Math 1210-2
Wed Sept 5

* Finish page 4 Tuesday: operations on functions

4.6 Trigonometry review

The general definition of $\cos t, \sin t$:
Start at $(1,0)$ on unit-radius circle centered at origin ("unit circle")
Traverse t units of archlength in the counter-clockwise direction.
(Does $t<0$ you go clockwise?).
The x-coord of the resulting point is $\cos t$. The y-coord is $\sin t$.

The archlength units t are called radians.
Since the perimeter of the radius 1 circle is 2π, we deduce 2π radians $= 360$ deg.
\[\frac{7\pi}{2} \text{ rad} = 180^\circ \]

Also, $\tan t = \frac{\sin t}{\cos t}$, $\csc t = \frac{1}{\sin t}$,
$\cot t = \frac{\cos t}{\sin t}$, $\sec t = \frac{1}{\cos t}$.

Exercise 1
Complete this table of \sin, \cos, \tan for "basic" angles, which lets you deduce values for all angles shown on right.
The table is on the next page, use your two favorite triangles for everything:

\[
\begin{align*}
\sqrt{2} & \\
45^\circ & 1 \\
\end{align*}
\]

\[
\begin{align*}
2 & \\
30^\circ & \sqrt{3} \\
60^\circ & 1 \\
\end{align*}
\]

Half an equivalent Δ
<table>
<thead>
<tr>
<th>t (rad)</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>deg</td>
<td>0</td>
<td>0</td>
<td>45</td>
<td>90</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>$\frac{\pi}{4}$</td>
<td>$\frac{\pi}{2}$</td>
<td>$\frac{3\pi}{4}$</td>
<td>$\frac{5\pi}{6}$</td>
<td>$\frac{\pi}{2}$</td>
<td>$\frac{3\pi}{4}$</td>
<td>$\frac{5\pi}{6}$</td>
</tr>
<tr>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{\pi}{6}$</td>
</tr>
</tbody>
</table>

Exercise 2 Describe how the graph $y = 2\cos(3x - \pi) + 1$ is related to $y = \cos x$, and add it to the sketches below!
Trig identities pages 47-48.

There are 3 you should memorize, because all the others are consequences of these.

1. \(\sin^2 t + \cos^2 t = 1 \) \hspace{1cm} Pythagorean Theorem!
2. \(\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \) \hspace{1cm} angle addition formula
3. \(\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \)

Exercise

(a) Use 1 to prove \(\tan^2 t + 1 = \sec^2 t \)
(b) Use 2, 3 to prove \(\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - (\tan \alpha)(\tan \beta)} \)

Why 2 3 are true:

Exercise: Use geometry to fill in the missing coordinates, and deduce the identities for \(\cos(\alpha + \beta) \) and \(\sin(\alpha + \beta) \)