Math 2250-4

Notes for Separable Differential Equations - \%1.4

August 29, 2001
A differential equation

$$
\frac{d y}{d x}=\mathrm{h}(x, y)
$$

is called separable iff $h(x, y)$ is a product of a function of x times a function of y,

$$
\frac{d y}{d x}=\mathrm{g}(x) \phi(y)
$$

This is equivalent to the DE

$$
\frac{d y}{d x}=\frac{\mathrm{g}(x)}{\mathrm{f}(y)}
$$

where f and phi are reciprocal functions.

How to solve:

The algorithm is very simple, but magic: treat $\mathrm{dy} / \mathrm{dx}$ as a quotient of differntials (?!), and multiply through to rewrite the DE as

$$
\mathrm{f}(y) d y=\mathrm{g}(x) d x
$$

[Then antidifferentiate the left side with respect to y and the right side with respect to x .

$$
\int \mathrm{f}(y) d y=\int \mathrm{g}(x) d x+C
$$

[If $\mathrm{F}(\mathrm{y})$ and $\mathrm{G}(\mathrm{x})$ are antiderivatives of $\mathrm{f}(\mathrm{y})$ and $\mathrm{g}(\mathrm{x})$, respectively, then this is the solution [$\quad \mathrm{F}(y)=\mathrm{G}(x)+C$
This equation defines y implicitly as a function of x. Sometimes you can use algebra to explicitly solve for y . The constant C can be adjusted to solve initial value problems.

Why the method works:

The use of differentials is disguising an application of the chain rule. Here is the explanation for the magic method: The differential equation

$$
\frac{d y}{d x}=\frac{\mathrm{g}(x)}{\mathrm{f}(y)}
$$

CAN be rewritten as

$$
\operatorname{deqtn} 2:=\mathrm{f}(y)\left[\frac{d y}{d x}\right]=\mathrm{g}(x)
$$

If $\mathrm{y}(\mathrm{x})$ is any solution to deqtn2, then the left side, namely

$$
\mathrm{f}(\mathrm{y}(x))\left[\frac{d y}{d x}\right]
$$

is the derivative with respect to x of

$$
\mathrm{F}(\mathrm{y}(x))
$$

whenever $\mathrm{F}(\mathrm{y})$ is an antiderivative of $\mathrm{f}(\mathrm{y})$ (with respect to y). This is just the chain rule! Thus if $\mathrm{G}(\mathrm{x})$ is any antiderivative of $g(x)$ (w.r.t. x), we can legally antidifferentiate deqtn 2 with respect to x (on both sides) to get
[

$$
\mathrm{F}(\mathrm{y}(x))=\mathrm{G}(x)+C
$$

which is what we got by magic before!
Example 1 page 31: We wish to solve

$$
\begin{gathered}
\frac{d y}{d x}=-6 x y \\
y(0)=7
\end{gathered}
$$

Work:

Notice, our method for the general solution doesn't actually give us the solution $y(x)=0$. Solutions which exist to separable DE's which are in addition to the ones we get are called 'singular solutions."
slope field picture:

```
[ > restart:with(plots):with(DEtools):
    Warning, the name changecoords has been redefined
    > deqtn:=diff(y(x),x)=-6*x*y(x); #this is example 2
    dsolve({deqtn,y(0)=7},y(x)); #Maple solution
    DEplot(deqtn,y(x),x=-2..2, {[y(0)=7],[y(0)=-4]},y=-10..10,
        arrows=line, color=black,linecolor=black,
        dirgrid=[30,30],stepsize=.1,
        title=`Figure 1.4.1 page 31`);
            deqtn :=\frac{\partial}{\partialx}}\textrm{y}(x)=-6xy(x
        y}(x)=7\mp@subsup{\mathbf{e}}{}{(-3\mp@subsup{x}{}{2})
```

Figure 1.4.1 page 31

Example extra:

$$
\begin{gathered}
\frac{d y}{d x}=3 y^{(2 / 3)} \\
y(-1)=-1
\end{gathered}
$$

Solution: (There is a twist to this problem that will let us discuss the existence-uniqueness theorem.)

```
> deqtn:=diff(y(x),x)=3*abs(y(x))^(2/3.0)*sign(y(x)):
    DEplot (deqtn,y(x),x=-2..2,{[y(-1)=-1]},y=-5..5,
        arrows=line, color=black,linecolor=black,
```

```
    dirgrid=[30,30],stepsize=.1,
title=`how many solutions really?`);
```



```
[ >
Example 3 page 32
\(>d y / d x=(4-2 * x) /\left(3^{*} y^{\wedge} 2-5\right)\); \(y(1)=3\);
```

$$
\begin{gathered}
\frac{d y}{d x}=\frac{4-2 x}{3 y^{2}-5} \\
y(1)=3
\end{gathered}
$$

Work:
> restart:with (DEtools) :with (plots) : Warning, the name changecoords has been redefined
$>$ deqtn $:=\operatorname{diff}(y(x), x)=(4-2 * x) /\left(3 * y(x)^{\wedge} 2-5\right):$
DEplot (deqtn, $y(x), x=-5 . .5, y=-5 \ldots 5$, arrows=line, color=black, linecolor=black, dirgrid=[40, 40], stepsize=.1, title='Figure 1.4.2 page 32 ');

Figure 1.4.2 page 32

[>

