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Singular perturbation theory and exact calculation of periodic
solution to idealized spiking model with adaptation

The following text consists of two companion sections to the main manuscript, Sparse gamma rhythms

arising through clustering in adapting neuronal networks. The first section details an approximation of
the periodic solution of a theta model neuron with spike frequency adaptation. This makes use of the
slow timescale of spike frequency adaptation to separate the system into a fast and a slow subsystem,
which can be analyzed together using singular perturbation theory. These results are summarized in the
main manuscript section entitled Approximating the periodic solution and cluster number with

singular perturbation theory. The next section exactly calculates the periodic solution of a quadratic
integrate-and-fire model neuron with spike frequency adaptation. This is used in the main manuscript
section entitled Phase-resetting curve of an adapting neuron to compute the phase-resetting curve
of the model.

Singular perturbative approximation of periodic solution

In this section, we proceed to compute a singular perturbative approximation to the periodic solution of

θ̇ = 1− cos θ + (1 + cos θ)(I − βz), (1)

ż = −z/τa + δ(π − θ),

with period T , such that θ(0) = −π and θ(T ) = π. With these assumptions, we can solve for

z = z0e
−t/τa =

e−t/τa

1− e−T/τa
. (2)

Therefore the system (1) reduces to a single nonautonomous equation for the phase variable,

θ̇ = 1− cos θ + (1 + cos θ)(I − βz0e
−ǫt), (3)

where we have defined ǫ = 1/τa ≪ 1, since we know the adaptation time constant is large, τa ≫ 1. By
ignoring dynamics that occur on the slow timescale s = ǫt, we can consider a fast subsystem

θ̇ = 1− cos θ + (1 + cos θ)(I − βz0), (4)

which should describe initial dynamics within an initial boundary layer. It is straightforward to solve
(4), along with the boundary condition θ(0) = −π to find

θ(t) = 2 tan−1

[

√

I − βz0 tan
(

√

I − βz0t−
π

2

)]

(5)

within the initial layer. Once the dynamics of the fast subsystem (5) have settled to their limiting value,

lim
t→∞

2 tan−1

[

√

I − βz0 tan
(

√

I − βz0t−
π

2

)]

= −
π

2
,



2

they will evolve along a manifold determined by the slow subsystem

0 = 1− cos θ + (1 + cos θ)(I − βz0e
−s), (6)

where s = ǫt is a slow time variable. We can solve (6) for the outer layer’s dynamics

θ(s) = − cos−1

[

I − βz0e
−s + 1

βz0e−s + 1− I

]

. (7)

Notice that this solution will vanish when βz0e
−ǫTSN = I. This is related to the fact that as the total

input to the neuron passes through zero, there is a saddle-node bifurcation in the equilibria structure of
the associated fast subsystem [1]. This is a common mechanism for initiating the fast part of a relaxation
oscillation [2]. The slow solution will therefore last about

TSN =
1

ǫ
ln

βz0
I

.

When the system reaches the vicinity of the saddle-node (t ≈ TSN), it will begin to evolve according
to fast dynamics. Therefore, we must calculate the terminal dynamics of the periodic solution within a
boundary layer. To do this, we presume perturbative solutions and fast timescales with arbitrary scaling
θ = ǫpθ1 and τ = ǫq(t− TSN). Substituting these expressions into (3), we have

ǫp+q dθ1
dτ

=
1

2
ǫ2pθ21 + 2βz0e

−ǫTSN ǫ1−qτ.

Upon setting p = q = 1/3, we find the order of all terms is matched. Now, we apply the Riccati
transformation θ1 = −2ẏ/y, as well as a change of variables r = Bτ , where

B =

(

βz0e
−ǫTSN

2

)1/3

=

(

I

2

)1/3

.

This yields Airy’s equation

d2y

dr2
= ry,

which has general solutions

y(r) = c1Ai(r) + c2Bi(r),

where Ai(r) and Bi(r) are the Airy functions of the first and second kind. We specify the solution θ1 by
transforming back, changing variables back to τ , and applying the initial condition θ1(0) = 0 to find

θ1(τ) = 2B

√
3Ai′(−Bτ) + Bi′(−Bτ)

√
3Ai(−Bτ) + Bi(−Bτ)

.

We can predict the point where the inner layer solution will diverge to be the minimal τb such that τb > 0
and

√
3Ai(−Bτb) = −Bi(−Bτb). (8)

The blow up of this inner solution roughly denotes the end of the solution period. Converting back to
the time variable t, we find the period will be

T = TSN +
τb
ǫ1/3

(9)

=
1

ǫ
ln

βz0
I

+
τb
ǫ1/3

.
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Substituting (9) into (2) and requiring self-consistency, we can solve for the initial condtion

z0 = 1 +
I

β
e−ǫ2/3τb .

Therefore, the time it takes to reach the saddle-node is

TSN =
1

ǫ
ln

[

β

I
+ e−ǫ2/3τb

]

≈
1

ǫ

{

ln

[

β

I
+ 1

]

−
ǫ2/3τb
β/I + 1

}

, (10)

when we Taylor expand to first order. Plugging (10) into (9) and rewriting τa = 1/ǫ, we have the
approximation for the period of the solution

T ≈ τa ln

[

β

I
+ 1

]

+
βτ

1/3
a τb

β + I
,

where τb is determined by (8).
Note that the outer solution (7) becomes undefined once the saddle-node of the fast subsystem is

reached at t = TSN . Thus, we must construct the singular solution in a piecewise manner with two
regions, where one region is the sum of the initial and outer layers and another region is the terminal
layer. Using the timescale t and noting ǫ = 1/τa, we can write

θ(t) = 2 tan−1

[

√

I − βz0 tan
(

√

I − βz0t−
π

2

)]

+
π

2

− cos−1

[

I − βz0e
−t/τa + 1

βz0e−t/τa + 1− I

]

, t ∈ (0, TSN),

and

θ(t) =
2B

τ
1/3
a

√
3Ai′(B(TSN − t)/τ

1/3
a ) + Bi′(B(TSN − t)/τ

1/3
a )

√
3Ai(B(TSN − t)/τ

1/3
a ) + Bi(B(TSN − t)/τ

1/3
a )

, t ∈ (TSN , T ).

Exact periodic solution for quadratic integrate-and-fire model

with spike frequency adaptation

In this section, we explicitly solve for a periodic solution to

ẋ = x2 + I − βz, (11)

ż = −z/τa + δ(1/x).

To do so, we require the boundary conditions x(0) = −∞ and x(T ) = ∞. We can immediately solve the
equation for the adaptation variable

z(t) =
e−t/τa

1− e−T/τa
.

Assigning the parameters ǫ = 1/τa and β̄ = β/(1− e−ǫT ), we can express the equation for x now as

dx

dt
= x2 + I − β̄e−ǫt. (12)
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Note, we use ǫ here for comparison with our singular perturbation theory results. Our next step is to
employ the transformation x = −ẏ/y to convert the Riccati equation (12) to

d2y

dt2
= [β̄e−ǫt − I]y, (13)

a second order linear equation. Now, by making the change of variables r = e−ǫt/2, we can in fact convert
(13) to

r2
d2y

dr2
+ r

dy

dr
=

4

ǫ2
[

β̄r2 − I
]

y.

Upon employing a change to imaginary variables µ = 2β̄ir/ǫ and ν = 2
√
Ii/ǫ, we find y(µ) is described

by Bessel’s equation

µ2 d
2y

dµ2
+ µ

dy

dµ
+
[

µ2 − ν2
]

y = 0,

whose general solutions are given

y(µ) = c1Jν(µ) + c2Yν(µ),

where Jν(µ) and Yν(µ) are Bessel functions of the first and second kind, respectively. Changing the
constant ν and variable µ back, we find y is given as the sum of Bessel functions with imaginary order
and argument

y(t) = c1J2
√
Ii/ǫ

(

2
√

β̄i

ǫ
e−ǫt/2

)

+ c2Y2
√
Ii/ǫ

(

2
√

β̄i

ǫ
e−ǫt/2

)

.

We find that, by requiring that the left boundary condition, x(0) = −∞ ⇒ y(0) = 0, be satisfied, the
solution y is restricted to be of the form

y(t) = c1Im

{

J
2
√
Ii/ǫ

(

2
√

β̄i

ǫ
e−ǫt/2

)}

,

so that the period T can be specified by the right boundary condition, x(T ) = ∞ ⇒ y(T ) = 0, so

y(T ) = Im







J
2
√
Ii/ǫ





2i

ǫ

√

β̄

eǫT − 1











= 0.

This fully characterizes the solution, since the remaining constant c1 is eliminated by the form of x(t) =
−ẏ(t)/y(t). In addition, since we now have a formula for the periodic solution to the system (11), we can
compute the associated adjoint, related to the phase resetting curve.
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