Name	
Student I.D.	

Math 1210-2 Final Exam December 11, 2007

Please show all work for full credit. This exam is closed book, closed note, closed calculator, except for the single customized 4 by 6 inch index card you have been allowed to bring. (Two Varberg formula pages are at the end of the exam.) There are 150 points possible, as indicated below and in the exam. You have two hours to complete the exam, so apportion your time accordingly. Good Luck!!

	Score	POSSIBLE
1		20
2		15
3		15
4		15
5		20
6		15
	A STATE OF THE STA	
TOTAL		150

1) Compute the following limits.

1a)
$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - x}$$

1b) $\lim_{x \to 0^{-}} \frac{2x}{|x|}$ (5 points)

1c)
$$\lim_{t \to \infty} \frac{3t^2 - 5t + 6}{t + 7t^2}$$
 (5 points)

1d)
$$\lim_{h \to 0} \frac{\sin(3x+3h) - \sin(3x)}{h}$$

(Hint: If you recognize this as the derivative of a certain function you can deduce the answer without computing any limits.)

(5 points)

2) Compute the following derivatives: 2a)

$$D_x \left(4x^3 - \frac{8}{x^3} + 16 \right)$$

(5 points)

2b)

$$D_t \left[\frac{\cos(3 t^2)}{\sqrt{4 t + 3}} \right]$$

(5 points)

2c) Suppose f(1)=3, f'(1)=-5, f(2)=-2, f'(2)=3, g(1)=2, g'(1)=-4. Compute the derivative of the function

8
$$f(x) - [g(x)]^3 + f(g(x))$$

at x=1.

3a) Use the plot below to carefully sketch the line tangent to the graph of $3x^2 - xy + y^2 = 9$, at the point (x, y) = (1, -2). Suggestion: pull off the Varberg formula sheets and fold one of them for a ruler. (3 points)

3b) Use the point (1,-2) and the x-intercept of your tangent line sketch above, to estimate this line's slope. (4 points)

3c) Use implicit differentiation to find the exact slope of the tangent line to the curve above, at the point (1,-2), and then write an exact equation for the tangent line you sketched in part (3a). (5 points)

3d) What is the (exact) x-intercept of the tangent line you found above?

(3 points)

4) Compute the following integrals:

4a)
$$\int_{-2}^{2} 5 x^3 + 2 x^2 dx$$

(5 points)

4b)
$$\int_{1}^{8} \frac{10}{\sqrt{3 x + 1}} \, dx$$

(5 points)

$$4c) \int_{0}^{\frac{\pi}{4}} \frac{\sin(2t)}{(3+\cos(2t))^{2}} dt$$

5a) A mountain cabin has a drinking-water cistern, shaped like an upside-down cone. The dept feet, and the circular top has a radius of 2 feet. The cistern is filled with water from a spring. A being totally emptied, it is being refilled. When the depth of the water is 3 feet it is increasing a of 3 inches per minute. How fast is water flowing into the cistern, at that instant, assuming no very limit the same time?			
flowing out at the same time? (15)	points)		
5b) Assuming the inflow rate remains constant and that no one is using water from the cistern, ho	w		
much later with the cistern be completely refilled?			
	- '		

6) Farmer Sally wishes to test four new strains of table corn, as well as advertise her farming abilities. She will fence off four adjacent and congruent rectangular plots, one for each variety of corn, using the road as the "northern" (fenceless) border for each plot, as indicated in the diagram below:				
Farmer Sally requires that each of the four plots have area 2000 square feet. What dimensions individual plots will satisfy that requirement while at the same time using the least total length fencing? 6a) Find the answer to the question above using Calculus.	for the of (10 points)			
6b) Justify why your answer must be correct, using concepts related to local and global extrem we've discussed in this class.	na which (5 points)			

7a) Sketch the region between the graphs of $y = x^2 - 4$ and y = x + 2. Make sure to label the curves and the points where they intersect. (5 points)

7b) Find the area of the region described in (6a).

(10 points)

8) Consider the triangle in the first quadrant with edges along the x-axis, the line y = 3x and the vertical line x = 2. Because you will be doing several computations related to this triangular region, here is a picture of it just to make sure there is no confusion:

8a) If this triangular region is rotated about the y-axis a solid is created which can be thought of as a vertical cylinder, from which an upside-down cone has been removed. Use volume formulas for cylinders and cones to deduce the volume of this solid of revolution.

9) Find the centroid for the triangle having vertices (0,0), (2,0), and (2,6), and assuming the density (mass per unit area) is a constant $\delta = 1$. This is the same triangle you studied in problem 8. The most straightforward way to do this problem is to compute the appropriate ratios of moments to mass, although you could alternately use Pappus' Theorem.

(10 points)

GEOMETRY

Triangles

Pythagorean Theorem

Right triangle

Circles

Circumference $C = 2\pi r$

$$A =$$

Cylinders

0-4--- /---

$$A = \pi r^2$$

Volume Surface area

$$S = 2\pi r^2 + 2\pi rh$$
$$V = \pi r^2 h$$

Volume Surface area

$$S = \pi r^2 + \pi r \sqrt{r^2 + h^2}$$
$$V = \frac{1}{2} \pi r^2 h$$

Spheres

Surface area

ea
$$S = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^2$$

CONVERSIONS

1 kilogram ≈ 2.20 pounds 1 liter = 1000 cubic centimeters 1 inch = 2.54 centimeters

1 liter ≈ 1.057 quarts 1 kilometer ~ 0.62 miles 1 pound ≈ 453.6 grams

1 cubic foot ~ 7.48 gallons

INTEGRALS

Fold here

 $1. \int u \, dv = uv - \int v \, du$

2.
$$\int u^n \, du = \frac{1}{n+1} u^{n+1} + C, n \neq -1$$

$$3. \quad \int \frac{1}{u} du = \ln|u| + C$$

$$\mathbf{4.} \quad \int e^u \, du = e^u + C$$

Area $A = \frac{1}{2}bh$

Angles $\alpha + \beta + \gamma = 180^{\circ}$

$$5. \int a^{\mu} d\mu = \frac{a^{\mu}}{\ln a} + C$$

$$6. \int \sin u \, du = -\cos u + C$$

$$7. \int \cos u \, du = \sin u + C$$

$$8. \int \sec^2 u \, du = \tan u + C$$

$$9. \int \csc^2 u \, du = -\cot u + C$$

9.
$$\int \csc^n u \, du = -\cot u + C$$
10.
$$\int \sec u \tan u \, du = \sec u + C$$

=

$$\mathbf{11.} \quad \int \csc u \cot u \, du = -\csc u + C$$

12.
$$\int \tan u \, du = -\ln|\cos u| + C$$

$$13. \quad \int \cot u \, du = \ln|\sin u| + C$$

$$14. \int \sec u \, du = \ln|\sec u + \tan u| + C$$

15.
$$\int \csc u \, du = \ln|\csc u - \cot u| + C$$

16.
$$\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1} \frac{u}{a} + C$$

17.
$$\int \frac{1}{a^2 + u^2} du = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

18.
$$\int \frac{1}{a^2 - u^2} du = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + C$$

18.
$$\int \frac{1}{a^2 - u^2} du = \frac{1}{2a} \ln \left| \frac{1}{u - a} \right| + C$$
19.
$$\int \frac{1}{u \sqrt{u^2 - a^2}} du = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + C$$

Fold

Formula Card to accompany

CALCULUS, 9/E

Varberg, Purcell, and Rigdon

DERIVATIVES

$$D_x|x| = \frac{|x|}{x}$$

 $D_x \tan x = \sec^2 x$

 $D_x \sin x = \cos x$

$$D_x \cos x = -\sin x$$

 $D_x \sec x = \sec x \tan x$

 $D_x \cot x = -\csc^2 x$

 $D_x \sinh x = \cosh x$

 $D_x \cosh x = \sinh x$

 $D_x \tanh x = \operatorname{sech}^2 x$

 $D_x \coth x = -\operatorname{csch}^2 x$ $D_x \csc x = -\csc x \cot x$

 $D_x \operatorname{sech} x = -\operatorname{sech} x \tanh x$ $D_x \operatorname{csch} x = -\operatorname{csch} x \operatorname{coth} x$

 $D_x \ln x = \frac{1}{x}$

 $D_x \log_a x = \frac{1}{x \ln a}$

 $D_x \sin^{-1} x = \sqrt{\frac{1}{1-x^2}}$

 $D_x a^x = a^x \ln a$ $D_x \cos^{-1} x = \frac{-1}{\sqrt{1 - x^2}}$

 $D_r \sec^{-1} x = \frac{1}{|x| \sqrt{x^2 - 1}}$

Basic Identities

$$\tan t = \frac{\sin t}{\cos t}$$

$$\sec t = \frac{1}{\cos t}$$

$$1 + \tan^2 t = \sec^2 t$$

$$\cot t = \frac{\cos t}{\sin t}$$

$$\csc t = \frac{1}{\sin t}$$

$$\cot t = \frac{1}{\tan t}$$

eset = 1

 $1 + \tan^2 t = \sec^2 t$

$$\sin^2 t + \cos^2 t = 1$$

 $1 + \cot^2 t = \csc^2 t$

$$\frac{\sin t}{\cos t} = \frac{1}{\sin t}$$

$$t_I = \frac{1}{\tan t}$$

Cofunction Identities

$$\tan\left(\frac{\pi}{2}-t\right)=$$

$\cos\left(\frac{\pi}{2} - t\right) = \sin t$

$\tan\left(\frac{\pi}{2}-t\right)=\cot t$

Addition Formulas cos(-t) = cost

tan(-t) = -tant

Odd-even Identities

$$\sin(s+t) = \sin s \cos t + \cos s \sin t \qquad \sin(s+t) = \sin s \cos t + \cos s \sin t$$

$$\cos(s+t) = \cos s \cos t + \sin s \sin t \qquad \cos(s+t) = \cos s \cos t + \sin s \sin t$$

$$\sin s \sin t = \sin s \cos t - \cos s \sin t$$

$$\sin s \sin t = \cos s \cos t + \sin s \sin t$$

$$\cos (s - t) = \cos s \cos t + \sin s \sin t$$

$$\tan s - \tan t$$

$$\tan(s-t) = \frac{\tan s - \tan t}{1 + \tan s \tan t}$$

Double Angle Formulas

$$\sin 2t = 2 \sin t \cos t$$

 $\tan 2t = \frac{2 \tan t}{1 - \tan^2 t}$

 $\cos 2t = \cos^2 t - \sin^2 t = 1 - 2\sin^2 t = 2\cos^2 t - 1$

$$\sqrt{\frac{1+\cos t}{2}} \qquad \tan \frac{t}{2} = \frac{1-\cos t}{\sin t}$$

$$\cos\frac{t}{2} = \pm\sqrt{\frac{1+\cos t}{2}} \qquad \tan\frac{t}{2} =$$

Product Formulas
$$\begin{array}{ll}
\text{Product Formulas} \\
2\sin s \cos t = \sin(s+t) + \sin(s-t) & 2\cos s \cos t = \cos(s+t) + \cos(s-t) \\
2\cos s \sin t = \sin(s+t) - \sin(s-t) & 2\sin s \sin t = \cos(s-t) - \cos(s+t)
\end{array}$$

Factoring Formulas

$$\sin s + \sin t = 2\cos\frac{s-t}{2}\sin\frac{s+t}{2}\cos s + \cos s + \sin s - \sin t = 2\cos\frac{s+t}{2}\sin\frac{s-t}{2}\cos s - \cos s$$

$$\cos s + \cos t = 2\cos \frac{s+t}{2}\cos \frac{s-t}{2}$$

$$\cos s - \cos t = -2\sin \frac{s+t}{2}\sin \frac{s-t}{2}$$

Laws of Sines and Cosines

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

TRIGONOMETRY

$$\sin t = \sin \theta = y = \frac{b}{r}$$

$$\cos t = \cos \theta = x = \frac{a}{r}$$

$$\tan t = \tan \theta = \frac{y}{x} = \frac{b}{a}$$

$$\cos t = \cos \theta = x = 1$$

$$\cot t = \cot \theta = \frac{x}{y} = \frac{a}{b}$$

Graphs

Fold here

Inverse Trigonometric Functions

$$y = \sin^{-1} x \Leftrightarrow x = \sin y, -\pi/2 \le y \le \pi/2$$

$$y = \cos^{-1} x \Leftrightarrow x = \cos y, 0 \le y \le \pi$$

$$y = \tan^{-1} x \Leftrightarrow x = \tan y, -\pi/2 < y < \pi/2$$

$$y = \sec^{-1} x \Leftrightarrow x = \sec y, 0 \le y \le \pi, y \ne \pi/2$$

$$\sec^{-1} x = \cos^{-1}(1/x)$$

Hyperbolic Functions

$$\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right)$$

$$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right)$$

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\operatorname{sech} x = \frac{1}{1}$$

$$\coth x = \frac{\cosh x}{\sinh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\operatorname{csch} x = \frac{1}{\sinh x}$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots, -1 < x < 1$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, -1 < x \le 1$$

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, -1 \le x \le 1$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\mathbf{n} x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$

$$(1+x)^p = 1 + \binom{p}{1}x + \binom{p}{2}x^2 + \binom{p}{3}x^3 + \dots, -1 < x < 1$$

$$\binom{p}{k} = \frac{p(p-1)(p-2)\cdots(p-k+1)}{k!}$$