Math 2250-4
November 12, 2001
First order systems of Differential Equations
Why you should expect existence and uniqueness for the IVP

> restart:with(DEtools):with(plots):with(linalg):
War ni ng, the nanme changecoords has been redefined
War ni ng, the nanme adjoint has been redefined

Warni ng, the protected nanes norm and trace have been redefined and unprotected

Here' s the example of afirst order system which we raced through in the last 200 seconds of class on
Friday. It deservesalittle more attention. Y ou should think of this example as arising from the ssimple

harmonic oscillator equation
2
%2 yt)oty()=0

I:%y our conversion recipe, we let x1=y(t) and x2=dy/dt. Thisleads to the equivalent first order system
(check!)

dx1
dt X2
ax2 X1 %
L dt
Since the solutions y(t) to the harmonic oscillator equation are
] y(t) = Acog(t) + B sin(t)

we deduce that the solutions to the equivalent linear system are (check!)

gl(t)% ogt) % %n(t)g
A B
2(t) in(t) ogt)

éuppose the initial conditions were

éo A=0and B=1, and our solution is

|
:

gl(t)% gn(t)
2(t) oqt)
Now, pretend that we didn’t know the analytic solutionsto a given first order system of differential
eguations, for example the one we did just solve analytically. We could still visualize the the velocity

(or in math language, tangent) field f(X,t) from our first order system of differential equations dx/dt=f(x
1), and for given initial conditions, [x1(t),x2(t)] would be the parametric curve which started athe initial



point, and then "followed" the velocity field, in the sense that its tangent vector dX/dt has value exactly

equal to f(x,t). The notion of tangent vector and tangent field is very important. It isvery related to, but
not exactly the sames as, the way we visualized solution graphs to first order differential equations as
following slope fields.

C>wth(plots):
> fieldplot([x2,-x1],x1=-1.5..1.5,x2=-1.5..1.5);
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With theinitial conditions which were specified earlier, we would start at the point [1,0], and then
follow the velocity field around curves which look alot like circles. If we wanted to get a numerical
approximation, we could just transpose Euler (or improved Euler or Runge-Kutta) for first order
equationsto first order systems: (Or we could use one of Maple’s many numerical packages.)
r> f1l:=(x1,x2,t)->x2:
f2:=(x1, x2,t)->x1:
#our right hand side F(x,t)=[f1l(x,t),f2(x,t)]
L #in our first order systemof DE s dx/dt = F(x,t).
> n:=100:
#nunber of tine steps
t0:=0: #initial time
tn:=eval f (Pi):
#final tinme
h: =(tn-t0)/n:
#time step




X1: =vector(n+1):
X2: =vector (n+1):
#vectors to hold Eul er approxi nates
X1[ 1] : =0:
X2[ 1] : =1:
#initial conditions

> #Eul er | oop:
for i from1l to n do
x1:=X1[1i]:
x2:=X2[1]:
t:=t0+(i-1)*h
k1l:=f1(x1,x2,t):
k2:=f2(x1,x2,t):
#k1l and k2 are velocity conponents
X1[ 1 +1] : =x1+h*k1:
X2[ 1 +1] : =x2+h*k2:
#update X1 and X2 with Eul er!
od:

> veloc:=fieldplot([y,-X],x=-1.5..1.5,y=-1.5..1.5):
Eul er appr ox: =poi ntpl ot ({seq([ X1[i],X2[i]],i=1..n+1)}):
di spl ay({vel oc, Eul erapprox},title="go with the flow");




go with the flow
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(1) Sinceany single nth order differential equation is equivalent to arelated first order system of n first
order differential equations, the existence and uniqueness theorem for first order systemsimpliesthe
existence and uniqueness theorem that we quoted a month ago for nth order (linear) differential
equations!

(2) If you want to solve an nth order differential equation numerically you first convert it to afirst order
system, and then use Euler or Runge-Kutta, to solveit! (Or use a package that does something like that
while you aren’t looking.)

(3) Inphysics, the conversion of a second order harmonic-oscillator type DE into the first system, and
the discussion of x1=y and x2=dy/dt is called a "phase plane analysis'. Noticein our picture above, the
vertical axisis actually representing the velocity in the original second order degtn. Recall that the
NONLINEAR pendulum equation (for suitable L=g) was
> restart:with(DEtools):with(plots):

wi th(linalg):

War ni ng, the name changecoords has been redefined

War ni ng, the name adjoi nt has been redefined

Warni ng, the protected names norm and trace have been redefi ned and unprotected

[



2
%2 y(O)g+sin(y(t)) =0

\Evhere y(t) was actually theta(t). If we convert thisto a system we get

da
dt é X2 é
dx2 sin(x1)
dt

[ and this makes an interesting tangent vector field plot. Here’'s a picture of the velocity field, along
with partial solutionsto threeinitial value problems. Can you explain what the pendulum is doing?
Also, notice there are two kinds of stationary (i.e. constant) solutions, at least according to the velocity
field). Which ones would you consider "stable"? Also, notice that the picture near the origin looks

L like the work we did on the "linearized problem” above.

> velocfield:=fieldplot([v,-sin(theta)],theta=-7..7,v=-4..4):

pendeqt nl: ={di ff(x(t),t)=y(t),diff(y(t),t)=-sin(x(t)),
x(0) =0, y(0)=1}:
traj 1. =odepl ot (dsol ve( pendeqt nl,
[x(t),y(t)], type=nuneric), [x(t),y(t)],
0. . 3, nunpoi nt s=25, col or =bl ack):
pendeqt n2: ={di ff(x(t),t)=y(t),diff(y(t),t)=-sin(x(t)),
x(0)=-3.1,y(0)=0}:
traj 2: =odepl ot (dsol ve( pendeqt n2,
[x(t),y(t)], type=nuneric), [x(t),y(t)],
0. . 3, nunpoi nt s=25, col or =bl ack):
pendeqt n3: ={di ff(x(t),t)=y(t),diff(y(t),t)=-sin(x(t)),
x(0)=-3.1,y(0)=1}:
traj 3: =odepl ot (dsol ve( pendeqt n3,
[x(t),y(t)]., type=nuneric), [x(t),y(t)],
0. . 3, nunpoi nt s=25, col or =bl ack) :
di splay({vel ocfield,trajl,traj2,traj 3},
title="pendul um notion");
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L A final example:

(> restart:

wth(plots):with(linalg):

A =matrix(2,2,[0,1,2,1]);

ei genvects(A);

fieldplot([x2,2*x1+x2],

### WARNI NG i nconpl ete quoted nane; use to end the nane
x1=-4..4,x2=-4..4,color=bl ack,title="relate this to

ei genvectors and ei genval ues‘);

>
War ni ng, the name changecoords has been redefined

Warni ng, the protected names norm and trace have been redefined and unprotected

=,

[-1 1L {[-L 1]}]. [2 1.{[1, 2]}]




. relate gﬂs to
eigenvectors and eigenvalues
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