1) We listed some open problems (so hard!)
2) Riemann zeta function (19th century) (powerful)
Most famous open problem: Riemann hyp.
3) Cantor's theory + transcendentals (late 19th century)
4) Groups (Giabios) (19th century)
5) Elliptic curves (20th - 21st century)

Today: FLT.
FLT: If \(n \) is an integer greater than 2, then \(x^n + y^n = z^n \) does not have solutions in integers \(> 0 \).

Proof: ETS this for \(n = \text{prime} \geq 5 \). Let \(p \) be such a prime. Suppose there exists a solution \((a,b,c) \) with \(abc \neq 0 \). Then \(y^2 = x(x-a')(x-b') \) is an elliptic curve over \(\mathbb{Q} \). By Ribet's level lowering this ell. curve is not modular. But by the Taniyama–Shimura conjecture all elliptic curves over \(\mathbb{Q} \) are modular. Contr. D
Elliptic curves

Def: An elliptic curve is a smooth curve given by an equation of the form: \(E: y^2 = x^3 + Ax + B \)

if \(A, B \in \mathbb{Q} \), we say \(E \) is defined over \(\mathbb{Q} \)

\(E \) is smooth iff \(\Delta = -16(4A^3 + 27B^2) \neq 0 \)
Examples:

\[y^2 = x^3 - 3x + 3 \]

\[\Delta = -2160 \]

over \(\mathbb{R} \)
(2) $y^2 = x^3 + x$

$\Delta = -64$
(3) \(y^2 = x^3 + x^2 \)
(41) \text{msp}
What makes elliptic curves special?

There is a way to "add" points on them. This addition preserves the following property:

\[A = (x_A, y_A), \quad B = (x_B, y_B) \]

\[A + B = (x_{A+B}, y_{A+B}) \]

These points on \(E \) with entries in \(\mathbb{Q} \) form a group (the Mordell–Weil group).

\[\text{mysterious object} \]
Modular forms are functions of complex variable, satisfying some symmetries.

Elliptic curves \(E \)

\[L(s; E) \]
(certain zeta function)

Modular form \(f \)

\[L(s; f) \]
(certain zeta function)

We say \(E \) is modular if \(\exists f \) such that

\[L(s; E) = L(s; f) \]

Taniyama-Shimura: Every elliptic curve over \(\mathbb{Q} \) is modular.
Frey's idea: Imagine E a solution to FLT, form from it an elliptic curve (maybe it would violate Taniyama-Shimura).

Ribet (1989) showed this curve is not modular. Wiles (1995) proved T-S.
Wiles's proof:

Given E, construct a Galois representation.

ρ_E

(these have zeta functions $L(s, \rho_E)$)

3 worlds:

elliptic curves E

easy

Galois repn's ρ

\Rightarrow

modular forms f

Wiles: every ρ comes from f.

He showed it by counting ρ's & f's.

set of ρ's \sim set of f's

+ structure \sim + structure

Shinzel, Deligne, Serre (1970s)
KLOSIN Math 550

11/12