Math 12.10-2
Monday Sept 17
Continue limits!
9.1.4 trig limits
* Review page 3 Wed 9/2
 D. squeeze theorem
 E. limit statements
 Do Exercise 5.

Exercise 1: Use \(\lim_{t \to 0} \sin t = 0 \) and \(\lim_{t \to 0} \cos t = 1 \) and limit theorems to check
\[\lim_{x \to c} \cos x = \cos c \]
\[\lim_{x \to c} \sin x = \sin c \]
\[\lim_{x \to c} \tan x = \tan c \quad \text{(as long as } \cos c \neq 0) \]
you might need trig identities too!

Definition \(f(x) \) is \underline{continuous} at \(x = c \) if and only if \(\lim_{x \to c} f(x) = f(c) \)
So far, we have
shown polynomials are continuous at every \(x = c \),
also \(\sin x, \cos x, \) also rational
functions at pts where the denomon\(\neq 0 \).

(If \(f(x) \) is continuous at \(x = c \) you can compute \(\lim_{x \to c} f(x) \) by "plugging in" \(f(c) \).)
Important trig limits:
(a) \(\lim_{h \to 0} \frac{\sinh h}{h} = 1 \)
(b) \(\lim_{h \to 0} \frac{1 - \cosh h}{h^2} = \frac{1}{2} \)
(c) \(\lim_{h \to 0} \frac{1 - \cosh h}{h} = 0 \)

Exercise 2: Notice that \(\frac{\sinh h}{h} \) is even, since \(\frac{\sin(-h)}{-h} = \frac{-\sinh h}{-h} = \frac{\sinh h}{h} \).

Therefore, to see (a), we need only check \(\lim_{h \to 0^+} \frac{\sinh h}{h} = 1 \).

Use the following diagrams and area formulas, and the squeeze theorem to prove this fact.

Exercise 3: Use the double angle formula for \(\cos \), in the form \(\cos (2 \frac{h}{2}) = 1 - 2 \sin^2 \frac{h}{2} \) to prove (b).

Exercise 4: Deduce (c) from (b)
Limit (a) leads to lots of fun limits, see e.g. §1.4 problems.

Exercise 5 \((\#8 \text{ §1.4})\)
\[
\lim_{\theta \to 0} \frac{\tan 5\theta}{\sin 2\theta}
\]
\((\#11 \text{ §1.4})\)
\[
\lim_{t \to 0} \frac{\tan^2 3t}{2t}
\]

Exercise 6:
\[
(\cos x)' = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}
\]
\[
(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}
\]

Compute these limits!