Warmup:

What's an antiderivative?

What's an indefinite integral?

What's a definite integral?

On Friday we proved the 2nd Fund Thm. Calc.

\[f \text{ continuous on } [a,b] \]
\[F \text{ on } (a,b) \]
\[F' = f \text{ on } (a,b) \]

Then

\[\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x_i \]

actually equals

\[F(b) - F(a). \]

Exercise 1: Interpret FTC2 in case \(f = v(t) = \text{velocity at time } t \)
\(F = s(t) = \text{position at time } t \)

(Because in this case FTC2 seems quite natural!)
This idea always works, to recover the net change in a quantity, if you know how it's been changing:

Exercise 2: Water is leaking out of a tank at a rate of

\[V'(t) = 11 - 1.1t \text{ gal/hour, where } V(t) = \text{water volume}. \]

How much water leaks out between \(t = 1 \) and \(t = 3 \) hours?

Properties of the Definite Integral

Page 3 Friday.

Also, inequality property:

(4) If \(f(x) \leq g(x) \) on \([a,b]\), then

\[\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx \]

Because, for a given partition \(P \) and choice of sample points,

\[\sum_{i=1}^n f(x_i^*) \Delta x_i \leq \sum_{i=1}^n g(x_i^*) \Delta x \]

Now, take limit as \(||P|| \to 0 \). \(\blacksquare \)
So, FTC2 is great, but what is you can’t find an antiderivative?

*\(\int \frac{1}{t} \, dt = ? \)

*\(\int \frac{t^3 \cos(t^2+1)}{t^2+1} \, dt = ? \)

This is where FTC1 enters the picture - it shows that every continuous function on \([a, b]\) **does** have an antiderivative.

Theorem (First Fundamental Theorem of Calculus).

Let \(f(x) \) be continuous on \([a, b]\).

Define the **accumulation** (or area?) function

\[
A(x) = \int_a^x f(t) \, dt
\]

Then \(A(x) \) is an antiderivative of \(f(x) \),

\[
A'(x) = f(x)
\]

Exercise 3 Verify FTC1 in this case, where you can compute \(A(x) \) explicitly:

3a) \(A(x) = \int_1^x t^2 \, dt \)

3b) \(A(x) = \int_a^x f(t) \, dt \), if you already know an antiderivative \(F(x) \).

Remark: \(A(x) = \int_1^x \frac{1}{t} \, dt \) is a very special accumulation function (and is our missing antiderivative of \(\frac{1}{x} \)).

In fact, this \(A(x) = \ln(x) \) is the natural logarithm function!

See §6.1!
proof of FTC I:

\[A(x) = \int_a^x f(t) \, dt \]

\[A'(x) = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h} \]

\[(*) = \lim_{h \to 0} \frac{1}{h} \left\{ \int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt \right\} \]

We will consider

\[\lim_{h \to 0^+} \]

i.e., \(h > 0 \). The other case is analogous.

For \(h > 0 \),

\[\int_a^{x+h} f(t) \, dt = \int_a^x f(t) \, dt + \int_x^{x+h} f(t) \, dt \]

So

\[(*) = \lim_{h \to 0^+} \frac{1}{h} \int_x^{x+h} f(t) \, dt \]

\[m = \frac{1}{h} m h = \int_x^{x+h} m(t) \, dt \leq \int_x^{x+h} f(t) \, dt \leq \int_x^{x+h} M \, dt = \int_x^{x+h} \frac{1}{h} M h = M \]

if \(m = \) minimum value of \(f(t) \),

\[x \leq t \leq x+h \]

\[m \leq \frac{1}{h} \int_x^{x+h} f(t) \, dt \leq M \]

Now "squeeze" theorem!, since \(f \) is continuous at \(x \), both \(m \) and \(M \) approach \(f(x) \) as \(h \to 0^+ \), i.e.

\[f(x) = \lim_{h \to 0^+} \frac{1}{h} \int_x^{x+h} f(t) \, dt \leq f(x) \]