Class Time and Place: $\quad \mathrm{M}, \mathrm{T}, \mathrm{W}, \mathrm{F} \quad$ 9:40-10:30 JWB 335
Class website http://www.math.utah.edu/~korevaar/1210spring08
Instructor:

Professor Nick Korevaar
 LCB 204
 581-7318
 korevaar@math.utah.edu

"Office" Hours: MWF 10:45-11:30 in the Math Tutoring Lab (see below).
Th 8:45-9:30 in LCB 204. Also by appointment.
Teaching Assistant:
Sarah Kitchen 581-8338
JWB 307
kitchen@math.utah.edu
Problem Session: (for Friday quizzes)
Th 9:40-10:30, Room TBA
Texts: Calculus by Varberg, Purcell and Rigdon, Prentice-Hall, $9^{\text {th }}$ edition. ISBN=0-13-230633-6
Introduction to Polynomial Calculus (referred to as Chapter P). Print this document from the class website
Course Description: Mathematics 1210 is an introduction to differential and integral calculus. Limits, derivatives and integrals will be developed as tools to analyze the properties of functions. Application include motion and rates of change, optimization and approximation methods, differential equations and the calculation of areas, volumes and lengths. Calculus underlies mathematical modeling in all of science and engineering.

Tutoring Lab: T. Benny Rushing Mathematics Student Center (in the basement between JWB and LCB), M - Th 8 a.m. -8 p.m. F 8 a.m. -6 p.m.
The Lab also offers group tutoring sessions. If you're interested, inquire at the Lab.
Private Tutoring: University Tutoring Services, 330 SSB (low cost) http://www.sa.utah.edu/tutoring/ There is also a list of tutors at the Math Department office, JWB 233

Grading: Course grades will be calculated as follows:
WeBWork 20\% Quizzes 10\% Each midterm 20\% Final Exam 30\%
Homework: The assignments from the book will not be turned in, but you are responsible for knowing how to do the problems. Similar problems will appear on the quizzes and exams, and on your WeBWorK assignments (of which there will be approximately 10 during the semester) . You will receive further instructions in class on WeBWorK, and you will also find some challenging problems in WeBWork which are harder than your exam and book questions. The purpose of homework is to help you learn and work with relevant mathematical concepts and their applications, from the mechanical to the advanced level. This is because most of you will be using Calculus concepts in later studies, and even in just trying to be an informed citizen. I have noticed a trend in recent years where some students get this reasoning backwards: they think the purpose of the course is to teach you how to do standard homework problems, perhaps because of the current culture that equates competence to standardized test scores. In any case, you will want to work hard on both concepts and computations in this class.
Quizzes: There will be quizzes on almost all Fridays that are not exam days. You are allowed to drop two quizzes, thus no makeup quizzes.
Midterms: There will be three midterms. One will be dropped, but you are advised to take all three. Because one is dropped, there will be no makeup exams.
Final: The final will be comprehensive and given only on the University date listed, in our classroom JWB 335.
Calculators: You are encouraged to use graphing calculators and computer software for visualization, and as computational aids on homework, but not as a substitute for learning mathematical concepts. Only scientific calculators (i.e. with no graphing or symbolic computation abilities) may be used on quizzes and exams, but they are not required. These cost about $\$ 10.00$, e.g. the TI 30 or the Casio fx-260.

DATES:	
Last day to drop	Wed $1 / 16$
Martin Luther King Day	Mon $1 / 21$
Presidents Day	Mon $2 / 18$
Last day to withdraw	Fri $2 / 29$
Spring break	March $17-22$
Class ends	Wed $4 / 23$

EXAMS	
Midterm 1	Fri Feb 1
Midterm 2	Fri Feb 29
Midterm 3	Fri Apr 4
Final	Wed Apr 30, 8-10 am

Tentative Schedule. Chapter P is the Polynomial Calculus Notes (Download it from our homepage.)

- We will cover approximately 3 sections per week.
- I will announce the Friday quiz topics in class the preceding Wednesday.
- Do as many of the Practice Problems as it takes, so that you know you could do all of them if necessary.
- Definitely do the VIP (very important problems), even though you won't hand them in.

Week	Topic (approximately by week)	Section	Practice Problems	VIP
Jan 7-11	Slope of a line Slope of a curve Derivative of polynomial	$\begin{aligned} & \hline \text { P. } 1 \\ & \text { P. } 2 \\ & \text { P. } 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2,5,7,9,11,13,15,17,19,20,21,23,25 \\ & 1,2,3,4,6,7,9,10,11,12,13,15 \\ & 1,2,3,4,6,7,9,10,12,13,14 \\ & \hline \end{aligned}$	$\begin{aligned} & 5,15,17,19,23 \\ & 6,10,12,13,15 \\ & 3,6,10,13,14 \end{aligned}$
Jan 14-18	Antiderivatives Definite Integrals Graphs of equations Functions and their graphs	$\begin{aligned} & \hline \text { P. } 4 \\ & \text { P. } 5 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5,7,8,9,10 \\ & 1,2,3,4,5,6,7,8 \\ & 1,2,7,9,15,16,19,31,35,39 \\ & 1,3,13,15,19,21,25,27,29,40 \end{aligned}$	$4,5,9,10$ $1,5,7,8$ $1,2,7,16,35,39$ $3,13,15,21,25$ $1,13,15,17,23$
Jan 22-25	Operations on functions Trig functions Limits re-introduction	$\begin{aligned} & \hline 0.6 \\ & 0.7 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,5,13,15,17,19,23,37 \\ & 1,2,9,13,15,17,21,25,43,45 \\ & 1-19 \text { odd, } 29,31 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,13,15,17,23 \\ & 1,2,9,17,21,43 \\ & 9,13,29 \\ & \hline \end{aligned}$
$\begin{gathered} \hline \text { Jan 28- } \\ \text { Feb } 1 \end{gathered}$	Limits rigorously Limit theorems Exam 1	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1-15 \text { odd, } 23,27 \\ & 1-23 \text { odd } \end{aligned}$	$\begin{aligned} & 1,11,15 \\ & 3,7,13,19 \end{aligned}$
Feb 4-8	Limits with trig functions Continuity Derivative reintroduction Derivative rigorously Rules for derivatives	$\begin{aligned} & \hline 1.4 \\ & 1.6 \\ & 2.1 \\ & 2.2 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1-15 \text { odd } \\ & 1-23 \text { odd, } 49,51 \\ & 1,2,7,9,13,15,17,21,23,25,27 \\ & 7,11,13,17,19,21,27,37,41,43 \\ & 1-39 \text { odd, } 14,49,51,55,57,59 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,7,13,15 \\ & 1,5,11,17,51 \\ & 1,7,17,23,25 \\ & 7,13,17,27,41 \\ & 14,27,39,49,57 \\ & \hline \end{aligned}$
Feb 11-15	Derivatives of Trig Functions Chain rule Higher order derivatives Implicit derivatives	$\begin{aligned} & \hline 2.4 \\ & 2.5 \\ & 2.6 \\ & 2.7 \\ & \hline \end{aligned}$	$1-17$ odd, 18,23 $1-47$ odd $1,5,9,11,21,23,25,31,33,39,41$ $1,3,5,9,13,15,21,27,33,41,47$	$\begin{aligned} & \hline 3,5,7,15,18 \\ & 3,15,27,43,45 \\ & 5,11,25,33,39 \\ & 5,13,15,47 \\ & \hline \end{aligned}$
Feb 19-22	Related rates Differentials and approximation	$\begin{aligned} & \hline 2.8 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 1,7,9,11,17,27,29 \\ & 1,3,5,10,11,17,19,21,24 \end{aligned}$	$\begin{aligned} & 1,7,9,17,29 \\ & 1,5,11,17,19 \end{aligned}$
Feb 25-29	Maxima and minima Monotonicity and concavity Exam 2	$\begin{aligned} & 3.1 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 1,5,8,11,19,21,27,29 \\ & 3,5,9,13,15,21,31,49,51 \end{aligned}$	$\begin{aligned} & 1,8,19,21,29 \\ & 5,15,21,31,51 \end{aligned}$
Mar 3-7	Local extrema, open intervals Practical Max/min problems Graphing with Calculus	$\begin{aligned} & 3.3 \\ & 3.4 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3-29 \text { odd } \\ & 3,7,13,15,17,23,27,33 \\ & 7,9,17,31,33,43 \text { (calculator), } 53 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,13,19,23,29 \\ & 7,15,17,27,33 \\ & 7,9,17,33 \\ & \hline \end{aligned}$
Mar 10-14	Mean Value Theorem Numerical solutions Antiderivatives Differential Equations	$\begin{aligned} & 3.6 \\ & 3.7 \\ & 3.8 \\ & 3.9 \end{aligned}$	```1-23 odd, 51 1-11 odd, 15,35 5-37 odd 1,3,5,7,11,17,21,23,25,28,29,35,36```	$\begin{aligned} & 1,3,15,19,51 \\ & 5,9,15 \\ & 13,15,21,29,35 \\ & 3,5,9,21,25,29 \end{aligned}$
Mar 24-28	Introduction to area Definite integral FTC I	$\begin{aligned} & \hline 4.1 \\ & 4.2 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1-15 \text { odd, } 21-29 \text { odd, } 54,55 \\ & 1,3,7,9,11,13,17,19,21,24 \\ & 5-23 \text { odd } \end{aligned}$	$\begin{aligned} & 1,3,7,11,21,23 \\ & 1,7,11,17,21 \\ & 5,11,13,19,23 \\ & \hline \end{aligned}$
Mar 31Apr 4	FTC II MVT for integrals Numerical integration Exam 3	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.6 \end{aligned}$	3-23 odd, 35-47 odd, 63 1,3, 15-27 odd, 35-43 odd 1,2,7 ($\mathrm{n}=4$), 19, 20, 27	$\begin{aligned} & \hline 9,17,43,45,63 \\ & 15,17,37,39,41 \\ & 1,7,19,20,27 \end{aligned}$
Apr 7-11	Area of plane regions Volumes by planar slabs Volumes by cylindrical shells	$\begin{aligned} & \hline 5.1 \\ & 5.2 \\ & 5.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5-25 \text { odd } \\ & 1-27 \text { odd } \\ & 1-21 \text { odd } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5,7,13,21,25 \\ & 7,15,21,23,27 \\ & 5,11,13,15,19 \\ & \hline \end{aligned}$
Apr 14-18	Length of plane curves Work and fluid force Moments and centers of mass	$\begin{aligned} & \hline 5.4 \\ & 5.5 \\ & 5.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-11 \text { odd, } 21-31 \text { odd } \\ & 1-29 \text { odd } \\ & 1-29 \text { odd } \\ & \hline \end{aligned}$	$\begin{aligned} & 7,9,11,23,29 \\ & 3,5,7,9 \\ & 1,3,5,9,21,25 \end{aligned}$
Apr 21-23	Probability and random variables	5.7	1-27 odd	5,9,17,25

