Math 2250

Earthquake project

November 2002

Name	Class Time
	Solve problems 3.1 to 3.6. The problem headers:
PRO PRO PRO PRO PRO PRO PRO	BLEM 3.1. BUILDING MODEL FOR AN EARTHQUAKE. BLEM 3.2. TABLE OF NATURAL FREQUENCIES AND PERIODS. BLEM 3.3. UNDETERMINED COEFFICIENTS STEADY-STATE PERIODIC SOLUTION. BLEM 3.4. PRACTICAL RESONANCE. BLEM 3.5. EARTHQUAKE DAMAGE. BLEM 3.6. SIX FLOORS. a(linalg):
3.1. BUILD	ING MODEL FOR AN EARTHQUAKE.
Refer to the	e textbook of Edwards-Penney, section 7.4, page 437. Consider a building with 7 floors.
Define the 7	is in slugs of each story be $m=1000.0$ and let the spring constant be $k=10000$ lbs/foot. To by 7 mass matrix M and Hooke's matrix K for this system and convert $Mx''=Kx$ into the $Ax=Ax$ where A is defined by textbook equation (1), page 437.
particular the Sample Market Wash Market Mar	genvalues of the matrix A to six digits, using the Maple command eigenvals(A). Justify in that all seven eigenvalues are negative by direct computation. Maple code for a model with 4 floors. le help to learn about evalf and eigenvals. [[-20,10,0,0], [10,-20,10,0], [0,10,-20,10], [0,0,10,-10]]);
	E OF NATURAL FREQUENCIES AND PERIODS. ure 7.4.17, page 437.
periods 2π/ page 437. # Sample c # Use mapl ev:=[-10,-1 Omega:=lan format:="% seq(printf(fo	3.2. tural angular frequencies $\omega = \sqrt{-\lambda}$ for the seven story building and also the corresponding ω , accurate to six digits. Display the answers in a table . The answers appear in Figure 7.4.17 ode for a 4x3 table. The left to learn about nops and printf. 206147582,-35.32088886,-23.47296354]: n:=nops(ev): mbda -> sqrt(-lambda): 510.6f %10.6f %10.6f \n": ormat,ev[i],Omega(ev[i]),2*evalf(Pi)/Omega(ev[i])),i=1n); coblem 3.2

3.3. UNDETERMINED COEFFICIENTS STEADY-STATE PERIODIC SOLUTION.

Consider the forced equation $x' = Ax + \cos(wt)b$ where b is a constant vector. The earthquake's ground vibration is accounted for by the extra term $\cos(wt)b$, which has period $T = 2\pi/w$. The solution x(t) is the 7-vector of excursions from equilibrium of the corresponding 7 floors. Sought here is not the general solution, which certainly contains transient terms, but rather the steady-state periodic solution, which is known from the theory to have the form $x(t) = \cos(wt)c$ for some vector c that depends only on A and b.

PROBLEM 3.3.

```
Define b:=0.25*w*w*vector([1,1,1,1,1,1]): in Maple and find the vector c in the undetermined coefficients solution x(t) = \cos(wt)c. Vector c depends on w. As outlined in the textbook, vector c can be found by solving the linear algebra problem -w^2c = Ac + b; see page 433. Don't print c, as it is too complex; instead, print c as an illustration.

# Sample code for defining b and c, then solving for c in the 4-floor case.

# See maple help to learn about vector and linsolve.

w:='w': u:=w*w: b:=0.25*u*vector([1,1,1,1]):

Au:=matrix([ [-20+u,10,0,0], [10,-20+u,10,0], [0,10,-20+u,10], [0,0,10,-10+u]]);

c:=linsolve(Au,-b):

evalf(c[1],2);

> # PROBLEM 3.3
```

3.4 PRACTICAL RESONANCE.

Consider the forced equation $x' = Ax + \cos(wt)b$ of 3.3 above. Practical resonance can occur if a component of x(t) has large amplitude compared to the vector norm of b. For example, an earthquake might cause a small 3-inch excursion on level ground, but the building's floors might have 50-inch excursions, enough to destroy the building.

PROBLEM 3.4.

3.5. EARTHQUAKE DAMAGE.

The maximum amplitude plot of 3.4 can be used to detect the likelihood of earthquake damage for a given ground vibration of period T. A ground vibration $(1/4)\cos(wt)$, $T = 2\pi/w$, will be assumed, as in 3.4.

PROBLEM 3.5.

- (a) Replot the amplitudes in 3.4 for periods 1.14 to 4 and amplitudes 5 to 10. There will be four spikes.
- (b) Create four zoom-in plots, one for each spike, choosing a T-interval that shows the full spike.
- (c) Determine from the four zoom-in plots approximate intervals for the period T such that some floor in the building will undergo excursions from equilibrium in excess of 5 feet.

```
 \begin{tabular}{ll} \# \ Example: \ Zoom-in on a spike for amplitudes 5 feet to 10 feet, periods 1.97 to 2.01. \\ with(linalg): \ w:='w': \ Max:= \ c -> norm(c,infinity); \ u:=w^*w: \\ Au:=matrix([\ [-20+u,10,0,0],\ [10,-20+u,10,0],\ [0,10,-20+u,10],\ [0,0,10,-10+u]]); \\ b:=0.25^*w^*w^*vector([1,1,1,1]): \\ C:=ww -> subs(w=ww,linsolve(Au,-b)): \\ plot(Max(C(2^*Pi/r)),r=1.97..2,01,5..10,numpoints=150); \\ > \ \# \ PROBLEM 3.5. \ WARNING: \ Save \ your \ file \ often!! \\ > \ \# \ (a) \ Plot \ four \ spikes \ on \ separate \ graphs \\ > \ \# \ (b) \ Plot \ four \ zoom-in \ graphs. \\ > \ \# \ (c) \ Print \ period \ ranges. \\ \end{tabular}
```

3.6. SIX FLOORS.

Consider a building with six floors each weighing 50 tons. Assume each floor corresponds to a restoring Hooke's force with constant k = 5 tons/foot. Assume that ground vibrations from the earthquake are modeled by $(1/4)\cos(wt)$ with period $T = 2\pi/w$ (same as the 7-floor model above).

PROBLEM 3.6.

Model the 6-floor problem in Maple. Plot the maximum amplitudes against the period 0 to 6 and amplitude 4 to 10. Determine from the graphic the period ranges which cause the amplitude plot to spike above 4 feet. Sanity check: m=3125, and the 6x6 matrix contains fraction 16/5. There are five spikes.

- > # PROBLEM 3.6. WARING: Save your file often!!
- > # Define k, m and the 6x6 matrix A.
- > # Amplitude plot for T=0..6,C=4..10
- > # Plot five zoom-in graphs
- > # From the graphics, five T-ranges give amplitude # spikes above 4 feet. These are determined by left # mouse-clicks on the graph, so they are approximate values only.