We need to finish discussing curve lengths and areas of surfaces, from Friday.

Then, §5.5 Work:

In physics, the work done to move an object a distance d against a force F is

$$W = F \cdot d$$

Example: to lift a mass m a height h takes $W = (mg)h$ work.

Units: in metric system

- F units: $1 \text{ kg m/sec}^2 = 1 \text{ Newton}$
- W units: $1 \text{ Newton-meter} = 1 \text{ joule}$

In English system

- F units: pounds ($1 \text{ pound} = 1 \text{ slug ft/sec}^2$)
- W units: 1 foot-pound

In a closed physical system, work converts kinetic energy to potential energy, KE and PE, and the total energy $= KE + PE$ is constant.

Example: For a thrown object (neglecting friction),

$$KE + PE = \frac{1}{2}mv^2 + mgh \quad \text{is constant}$$

Check: take $\frac{d}{dt}$ (total energy)

$$= mvv'(t) + mgv$$

$$= v(mv' + g)$$

$$= 0 \quad \text{iff} \quad h''(t) = -g, \quad \text{Newton's Law.}$$

Forces can change depending on location.

E.g., Earth's gravitational attraction on an object is really

$$|F| = \frac{GMm}{r^2}$$

G = universal constant
M = mass of earth
m = object mass
r = distance to center of Earth

So in fact

$$\frac{GM}{R^2} = g = 9.8 \text{ m/sec}^2$$

For R = radius of Earth

So,

$$|F| = mg\left(\frac{R^2}{r^2}\right)$$
Work computation for space-varying force:

\[F = F(x) \]

\[a \rightarrow \hat{x}_i \rightarrow b \]

Work done to move object from \(a \) to \(b \)

\[W \approx \sum_{i=1}^{n} F(\hat{x}_i) \Delta x_i \]

So

\[W = \int_{a}^{b} F(x) \, dx \]

Exercise 1: How much work must be done on an object to move it from the surface of the Earth to \(\infty \), neglecting friction?

\[W = \int_{R}^{\infty} mg \left(\frac{R^2}{r^2} \right) \, dr = \]

Exercise 2: What should the initial speed of an object be to barely escape the Earth?

Use \(KE + PE = \text{const} \) to recompute escape velocity \(v_e = \sqrt{2gR} \approx 6.98 \text{ m/s} \).

(want \(v \to 0 \) as \(r \to \infty \), so at \(\infty \) \(KE = 0 \)).

SPRINGS

\[\text{spring at rest} \]

\[\text{stretched spring} \quad \text{(compressed if } x < 0) \]

Hooke's Law

\[F(x) = kx \quad k: \text{spring constant} \]

is really just the tangent line approximation ("linear approx") to a differentiable force function which satisfies \(F(0) = 0 \).
Exercise 3. If natural length of a spring is 0.2 m
and 12 N force is required to stretch it an additional 0.04 m

1) Find the spring constant k
2) How much work is done in stretching the spring from its
natural length to 0.3 m?

Spring dynamics [and springs are everywhere in Science]
set total energy = 0 for mass-spring at rest.

\[E = \frac{1}{2} kx^2 + \frac{1}{2} mv^2 \]

\[T = \frac{1}{2} kx^2 \]

\[W = \int_0^x kx \, ds = \frac{1}{2} kx^2 \]

\[x'(t) = v \]

\[\frac{dx}{dt} = \frac{d}{dt} \left(x(t) \right) = x'(t) \left[kx + mx''(t) \right] \]

\[\frac{dE}{dt} = 0 = kx'x'(t) + mv'(t)x''(t) \]

\[\Rightarrow \frac{d}{dt} \left(x'(t) \right) = \frac{d}{dt} \left(x'(t) \right) \left[kx + mx''(t) \right] \]

\[\text{deduce} \quad x''(t) = -\frac{k}{m} x(t) \]

[could get this directly from Newton too]

Solution to
\[x''(t) = -\omega_0^2 x(t) \]

is
\[x(t) = C \cos(\omega_0 t - \phi) \]

\[= A \cos \omega_0 t + B \sin \omega_0 t \]

and this is the primary reason
for the importance of trigonometry
is science
Exercise 4
Consider a conical water tank, height = 10 feet, \(r = 4 \) feet full of water.

How much work must be done to pump all of the water in the tank to a height 5 feet above the top of the tank? Water weighs 62.4 \(\text{lb/ft}^3 \).

\[\delta \text{ (density)} \]

\(\text{(this is a force per unit volume)} \)

\[y = 15 \]

\[y = \frac{5}{2} x, \quad x = \frac{2}{5} y \]

\[(\frac{4}{5} y, y) \]

\[\Delta y \]

\[\Delta V \approx \]

\[\Delta F \approx \]

\[\Delta W \approx \]

So,

\[W = \int_0^{10} (15-y) \pi \delta (\frac{3}{2}y)^2 \, dy \]

\[= \pi \delta \left(\frac{3}{8} \right) \int_0^{10} 15y^2 - y^3 \, dy \]

\[= \frac{16\pi}{3} \left[5y^3 - \frac{y^4}{4} \right]_0^{10} \]

\[= \frac{16\pi}{3} \left[10^3 \left(5 - \frac{25}{4} \right) \right] \]

\[= \frac{16\pi}{3} \left[\frac{10^3 \cdot 7.5}{2500} \right] \]

\[\approx 78,400 \text{ foot-pounds} \]