you’re looking from!

>

> implicitplot(f(x,y)=.5,x=-1..1,y=-1..1,color=black); #this is the

 #level curve where x^2-y^2=.5

g:=(x,y)->3*x^2-2*x*y+5*y^2:

 #a quadratic function of two variables

implicitplot(g(x,y)=1,x=-2..2,y=-2..2);

 #rotated ellipse,kind of badly drawn!

implicitplot(g(x,y)=1,x=-2..2,y=-2..2,color=blue,grid=[80,80]);

 #better resolution

Differential equations
> with(DEtools): #differential equation package
> deqtn:=diff(y(x),x)=y(x); #the DE dy/dx = ynote you
#must write y(x), and not just y

dsolve(deqtn,y(x)); #general solution

dsolve({deqtn,y(0)=2},y(x)); #IVP

dsolve({deqtn,y(0)=y[0]},y(x)); #general IVP

> DEplot(deqtn,y(x),x=-1..1,y=-2..2,[[y(0)=0],[y(0)=1],

 [y(.3)=-2]],arrows=line,color=blue,linecolor=green);

 #slope field with solution graphs

Algebra and equations
> g:=t->exp(-k*t)*(cos(omega*t)*exp(2*k*t));

simplify(g(z)); #simplify will try to simplify

 #you can ask it to try special tricks,

 #see help windows.

h:=x->sin(x)^2+cos(x)^2;

simplify(h(x));

> F:=x->((3*x^2+5*x+7)/(x^4-x));

convert(F(x),parfrac,x); #partial fractions!

> g:=t->exp(t);

solve(g(t)=2); #solve an equation, maple tries

 #symbolic solution

solve(g(t)=2.); #unless you enter a decimal

>
> Digits:=5; #use a different number of significant

 #digits, rather than the default of 10.

solve(g(t)=2.); #cleaner looking, but less accurate answer.

>

Linear Algebra
> with(linalg): #this package contains the linear algebra

 #commands ...there’s another package called

 #LinearAlgebra, and it has different

 #commands to do the same sort of operations

> A:=matrix(3,3,[1,2,3,4,5,6,7,8,9]);

 #matrix, 3 rows, 3 columns, entries in order

 #going across rows, then down columns

> rref(A); #reduced row echelon form

 #notice this matrix does not

 #reduce to identity, so has no inverse

> b:=vector([0,-3,-6]);

C:=augment(A,b); #augmented matrix

rref(C); #read off the solutions to Ax=b

linsolve(A,b); #solve the same linear system

inverse(A); #DOES NOT EXIST!

det(A); #so the determinant should be zero

A^(-1); #just echoes 1/A

evalm(A^(-1)); #evalm stands for evaluate matrix -

 #the inverse matrix does not exist

> B:=matrix(3,3,[1,2,3,4,5,6,7,8,10]);

Id:=diag(1,1,1); #3 by 3 diagonal matrix, in this case

 #the identity matrix

C2:=augment(B,Id);

rref(C2); #can you see the inverse of B?

inverse(B); #check answer above

det(B); #non-zero determinant

evalm(B^(-1)); #one more way to write the inverse

evalm(B&*inverse(B)); #matrix multiplication symbol -

 #should get identity

multiply(B,inverse(B)); #also the identity, another way to

 #multiply

> x:=linsolve(B,b); #the solution to Bx=b

evalm(inverse(B)&*b); #x is the inverse of B times b!

evalm(B&*x); #Bx should equal b

evalm((3*A+2*B)^2); #compute this expression

evalm(9*A^2 + 6*A&*B + 6*B&*A +4*B^2);

 #using matrix algebra to expand

 #previous expression, remembering

 #that matrix multiplication does not

 #commute

>

