Math 2250

Earthquake project

November 2001
Enter your name here: ?????????????????????????????

Project 3. Please fill in all areas below marked ????? and solve problems 3.1 to 3.6. The problem headers:

```
PROBLEM 3.1. BUILDING MODEL FOR AN EARTHQUAKE. PROBLEM 3.2. TABLE OF NATURAL FREQUENCIES AND PERIODS. PROBLEM 3.3. UNDETERMINED COEFFICIENTS STEADY-STATE PERIODIC SOLUTION.
PROBLEM 3.4. PRACTICAL RESONANCE.
PROBLEM 3.5. EARTHQUAKE DAMAGE.
PROBLEM 3.6. FIVE FLOORS.
[ > restart:with(plots):with(linalg):
```


3.1. BUILDING MODEL FOR AN EARTHQUAKE.

Refer to the textbook of Edwards-Penney, section 7.4, page 437. Consider a building with 7 floors.
Let the mass in slugs of each story be $\mathrm{m}=1000.0$ and let the spring constant be $\mathrm{k}=10000.0$ (lbs/foot). Define the 7 by 7 mass matrix M and Hooke's matrix K for this system and convert Mx'" $=\mathrm{Kx}$ into the system x '' $=\mathrm{Ax}$ where A is defined by textbook equation (1), page 437.

PROBLEM 3.1

Find the eigenvalues of the matrix A to six digits, using the Maple command "eigenvals(A)." Justify in particular that all seven eigenvalues are negative by direct computation.

```
evalf(eigenvals(A));
```

```
[ > # Problem 3.1
```

[> \# Problem 3.1
[>

```
[ >
```

\# Sample Maple code for a model with 4 floors.
\# Use maple help to learn about evalf and eigenvals.
A:=matrix([[-20,10,0,0], [10,-20,10,0], [0,10,-20,10], [0,0,10,-10]]);

3.2. TABLE OF NATURAL FREQUENCIES AND PERIODS.

 Refer to figure 7.4.17, page 437.
PROBLEM 3.2.

Find the natural angular frequencies omega=sqrt(-lambda) for the seven story building and also the corresponding periods
2PI/omega, accurate to six digits. Display the answers in a table .

```
# Sample code for a 4x3 table.
ev:=[-38.3,-33.4,-26.2,-17.9]:
Omega:=lambda -> sqrt(-lambda):
format:="%10.6f %10.6f %10.6f\n":
[ > # Problem 3.2
[ >
```

\# Use maple help to learn about nops, printf.
$\operatorname{seq}(\operatorname{printf}($ format,ev[i],Omega(ev[i]),2*evalf(Pi)/Omega(ev[i])),i=1..nops(ev));

3.3. UNDETERMINED COEFFICIENTS STEADY-STATE PERIODIC SOLUTION.

Consider the forced equation $x^{\prime}=A x+\cos (w t) b$ where b is a constant vector. The earthquake's ground vibration is accounted for by the extra term $\cos (w t) b$, which has period $T=2 \mathrm{Pi} / \mathrm{w}$.
The solution $\mathrm{x}(\mathrm{t})$ is the 7 -vector of excursions from equilibrium of the corresponding 7 floors. Sought here is not the general solution which contains the general solution to to homogeneous problem, but rather the particular periodic solution with angular freqency w , which is known from the theory to have the form $\mathrm{x}(\mathrm{t})=\cos (\mathrm{wt}) \mathrm{c}$ for some vector c that depends only on A and b. The idea is that in any real problem there would be a small amount of damping, which would lead to transient homogeneous solution, and steady periodic solution close to the one you are finding for this undamped problem.

PROBLEM 3.3.

Define $\mathrm{b}:=(1 / 4)^{*} \mathrm{w}^{*} \mathrm{w}^{*}$ vector $([1,1,1,1,1,1,1])$: in Maple and find the vector c in the undetermined coefficients solution $\mathrm{x}(\mathrm{t})=\cos (\mathrm{wt}) \mathrm{c}$. Vector c depends on w . As outlined in the textbook, vector c can be found by solving the linear algebra problem $-w^{\wedge} 2 c=A c+b$; see page 433. Don't print c, as it is too complex; instead, print $\mathrm{c}[1]$ as an illustration.
\# Sample code for defining b and A , then solving for c in the 4-floor case.
\# See maple help to learn about evalm, diag, vector.
w:='w':
$\mathrm{b}:=0.25^{*} \mathrm{w}^{*} \mathrm{w}^{*}$ vector([1, $\left.\left.1,1,1\right]\right)$:
A:=matrix ([[-20,10,0,0], [10,-20,10,0], [0,10,-20,10], [0,0,10,-10]]);
c:=linsolve(evalm(A+w*w*diag(1,1,1,1)),-b):
evalf(c[1],6);

```
> # PROBLEM 3.3
[>
```


3.4 PRACTICAL RESONANCE.

Consider the forced equation $\mathrm{x}^{\prime}=\mathrm{Ax}+\cos (\mathrm{wt}) \mathrm{b}$ of 3.3 above with $\mathrm{b}:=0.25^{*} \mathrm{w}^{*} \mathrm{w}^{*}$ vector $([1,1,1,1,1,1,1])$. Practical resonance occurs when any component of $x(t)$ has large amplitude compared to the vector norm of the forcing amplitudes in b. For example, an earthquake might cause a small 3-inch excursion on level ground, but the building's floors might have 50 -inch excursions, enough to destroy the building.

PROBLEM 3.4.

Let $\operatorname{Max}(\mathrm{c})$ denote the maximum modulus of the components of vector c . Plot $\mathrm{g}(\mathrm{T})=\operatorname{Max}(\mathrm{c}(\mathrm{w}))$ with $\mathrm{w}=(2 * \mathrm{Pi}) / \mathrm{T}$ for periods $\mathrm{T}=0$ to $\mathrm{T}=6$, ordinates $\mathrm{Max}=0$ to $\mathrm{Max}=10$, the vector $\mathrm{c}(\mathrm{w})$ being the answer produced in 3.3 above. Compare your figure to the textbook Figure 7.4.18, page 438.
\# Sample maple code to define the function Max(c), 4-floor building.
\# Use maple help to learn about norm, diag, vector, subs, evalm and linsolve.
with(linalg):
w:='w': Max:= c -> norm(c,infinity);
$\mathrm{B}:=\mathrm{w}^{*} \mathrm{w}^{*} \operatorname{diag}(1,1,1,1): \mathrm{b}:=0.25^{*} \mathrm{w}^{*} \mathrm{w}^{*}$ vector($\left.(1,1,1,1]\right)$:
C:=ww -> subs(w=ww,linsolve(evalm(A+B),-b)):
$\operatorname{plot}(\operatorname{Max}(\mathrm{C}(2 * \mathrm{Pi} / \mathrm{r})), \mathrm{r}=0 . .6,0 . .10)$;

```
> restart:with(plots):with(linalg):
[> # PROBLEM 3.4. WARNING: Save your file often!!!
[>
```


3.5. EARTHQUAKE DAMAGE.

The maximum amplitude plot of 3.4 can be used to detect the likelihood of earthquake damage for a given
ground vibration of period T. A ground vibration (1/4) $\cos (\mathrm{wt}), \mathrm{T}=2 * \mathrm{Pi} / \mathrm{w}$, will be assumed, as in 3.4.

PROBLEM 3.5.

Replot the amplitudes in 3.4 for periods 0 to 6 and amplitudes 5 to 10 . There will be three spikes. Zoom-in on each spike, choosing a T-interval that shows the full spike. Determine from the three zoom-in plots approximate intervals for the period T such that some floor in the building will undergo excursions from equilibrium in excess of 5 feet.
\# Example: Zoom-in on a spike for amplitudes 5 feet to 10 feet, periods 1.4 to 1.5 .
$\operatorname{plot}(\operatorname{Max}(\mathrm{C}(2 * \mathrm{Pi} / \mathrm{r})), \mathrm{r}=1.4 . .1 .5,5 . .10)$;

```
[ > # PROBLEM 3.5. WARNING: Save your file often!!
[> # Plot three spikes on one graph.
[> # Plot three zoom-in graphs.
[ > # Print period ranges.
```


3.6. FIVE FLOORS.

Consider a building with five floors each weighing 20 tons. Assume each floor corresponds to a restoring
Hooke's force with constant $\mathrm{k}=4$ tons/foot. Assume that ground vibrations from the earthquake are modeled by
(1/4) $\cos (\mathrm{wt})$ with period $\mathrm{T}=2 * \mathrm{Pi} / \mathrm{w}$ (same as the 7 -floor model above).

PROBLEM 3.6.

Model the 5-floor problem in Maple. Plot the maximum amplitudes against the period 0 to 6 and amplitude 4 to 10 . Determine from the graphic the period ranges which cause the amplitude plot to spike above 4 feet.

```
[ > restart:with(plots):with(linalg):
[> # PROBLEM 3.6. WARNING: Save your file often!!
> # Define k=??? and m=???, then matrix A=???.
> # Amplitude plot for T=0..6,C=4..10
[ # Plot 4 zoom-in graphs
> # From the graphics, T=??..??, ??..??, ??..??, ??..??
# give amplitude spikes above 4 feet. These are
# determined by left mouse-clicks on the graph, so they
# are approximate values only.
```

