Spatiotemporal pattern formation in neural
fields with linear adaptation

Bard Ermentrout, Stefanos E. Folias, and Zachary P. Kilgatr

Abstract We study spatiotemporal patterns of activity that emergesinral fields in
the presence of linear adaptation. Using an amplitude equapproach, we show
that bifurcations from the homogeneous rest state can teadvide variety of sta-
tionary and propagating patterns, especially in the casagtefal-inhibitory synap-
tic weights. Typical solutions are stationary bumps, tliagebumps, and stationary
patterns. However, we do witness more exotic time-peripditerns as well. Using
linear stability analysis that perturbs about stationany taveling bump solutions,
we then study conditions for activity to lock to the positiohan external input.
This analysis is performed in both periodic and infinite alirensional spatial do-
mains. Both Hopf and saddle-node bifurcations can sigtié lioundary beyond
which stationary or traveling bumps fail to lock to exterimguts. Just beyond Hopf
bifurcations, bumps begin to oscillate, becomimmgatheror sloshersolutions.

1 Introduction

Neural fields that include local negative feedback have gmovery useful in
qualitatively describing the propagation of experimdgtabserved neural activ-
ity [26, 39]. Disinhibitedin vitro cortical slices can support traveling pulses and
spiral waves [27, 53], suggesting that some process othaeritthibition must cur-
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tail large-scale neural excitations. A common candidateHis negative feedback
is spike frequency adaptation, a cellular process thagbrireurons back to their
resting voltage after periods of high activity [48, 2]. Oftedaptation is modeled
as an additional subtractive variable in the activity egunatf a spatially extended
neural field [38, 26, 39]. Pinto, in his PhD dissertation wiimentrout, explored
how linear adaptation leads to the formation of travelintses [38]. Both singular
perturbation theory and the Heaviside formalism of Amatiere used to an-
alyze an excitatory network on the infinite spatial domai8, [39]. At the same
time, Hansel and Sompolinsky showed adaptation leads\eling pulses (travel-
ing bumps) in a neural field on the ring domain [26]. In the aloseof adaptation,
excitatory neural fields generate stable traveling froRis p5]. For weak adapta-
tion, the model still supports fronts which undergo a synmnbteaking bifurca-
tion, leading to bidirectional front propagation at a cati value of the adaptation
rate [6]. In fact, adaptive neural fields generate a richetarof spatiotemporal dy-
namics like stimulus-induced breathers [7], spiral wax&q,[multipulse solutions
[52], and self-sustained oscillations [46]. Coombes and®Wwave implemented a
related model, employing nonlinear adaptation, that isvshto generate breathers,
traveling bumps, and more exotic solutions [11]. Howeuenais been shown that
great care must taken when performing stability analysssioh a model [29]. Thus,
we restrict the contents of this chapter to analyzing modétslinear adaptation.

We review a variety of results concerning bifurcations #éde in spatially ex-
tended neural fields when an auxiliary variable represgritimear adaptation is
included [13, 23, 25, 31]. In particular, we study the dynesmf the system of
non-local integro-differential equations [26, 39, 35, 10]

12 - ue) - puixt)+ [ Wi YFUOIY kD, (1a)
ot D

1ov(xt)

— T = Ut —v(x). (1b)

The variableu(x,t) represents the total synaptic input arriving at location D

in the network at time. We can fix time units by setting = 1, without loss of
generality. The convolution term represents the effectea@irrent synaptic interac-
tions, andw(x—y) = w(y — x) is a reflection-symmetric synaptic weight encoding
the strength of connections between locai@ndx. The nonlinearityF is a trans-
fer function that converts the synaptic inputs to an outpirdirate. Local negative
feedbackv(x,t) represents the effects of spike frequency adaptation R&39%, 2],
occurring at ratex with strengthB. Finally, | (x,t) represents external spatiotempo-
ral inputs. In section 2, we begin by analyzing bifurcatifros the rest state on one-
and two-dimensional periodic domains, in the absence aftsp(x,t) = 0) with
the use of amplitude equations. We show that a lateral-itanibsynaptic weight
organizes activity of the network into a wide variety of Eimtiry and propagating
spatiotemporal patterns. In section 3, we study the prawess external inputs by
in ring domain D = (—r, m)). Since adaptation can lead to spontaneous propaga-
tion of activity, inputs must move at a speed that is closénéortatural wavespeed
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of the network to be well tracked by its activity. Finally, section 4, we study
bifurcations of stationary and traveling bumps in a netwankthe infinite spatial
domain D = (—o,)). Both natural and stimulus-induced bump solutions are an-
alyzed. Depending on whether the synaptic weight functsopuirely excitatory or
lateral-inhibitory, either spatial mode of a stimulusked bump can destabilize in

a Hopf bifurcation, leading to lareatheror aslosher Conditions for the locking of
traveling bumps to moving inputs are discussed as well.

2 Bifurcations from the homogeneous state.

The simplest type of analysis that can be done with continonauoral field models
is to study bifurcations from the homogeneous state. As &), [e focus on the
one-dimensional ring model, and then make some comments &t® dynamics
of systems in two space dimensions with periodic boundangitions. Here, our
domain is either the ringl{ = (—m, ) or the squarel = (-1, M) x (—1T, 7))
with periodic boundary conditions. With some abuse of notak is either a scalar
or a two-dimensional vector. The functiew(x) is periodic in its coordinates and
furthermore, we assume that it is symmetric in one-dimenaial isotropic in two-
dimensions. Translation invariance and periodicity assws thaf, w(x—y)dy =
Wp. A constant steady state has the form

u(x,t)=u, where (1+p)u=WoF(0).

Since F is monotonically increasing witlr (—c) = 0 andF (+«) = 1, we are
guaranteed at least one root. To simplify the analysis éurtive assume that
F(u) =k(f(u)—f(0))/f'(0) with f(u) =1/(1+exp—r(u—upn))) asin [13]. Note
that F(0) = 0 andF’(0) = k which serves as our bifurcation parameter. With this
assumptiony = v = 0 is the homogeneous rest state.

To study the stability, we linearize, lettingx,t) = u+q(x,t) andv(x,t) = u+
p(x,y) so that to linear order ig(x,t), p(x,t) we have

% _ —q(x,t)+k/Q w(x—y)q(y.t) dy— Bp(xt) (1)
TP — a(-pxt) + gx.1)).

Becausew(x) is translational invariant and the domain is periodic, Sohs to the
linearized equations have the form éxp) exp(in - x) where in one-dimensionis
an integer and in two-dimensions, it is a pair of integémg,n,). Letm= |n| be the
magnitude of this vector (scalar) and let

W(m) := /Q w(y)e ™ dy.
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(The isotropy ofw guarantees that the integral depends only on the magnifudg o
We then see that must satisfy

A(Xl)_<—1+kW‘n_B)(Xl)’ o)
X2 a —a )\ Xz
where(x1, x2)" is a constant eigenvector.

There are several cases with which to contend, and we nowildesbem. The
easiest parameter to vary in this system is the sensitk/{fiyhis is the slope oF at
the equilibrium point). The trace of this matrix.i&(m) := —(1+ a) + kwW(m) and
the determinanti&(m) := a[1+ B —kW(m)]. Note thaiw(0) =Wy andW(m) — 0
asm— co. The uniform state is linearly stable if and onlydf(m) < 0 andZ(m) >0
for all m. If W(m) < 0O, then both stability conditions hold, so, consider thes set
k7 = (1+a)/W(m) andk? = (1+ B)/W(m) which represent critical values &f
where the trace and determinant vanish respectively. Wenteeested in the min-
imum of these sets over all valuesmfwhereW(m) > 0. Let n denote the critical
wavenumber at whickV(m) is maximal. It is clear that itr > 8 then the deter-
minant vanishes at a lower value kfthan the trace does andce versa.That
is, there is a critical ratiR = 8/a such that ifR > 1, then the trace is critical
(and there is a Hopf bifurcation) while R < 1, the determinant is critical (and
there is a stationary bifurcation). The ratbis the product of the strength and
the time constant of the adaptation. If the adaptation iskvaeal fast, there is a
steady state bifurcation, while if it is large and slow, thé a Hopf bifurcation.
[13] studied the special case wheRreis close to 1. AtR = 1, there is a double
zero eigenvalue at the critical wavenumipeand thus a Takens-Bogdanov bifur-
cation. For the rest of this section, et denote the value of| at whichW(m)
is maximal. We also assume th&t(m*) > 0. For one dimensiom = £m* and in

two spatial dimensions, at criticalitp,= (n1,nz) wherem* = 1/n§+n§. For con-
creteness and illustration of the results, we @isg) = 1/(1+ exp(—r(u— uwp)))
with two free parameters that set the shapef afnd thusF. We remark that (i)

if wh = 0, thenF”(0) = 0 and (ii) for a range ofk, surrounding OF"”'(0) < 0.
We also usen(x) = AaP/2exp(—ax?) — BbP/2exp(—bx%) (wherep is the dimen-
sion of the domain and note that(m) = r7(Aexp(—n?/a) — Bexp(—n?/b)). With
A=5a=.125B=4b=.005, this kernel has a fairly narrow Mexican hat profile.

2.1 One spatial dimension.

2.1.1 Zero eigenvalue.

In the case oR < 1, the bifurcation is at a zero eigenvalue and we expect a spa-
tial pattern that has the form(x,t) = zexp(im*x) + c.c (here c.c means complex
conjugates) and

z = z(a(k—ke) —b|Z?)
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wherea andb are complicated, but readily computed, functionswf"(0)?, and
F"”(0). Both a,b are reala > 0, and for our choice ofv andF, we haveb > 0.
The non-zero solution to this equationzs= Ae '® whereA? = a(k — k) /b and

O is an arbitrary constant corresponding to a phase-shifh@fperiodic pattern.
The solution exists as long &s> k; (sincea, b are positive) and, furthermore, the
solution is stable. Thus as we incre&se/e expect to see a spatially periodic pattern
emerge that has the form

u(x) = vak—ke)/bcogmx+ 0) + O(k — k).

Fig. 1A shows a simulation of equation (1) where we have disted the one-
dimensional ring into 100 units. In this cad&m) takes its maximum at* = 4, so
as expected, we see a stationary pattern consisting of &makspIn the case where
m* = 1, (which occurs for sufficiently broad inhibition) theseasiplly periodic pat-
terns are interpreted as localized activity for tuning inr@ctionally based neural
system [26, 54]. This single stationary “bump” can be pémdrand pinned with
external stimuli as we see in subsequent sections of thisteha

2.1.2 Imaginary eigenvalues.
WhenR > 1 (strong or slow adaptation), then the trace vanishes atverloriti-
cal k than the determinant. Let* > O be the critical wavenumber and be the
imaginary eigenvalue. Thar(x,t) has the form

u(x,t) = z(t)e @M% w(t)e @M e

where
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Z = 7Z(a1 +ia) (k— ko) — (by+ib2) |22 — (1 +ic2) [ Wf?] 3)
W = w[(ay +iaz)(k—ke) — (by +ib2) [W[2 — (c1 +ic2)|Z7].

These coefficients can be computed for (1) (and, indeed, Yariant of the equa-
tions [13] computes them explicitly) and they depend onlyFdt{0)2 , F”(0),
W(2m), W(m), a, and 3. In particular, with our choice of (u) and for uy, not
large,by,c; > 0. There are three distinct types of nontrivial solutiofgsw) =
{(Z,0),(0,2),(Y,Y)}, where:

Z=Ad?, A? = (ag/br)(k—ke),
Q = (a2 —aibp/br)(k—k;), Y=Be=",
B? = (a1/(b1+cl))(k—ke), Z = (az—ai(bz+c2)/(br+c1))(k—ke).

Solutions of the forn{Z,0), (0,Z) correspond to traveling wavetrains with opposite

velocities and those of the forfiY,Y) correspond to standing time-periodic waves.

To see this, we note that the solutions have the form
u(x,t) = O{ze@+mX) 4 ywd(@-mx)}

)

so that for the solutionZ,0), we get
u(x,t) = Acoq (w+ Q)t+ m*x),
while for the(Y,Y) case
u(x,t) = Becog(w+ =)t) cogm*x).

The traveling (standing) waves are stable if and onby if- b; (resp.c; < bp) and,
importantly, ifF”(0) is zero or close to zero (that iy, ~ 0), thenc; > b; no matter
what you choose for the other parameters. Thus,fpsmall, we expect to see only
stable traveling waves. Fig. 1B,C shows simulations of ¢t ifvo different choices
of u; near zero, the result is traveling waves, while dgy= 0.3, standing waves
emerge. Choosing the interaction kerne(x), so thatm* = 1, leads to a single
traveling pulse or bump of activity which, itself, can berairied and perturbed by
external stimuli (see the next sections).

2.2 Two-dimensions.

While most of the focus in this chapter is on one space dinoenshe theory of
pattern formation is much richer in two-dimensions and &igua1l) provides an
excellent example of the variety of patterns. The isotrophe weight matrix im-
plies that the eigensolutions to the linear convolutionagigu (1) have the form
exp(in-x). In two dimensionsn is a two-vector of integers. We then obtain exactly
the same formula for the determinant and the trace as in omengion, however,
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Fig. 2 Three different cases

of critical wavenumbers in

the square lattice. The critical

wavenumbers are (from out

to in), {(+1,0),(0,£1)},

{(izv 1)7 (iZ, _1)’(i13 2)* (ilv _2)}

and

{(i374)7 (ig, —4),(i4, 3)* (:t47 _3)7(i57 0)7 (07 i5)}

m= |n| in this case so that there are at least two distinct eigeaxgand their com-
plex conjugates and there are often many more. Fig. 2 iltestrthree cases where
m‘ = 1,1/5,5 corresponding to four, eight, and twelve different pairg ny). We
treat and numerically illustrate several possibilitiesdigcretizing (1) on a 5& 50
array. Our choice ofv(x) gives a maximum ain* = 2 which is the simplest case.

2.2.1 Zero eigenvalue.

The simplest possible case in two dimensions has only fatindt wave vectors (in-

ner circle in Fig. 2). For example,ifi* = 2, thenn € {(2,0), (0,2),(-2,0),(0,-2)}.

(Note that in those cases where there are only four vectuegritical waves must

have either of the two formsgk, 0), (0, k), (—k, 0), (0, —k) or (k, k), (k, —K), (—k, —K), (—k,k).)
If we write X = (X3,%2), then,u(x,t) has the formu(xi,xo,t) = z1exp(i2x;) +
zexp(i2xz) + ¢.c and

4 = z(ak—ko) —blz|* —clz[), (4)
2 = z(a(k— ko) - bjz|* — cjz1?),

where as in the one-dimensional case,depend orF”(0)?, F(0). All coefficients
are real and can be computed. They are all positive for ouceb@fF (u). We let
zj = A;€% and we then find that

A, = Ag(alk— ko) — bAS — cAP),
Py = Po(alk— ko) — bAB — cA2).

It is an elementary calculation to show that there are thypes of solutions,
(z1,22) = {(r1,0),(0,r1), (r2,r2)} wherer? = a(k—k;) /b andr3 = a(k—kc)/(b+
¢). For this example, the first two solutions correspond to gattand horizontal
stripes respectively and the third solution represent#egh or checkerboard pat-
tern. Stripes (spots) are stable if and onlyik ¢ (resp.b > c) [16]. As in the
traveling/standing wave case aboverif(0) is zero (4, = 0), thenc > b and there
are only stable stripes [16]. The resulting stationarygratt look identical to those
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in Fig. 3A,B without the implied motion. (To get stationargtferns, choose, e.g.,
B =0,r =3, andu, = 0 for stripes ok, = 0.3 for spots .)

This case (of two real amplitude equations) is the simplesiec The criti-
cal wave vector can be more complicated, for exampley‘if= /5, then,n €
{(1,2),(1,-2),(2,1),(2,-1),(-1,-2),(-1,2),(—2,—1),(—2,1) } for which there
are eight eigenvectors and the solution has the form

4 )
=Yz +ce
=1

wheren; = (1,2),... andz; satisfy the four independent amplitude equations

24 = z(ak—k) — blz|* — clz* —d|zs|* — elz|?),
2 = n(ak—ko) —blzz|* — clzz|* — d|z4|” ~ efz3|%),
7 = z3(a(k—ke) —bjzs|* — clza|* — d|z1|* ~ €[zz|?),
7y = z(a(k— ko) — bjza|* — clzs* — d|zo* — e|z,|?)

As in equations (4), sincg . .. ,e are all real coefficients, this model can be reduced
to the analysis of a four dimensional real system. [15] deaind analyze this case
(among many others). In the context of neural fields, TaskdA8 Ermentrout [17]
provide stability conditions for the equilibria, all of wifi consist ofz; taking on
values of someé\ # 0 or 0. For example, the pure pattems= A, 20,23,z = 0 are
stable if and only ifa < {b,c,d}, there are also pairwise mixed solutions (checker-
boards) of the fornez; = z, = A, z3 = z; = 0, etc, and fully nonzero solutions,
721 = 2 = zz3 = 4 = A’ which are stable i > {d+c—b,d+b—-c,b+c—d}.

We remark that the triplet solutiorss = z = z = A" are never stable and that if
F”(0) = 0, then only stripes (ong, nonzero).

In two spatial dimensionsn* = 1 can correspond to a single bump of activity
which has been used to model hippocampal place cells [28h&wower inhibition,
the more complex patterns describe the onset of geomesimbhallucinations
[18, 49, 50, 5]. Simple geometric hallucinations take threfof spirals, pinwheels,
bullseyes, mosaics, and honeycombs [33]. When transfofioetthe retinocentric
coordinates of the eyeball to the coordinates of the visoidég, these patterns take
the form of simple geometric planforms such as rolls, heragsquares, etc. [45]
Thus, spontaneous bifurcations to patterned activity farmatural model for the
simple visual patterns seen when the visual system is jpeduy hallucinogens,
flicker [43] or other excitation. (See [3] for a comprehersigview.)

2.2.2 Imaginary eigenvalues.
The case of imaginary eigenvalues on a square lattice is qaihplicated and only

partially analyzed. [50] has studied this case extensiwdlgn there are no even
terms in the nonlinear equations (corresponding te 0 in our model. [47] provide
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a comprehensive and extremely readable analysis of of cheeewhere are four
critical wavenumbers.

Let us first consider the four dimensional case and take ag@fgpexample:
ne {(2,0),(0,2),(—2,0),(0,—2)}. In this case, the firing rate has the form:

U(X’t):Zlei2X1+i0Jt+22ei2X2+iwt+Zsefi2X1+iaX_|_Z4€7i2X2+iwt+C.C

The complex amplitudez satisfy normal form equations ([47], equation 5.3):

4 = z1a(k— k) — bjz1[* — cNy — dN] — €Z32,24 (5)
Z, = z[a(k—k¢) — b|z|? — cNp — dNy| — ez_4 zz
Z, = z3[a(k— k¢) — b|z3|> — cNy — ANp] — €212

[a(k—ke) | —ez

Z, = zla(k—ke) — b|zs|> — cNp — dNy
where Ny = |z|? + |z]? and Np = |z|? + |z|?. Here, a,...,e are all complex
numbers;a depends only on the linearized equation, wHile..,e depend on
F”(0)2,F"”"(0) and w(x). For the case of no quadratic nonlinearitieg < 0),
b=c=d = e There are many qualitatively different solutions to thisteyn
which correspond to interesting patterns. [47] describgheaf them as well as
their conditions for stability. Travelling roll pattern§R) consist of either hori-
zontal or vertical traveling waves that are constant alomg direction. They cor-
respond to solutions to equation (5) where exactly gng 0. Standing rolls cor-
respond tozy = z3 # 0, z = 4 = 0. (Note, the contrary case with = z3 =0
andz, = z4 # 0 are also standing rolls.) Traveling squares or spots spored to

21 = 2 # 0 andzz = zz3 = 0. Standing squares (a blinking checkerboard pattern)
correspond t@; = z = z3 = z4 # 0. A very interesting patern that we see is the
alternating roll pattern where horizontal blinking stigg@witch to vertical blinking
stripes. These correspond to solutions of the fayms —iz, = z3 = —iz4 # 0. Fig.

3 illustrates the results of simulations of equation (1) lmmgquare doubly periodic
domain in the cse whera* = 2. Thus, all the patterns show two spatial cycles along
the principle directions. In the simulations illustratedhe figure, we change,r
which affect the values df”(0),F"’(0) and thus the values of the coefficients of
the normal form, (5). The relative sizes of these coefficgetgtermin both the am-
plitude and the stability of the patterns. Fig. 3A shows tiesblutions for, = 0
(which maked="(0) vanish), while panel B shows a traveling spot pattern. Neith
of these patterns can be simultaneosusly stable. Howbeee tan be other patterns
that stably coexist. Fig. 3C illustrates the “alternatioti’mpattern in which there is

a switch from vertical to horizontal standing roles. Fig. 8Bows a pattern that
combines a standing roll (alternating vertical stripegjvai checkerboard pattern in
between.

[14] has partially analyzed the more complicated case irckvitiere are 8 crit-
ical wave vectors, for example® = /5 in Fig. 2. All of the patterns we described
above are also found as solutions to his amplitude equatioseme specific cases,
he finds evidence of chaotic behavior. Thus, even near thedaifion, we can expect
the possibility of complex spatiotemporal dynamics in medike present equa-

24173
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4T/8

Fig. 3 Two-dimensional time-periodic patterns with periddn (1) for = 0.25 a = 0.1: (A)
k=0.1,r=3,u,=0; (B)k=0.09,r =5,u, =0.3; (C)k=0.085r = 3,u;, = 0; (D) k=0.09,r =
37 Up = 0.
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tions. [50] also considers this case, but only when the catadierms (e.g.F"(0))
are zero. Obviously, there is a great reduction in the conxitylef the patterns and
the resulting possibilites are restricted. The= 5 case has, to our knowledge, not
yet been analyzed.

2.3 Summary of pattern formation.

On a periodic one-dimensional domain, equation (1) canngude variety of bifur-
cations from the homogeneous state and these can be redadbe construction

of normal forms to one or two ordinary differential equasdor the complex am-
plitudes. These bifurcations are generic in the sense thatcgn expect them to
happen as you varysingleparameter. If you have the freedom to vary several pa-
rameters, then it is possible to arrange them so that melliifgtabilities occur at
the same time. For example [19] looked at the Wilson-Cowamaidield equations
whenW(m) =W(m-+ 1) with corresponding imaginary eigenvalues (a double Hopf
bifurcation). More recently, [13] studied (1) ndRe= 1. WhenR = 1, recall that both
the trace and the determinant vanish at the critical wavebaurand critical sensi-
tivity k. Thus, there is a Bogdanov-Takens bifurcation. The normah fis more
complicated in this case; however for (1), the only soluitimat were found were
the stationary periodic patterns, standing waves, aneéliraywaves.

In two spatial dimensions, the dynamics is considerabhgaticue to the fact that
the symmetry of the square allows for many critical wave eexbecoming unstable
simultaneously. The richness increases with the size afritieal wavenumbem®.
As a ballpark estimate, the critical wavenumber is propodil to the ratio of the
domain size and the spatial scale of the connectivity foncti/(x). Thus, for, say,
global inhibition, the critical wavenumber is close to 1 dhd possible patterns are
very simple. We remark that by estimating the spatial fregyeof visual halluci-
nations, it is possible to then estimate the charactetestigth scale in visual cortex

[5].

3 Response to inputs in the ring network

We now consider the effects of linear adaptation in the riragleh [26, 13] in the
presence of external inputs. We show that adaptation ystedjrades the ability of
the network to track input locations. We consider the doniaia (— 1, 1) and take
w to be the cosine function [26]

W(X—y) = cogx—y), (1)

sow(x—y) = 0 when|x—y| < /2. Networks with lateral-inhibitory synaptic
weights like (1) are known to sustain stable stationary aifdp 26, 8, 4]. Many
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of our calculations are demonstrated in the case that ting fieite functionf is the
Heaviside step function [1, 39, 8, 4]

F(u):H(u_e)_{éiizgj ?)

We consider both stationary and propagating inputs witlsitmple functional form

I(x,t) =lgcogx— cot), (3)

so they are unimodal in. We study the variety of bifurcations that can arise in the
system (1) due to the inclusion of adaptation and inputs.

For vanishing adaptation3(— 0), we find stable stationary bumps. For suf-
ficiently strong adaptation, the input-frely & 0) network (1) supports traveling
bumps (pulses). The network locks to moving inputs as lortheis speed is suffi-
ciently close to that of naturally arising traveling bum@sherwise, activity period-
ically slips off of the stimulus or sloshes about the vigirof the stimulus location.
Previously, Hansel and Sompolinsky [26] studied many o¢hesults, and recently
[31] reinterpreted many of these findings in the context dilcanogen-related vi-
sual pathologies.

3.1 Existence of stationary bumps

First, we study existence of stationary bump solutions ia iesence of sta-
tionary inputs [(x,t) = 1(x))). Assuming stationary solution&i(x,t),v(x,t)) =
(U(x),V(x)) to (1) generates the single equation

m
A+BUM = [ wix—y)FUE)dy+1(9). @
For a cosine weight kernel (1), we can exploit the trigonaroé&entity
COgX—Y) = COSyCcosX+ sinysinx, (5)

and consider the cosine input (3), which we take to be statjofto = 0). This
suggests looking for even-symmetric solutions

U(x) = (A+ 1;—03) COSX, (6)

so that the amplitude of (6) is specified by the implicit e¢urat

A= ﬁ/j;cosyF((M (1+B) Ho) cosy)dy. )
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For a Heaviside firing rate function (2), we can simplify theplicit equation (7),
using the fact that (6) is unimodal and symmetric so that) > 6 for x € (—a,a)
for solutionsA > 0. First of all, this means that the profile dfx) crosses through
thresholdd at two distinct points [1, 8, 4]

U(+a) = [A+(1+B) tojcosa=0 = a:cosl[%]. (8)
The threshold condition (8) converts the integral equafi@rio
2 (1+B)%62

1+B/ YV IB\ T @rpArI? ©)

which can be converted to a quartic equation and solved telly [30].
In the limit of no inputly — 0, the amplitude of the bump is given by the pair of
real roots of (9)

_V1+(1+p)6£/1-(1+P)6
1+ ’

(10)

so there are two bump solutions. As is usually found in lateraibitory neural
fields, the wide bump-) is stable and the narrow bump-) is unstable in the
limit of vanishing adaptationd — 0) [1, 40, 4, 12]. At a critica3, the wide bump
undergoes a drift instability leading to a traveling bump.

3.2 Linear stability of stationary bumps

We now compute stability of the bump (6) by studying the etiolu of small,
smooth, separable perturbations. By plugging U (x) + @(x)e* andv =V (x) +
o(x)eM (where|@(x)| < 1 and|@(x)| < 1) into (1), Taylor expanding, and truncat-
ing to first order we find the linear system

A+DY = o+ [ Wx-yFUOPMY @D
(A +a)px) = ay(x) 12)

For the cosine weight function (1), we apply the identitydBJ substitute (12) into
(11) to yield the single equation

2A)P(x) = (A + a)(f cosx+ Asinx) (13)

where2(A) = (A+a)(A+1)+ap and

o = /f cosxF' (U (x)) g (x)dx, B = /f sinxF'(U (x))@(x)dx.  (14)
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We can then plug (13) into the system of equations (14) angdlgino yield

Tl 2
IN) = (A +a) (/nF’(U (x))dx—(l(f[;im) &, (15)
(A +a)1+B)A
DN PB = A pALl, 2 (16)

where we have used the fact that integrating (7) by partsyiel
1 T
A= %ﬁ)lo / SiIPxF'((A+ (1+ B) o) cosx)dx,

T

as well as the fact that the off-diagonal terms vanish, sihe& integrands are odd.
This means that the eigenvalues determining the lineailistatif the bump (6)
are of two classes: (a) those of even perturbationg/6g = cosx and (b) those
of odd perturbations wherg(x) = D@(x) = sinx. We primarily study eigenvalues
associated with odd perturbations, given by the quadrgtiagon

(1+B)A

A +[l+a—(14+B)QA+a(1+B)(1-Q)=0, Q= T+BA+Iy

7)
We can use (17) to study two bifurcations of stationary bumpée system (1).
First, we show a drift instability arises in the input-frdg £ 0) network, leading
to a pitchfork bifurcation whose resultant attracting $iolos are traveling bumps
[26, 39, 35, 13, 10]. Second, we show that in the input-drsgstem [p > 0), an
oscillatory instability arises where the edges of the ‘islgseriodically. This is a
Hopf bifurcation, which also persists for moving inputs & 0).

In the limit of no input (p — 0), Q — 1, so (17) reduces to

A2+]la—BJA =0. (18)

There is always a zero eigenvalue, due to the translatiomm®tny of the input-
free network [1, 40]. Fixing adaptation strengthwe can decrease the raterom
infinity to find the other eigenvalue crosses zero wbea 3. We mark this point in
our partition of parameter space into different dynamiedddviors in Fig. 4(a). This
non-oscillatory instability results in a traveling bumpdicated by the associated
shift eigenfunction (si®). Traveling pulses can propagate in either direction, so th
full system (1) undergoes a pitchfork bifurcation. We destoate the instability
resulting in a traveling bump in Fig. 4(b).

We could also ensure that instabilities associated witin @egturbations (co9
of the bump (6) do not occur prior to this loss of instabilifittee odd perturbation.
For brevity, we omit this calculation. Numerical simulats(as shown in Fig. 4(b))
verify odd perturbations are the first to destabilize. Tfaes we would always
expectthat ag is decreased from infinity, the first instability that ariseassociated
with odd perturbations of the bump, leading to a drift initgband thus a traveling
bump solution (see Fig. 4).
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®

oscillatory
bumps

stationary bumps

Fig. 4 (a) Partition of [p,a 1) parameter space into different dynamical behaviors obtirap
solution (6) for Heaviside firing rate (2). Numerical simtitha of the (b) drift instabilty of the bump
(6) in the case of no inputd = 0); (c) sloshing oscillatory instability in the case of inpgi= 0.1;
and (d) translation variant propagation in the case of wapktilp = 0.05. Other parameters are
6=0.5,a=0.1,and8 =0.2.

For nonzero inputlg > 0), the primary bifurcation of the stable (wide) station-
ary bump solution is shown to be oscillatory. To identify theation of this Hopf
bifurcation, we plug the ansafz=iw into (17) to find

—w?+i[(1+a)—(1+B)QA+a(1+B)(1-Q)=0. (19)
Equating real and imaginary parts of (19), we find a Hopf lwiéiion occurs when
o =(1+pB)Q -1, (20)

with onset frequency
wH=+va(l+p)(1-Q). (1)

SinceQ € (0,1) whenlg > 0, we know thatwy > O for all parameter values we
consider. Therefore, there is never an instability withghyreal eigenvalues asso-
ciated with odd perturbations, in the case of nonzero injt.show the curve of
Hopf bifurcations in [y,a 1) parameter space in Fig. 4(a) as well as a simulation



16 Bard Ermentrout, Stefanos E. Folias, and Zachary P. fita

of the resulting oscillatory solution in Fig. 4(c). Studiglsinput-driven excitatory
networks reveal it is the even mode that destabilizes intdlasons, yielding re-
flection symmetric breathers [23, 22]. Here, due to the &iahibitory kernel, the
odd eigenmode destabilizes, leading to sloshing breaff2r12]. As in the case
of the drift instability, we should ensure that instabégiassociated with even per-
turbations do not arise prior to the Hopf bifurcation. We évansured this for the
calculations of Fig. 4 but do not show this explicitly here.

Finally, we note a secondary bifurcation which leads to dyica that evolves as
a propagating pattern with varying width (see Fig. 4(d)gsdzgially, the “sloshing”
bump breaks free from the attraction of the pinning stimwod begins to prop-
agate. As it passes over the location of the stimulus, it edtpaSuch secondary
bifurcations have been observed in adaptive neural fieldsfoite spatial domains
too [23]. While we cannot develop a linear theory for thisibifation, we can deter-
mine the location of this bifurcation numerically.

3.3 Existence of traveling bumps

Our linear stability analysis of stationary bumps predibts existence of traveling
bumps for substantially slow and strong adaptation. We ¢sm show that when
a moving input is introduced, the system tends to lock to it ifas speed com-
mensurate with that of the natural wave. Converting to a wab@dinate frame
& = x—cot where we choose the stimulus spegdwe can study traveling wave
solutions(u(x,t),v(x,t)) = (U(&),V(&)) of (1) with the second order differential
equation [23]

—cgU"(&) +co(1+ a)U' (&) — a(1+B)U (&) = G(&) (22)

where

6(6) = (oge-a) | [ we-yrumiEa). @)

andA, specifies the spatial shift between the moving input and tigeghat tracks
it. In the case of a cosine weight kernel (1) and input (3), & &pply the identity
(5) to (23) so we may write the equation (22) as

—c3U" (&) +co(1+a)U'(§) —a(1+B)U (&) = € cost +.7siné. (24)
where

@ = [ cosx [GoF (U (x))U’ () — aF (U (x))] dx — lo(ar cOSA| + cosindy), (25)

Y:/f sinx [coF’ (U (x)U’(x) — aF (U (x)))] dx+ lo(a sinA; — cocosdy).  (26)
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By treatingé and.”” as constants, it is straightforward to solve the secondrorde
differential equation (24) to find

(c3—a—ap)[€ cosé +.7siné| +Co(1+ a)[¢'siné — .7 cosé]

V(&)= (G—a(1+p))?+ch(1+a)?

. (@27)

In the case of a Heaviside firing rate function (2), we canuat& the integral terms
of ¥ and. directly. First, we break the translation symmetry of theteyn by
fixing the threshold crossing pointd{m) = U (1— A) = 6. This specifies the input
shift parameted| as well. We also require that the superthreshold redich) > 6
whenx € (m— A, m) andU (§) < 6 otherwise. This yields

% = asinA + co(1—cosA) — lp(a cosa| + cpsindy ), (28)
" =¢cpSinA — a(1—cosA) + lp(asind; — cpcoss)). (29)
Plugging this into (27) and imposing threshold conditioms have the system
Z21[sinA — [pcosq|] — Z2[1 — cosA — lpsin4]
(3—a(1+B))2+c3(1+a)?
Z1[SiNA — lgcogA — A))] + Z2[1 —cosA — lgsin(A — 4))]
= 67
(c§—a(1+pB))>+c(1+a)?

-6, (30)

(31)

where 27 = ¢+ a?(1+ ) and 22 = ¢§ + coa? — coa B, which we could solve the
numerically (see [31]).

In the limit of no input (o — 0), we can treat = ¢y as an unknown parameter.
By taking the difference of (31) and (30) in this limit, we gbat we can compute
the speed of natural waves by studying solutions of

cA+ca’—caB =0, (32)

a cubic equation providing up to three possible speeds favaling bump solution.
The trivial c = 0 solution is the limiting case of stationary bump solutidimest we
have already studied and is unstable wioer 8. In line with our bump stability
predictions, fora < 3, we have the two additional solutioms = ++/a3 — a?,
which provides a right-moving¥) and left-moving ¢) traveling bump solution.
The pulse widths are then given applying the expressioni(3@)30) and (31) and
taking their mean to find st = (1+ o) 8. Thus, we can expect to find four traveling
bump solutions, two with each speed, that have widths- 11— sin 1[8(1+ a)]
and4, = sin 1[6(1+ a)]. We can find, using linear stability analysis, that the two
traveling bumps associated with the widihare stable [35, 39].
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Fig. 5 Sloshing instability of stimulus-locked traveling bum@®/) in adaptive neural field (1)
with Heaviside firing rate (2). (a) Dependence of stimuluském pulse widthA on stimulus
speedcy, calculated using the implicit equations (30) and (31).4ajos of the Evans function
&(A) = det(.ep — 1), with (41), occur at the crossings of the zero contours of Rg (black) and
Im& (A) (grey). Presented here for stimulus spegd= 0.042, just beyond the Hopf bifurcation
at cy =~ 0.046. Breathing instability occurs in numerical simulasdor (b) co = 0.036 and (c)
co = 0.042. (d) When stimulus speed = 0.047 is sufficiently fast, stable traveling bumps lock.
Other parameters afe= 0.5, a = 0.05,3 = 0.2, andlp = 0.1.

3.4 Linear stability of traveling bumps

To analyze the linear stability of stimulus-locked tramglbumps (27), we study the
evolution of small, smooth, separable perturbationsltc&(),V (£)). To find this, we
plug the expansions(x,t) = U (&) + @(&)eM andv(x,t) = V(&) + (& )€ (where
|[W(&)| < 1and|p(&)| < 1) and truncate to first order to find the linear equation
[56, 10, 25]

—co!(§)+ (A-+ () = ~Bo(@) + [ wE-yF UMWY (3)
~coff (&) + (A-+)p(&) = ap(). (34)

For the cosine weight function (1), we can apply the ider{Bly so that upon con-
verting the system to a second order differential equati@n,
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—CY +c(A +1+a)P — [(A+1)(A +a) +aBlY = o cosé + Bsiné, (35)

where

o =~ +a) [ cosEF(U(ENP(EIAE +co [ SNEF'(U()(E)dE, (36)

#=—co [ costF/(UE)W(E)E~(A+a) [ singF'(U(E)p(E)de. (37)
Employing periodic boundary conditiogs — 1) = (1) andy/’(—m) = ¢/ () and
treating.Z and% as constants, it is then straightforward to solve (35) to find

P + PoRB .
+—————5

= M COSE- |nE. (38)

where2; = co(2A +1+a), Z, =c3— (A +1)(A +a) +af], andZp = 22 +
25. We can then use self-consistency to determine the cosstaaind.2, which
implicitly depend upony itself. In the case that the firing rate function is a Heaasid
(2), we can reduce this to a pointwise dependence, so that

_ CoSinAy(m—A) Y(m  coAY(m—A)
=0 0) “”"’Lu'(nn Uay |- ©9
Y(m coAY(nm—A)] (A+a)sinAg(n—A)
=\ Wi T U a)] }‘ Uy Y9

and we can write the solution

:?a”lcosf—i—ylsinf Y(m) +<fzcosE+stinE Y(m—A)
Do U’ ()| Dp U'(m—A4)°

w(é)

C1=P2A+a)—P1cy, S1=P1(A+a)+ Pac,
€= P1((A +a)sinA —cocosA) + P5(CosinA + (A + a) cosA),
2 =P1((A +a)cosA + coSinA) + P2(CocosA — (A + a)sinA).

Applying self consistency, we have a2 eigenvalue proble = .«/,%, where

Y(m) ) (xzfnnﬁfm)
(W(”—A) ’ P Gpn Dpp )’ (41)
with
‘51 %2
A= ——————— op — — e
T gpuiml T T gpur(m-a))
1 SINA — 61 COA S5SINA — 6, COA
Dp = AN =

7ol (m] ZplV' (11— 4)]
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Then, applying the approach of previous stability analydesaveling waves in
neural fields [56, 10, 25], we examine nontrivial solutioris¥6= <7, so that
&(A) =0, where&(A) = def(.e7, — 1) is called the Evans function of the traveling
bump solution (27). Since no other parts of the spectrunritarié to instabilities in
this case, the traveling bump is linearly stable as long a% R® for all A such that
&(A) = 0. We can find the zeros of the Evans function by following thpraach
of [10, 25] and writingA = v + iw and plotting the zero contours of REA) and
Im &(A) in the (v, w)-plane. The Evans function is zero where the lines intersect

We present examples of this analysis in Fig. 5. As shown, weusa the im-
plicit equations (30) and (31) to compute the width of a stistlocked pulse as it
depends upon the speed of the input in the case of a Heavigittg fate function
(2). In parameter regime we show, there are two pulses fdr patameter value,
either both are unstable or one is stable. As the speed otilstisndecreased, a
stable traveling bump undergoes a Hopf bifurcation. Fofigahtly fast stimuli, a
stable traveling bump can lock to the stimulus, as showngn ¥id). However, for
sufficiently, slow stimuli, the speed of natural travelingnps of the stimulus free
network is too fast to track the stimuli. Therefore, an datdlry instability results.
We plot the zeros of the Evans functions associated withriktability in Fig. 5(a).
The sloshing pulses that result are picture in Fig. 5(b) ajdNote that, as was
shown in [31], it is possible for pulses to destabilize dusttmuli being too fast.
In this context, such an instability occurs through a saddiée bifurcation, rather
than a Hopf.

4 Stationary and traveling activity bumps on the infinite line

We consider the neural field (1) in the case of a Heavisidedfirate function
F(u) = H(u— 8) with firing thresholdd whereu(x,t) andv(x,t) are defined along
the infinite line withu(x,t),v(x,t) — 0 asx — +. The synaptic weight function
w is taken to be either excitatofyv(x) > 0) or of Mexican hat form(x) locally
positive, laterally negative) and is assumed to satigfy) < w(0) for all x £ 0 and
5. w(y)dy < . We considestationaryactivity bumps in section 4.1 artchveling
activity bumps in section 4.2 and examine the two casep blfnps generated in-
trinsically by the network with no inpufl (x,t) = 0) and (i) bumps induced by a
localized, excitatory input inhomogeneitly(x,t) > 0) which can be either station-
ary (I(x)) or traveling(l (x — ct)) with constant speed. The input is assumed to
have an even-symmetric, Gaussian-like profile satisfy{my— 0 asx — +co.

4.1 Natural and stimulus-induced stationary activity bumps

Existence of stationary bumps.An equilibrium solution of (1) is expressed as
(u(x,t),v(x,t))" = (Us(x),V5(x))" and satisfie¥, (x) = U,(x) and
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Fig. 6 (a) Stationary bump profile), (x) with halfwidth a. Bifurcation curves satisfying (3) and
illustrating the dependence afon the bifurcation parametér are shown in (b) fo3 < a and

in (c) for a < B. Black (gray) denote stability (instability) of the statary bump.SN denotes a
saddle-node bifurcation artl, andH., denote Hopf bifurcations with respect to the sum m&de
and difference mod€ _, respectively. Parameters atg = 1, e = 1, W; = 0.4, gi = 2, 6 = 0.3,
B=1,a=0.0250 = 1.2. Fig. adapted froniolias, Nonlinear analysis of breathing pulses in a
synaptically coupled neural network, SIAM J. Appl. DyntSy®: 744-787, 2011

~00

(1B = [ wix—y)H(Ua(y) - 8)dy+1(x) 1)
We follow the approach of Amari [1] to use the Heaviside firmage and make the
ansatz of an even-symmetric stationary budapx) that is centered about= 0, is
superthresholtl, (x) > 6 for x € (—a,a), satisfiedJ,(+a) = 6, and is subthresh-
old otherwise witHJ,(x) — 0 asx — +o (see Fig. 6). That the stationary bump is
centered about = 0 is by choice bothif in the case of no inputl (x) = 0) due

to translation symmetry of the bump and) (n the presence of a stationary input
(I(x) # 0) where the stationary bump and the input share the samercesfiich is
set to bex= 0. The profileU, (x) of the stationary bump can then be expressed as

(1+ﬁnnuy=/fwu—ymy+um::vwx+a—wwx—m+4u) @

whereW(x) = [;‘w(y) dy. The bump halfwidtra is then determined by requiring (2)
to satisfy thehreshold conditions L+a) = 6 which, by even symmetry, resultin

W(2a) +1(a) = (1+8)6. (3)

This determines the existence of the stationary bump ifssllienptions are satisfied.
Condition (3) was solved numerically in Fig. 6 whaveandl were taken to be

w(x) = %eﬂ/@z - %e*(x/ai)a

1(X) = loe" @9 (4)

Existence results for stationary bumps for generalv and Gaussian-likel .

CASE 1: No Input (1(x) = 0). For an excitatory weight functiofw(x) > 0), sta-
tionary bumps exist and satisfy (3) when parameters péfrit6 < limy_, W(X));
however, they are always linearly unstable [39, 22, 23]. ddme of a Mexican hat
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weight functionw is an extension of the Amari neural field [1] with the existenc
equation containing an extra factor due to adaptatidi2a) = 8(1+ f3)); how-
ever, the dynamics of the adaptation variabsdditionally governs the stability of
the stationary bump [22]. In particular,df < 3, stationary bumps are always un-
stable. Stable bumps in the scalar model of Amari can exteridi$ model only
for a > 3, and a stable bump far > ( destabilizes ag decreases through= f3
leading to a drift instability [22] that can give rise to teding bumps.

CASE II: Localized Excitatory Inpufl (x) > 0). A variety of bifurcation scenar-
ios can occur [23, 22], and, importantly, stationary bumgrs emerge in a saddle-
node bifurcation for strong inputs in parameter regionsnetstationary bumps do
not exist for weak or zero input as shown in Fig. 6. When staip bumps exist
for a > B, the stability of a bump is determined directly by the geagnef the
bifurcation curves [22, 23] (e.g., see Fig. 6). &slecreases through= (3, a Hopf
bifurcation point emerges from a saddle-node bifurcatioinip(associated with the
sum modeQ, ) and destabilizes a segment of a branch of stable bumps fo3.
Generally, Hopf bifurcations occur with respect to eithEtveo spatial modes2,
(discussed later), and their relative positions (denotedb andH-, respectively,
on the bifurcation curves in Fig. 6) can switch depending ammeters [22].

Stability of stationary bumps. By settingu(x,t) = Us (X, t) + @ (x,t) andv(x,t) =
Vo (x,t) + @ (x,t), we study the evolution of small perturbatiof@s /)" in a Taylor
expansion of (1) about the stationary bufp,V,)". To first order in(¢, J)7, the
perturbations are governed by the linearization

a9 = 40+ [ Wy (U -0)dp0dy
God =+ 0.
Separating variables, we s@fx,t) = e''¢(x) and J(x,t) = e y(x) in (5) where

(¢,y)T € CL(R,C?) denoting uniformly continuously differentiable vectaatved
functionsu : R — C?. This leads to the spectral problem foand(¢, ¢)"

m(g)=2(5)  w(@)=1aE0) (%) ©

whereN ¢ (x) = [%, w(x—y)H'(U.(y) — 6) ¢ (y) dy. The essential spectrum lies in
the left-half complex plane and plays no role in instabilg, 22]. To calculate the
point spectrum, define(A) = A + 1+ 2£ and reduce (6) tg(x) = (+%5)9(x) and

Aa
~ w(x—a) w(x+a)
pA)p(x) = W‘P(a) + W‘P(*a)- (7)

Settingx = +ain (7) yields a compatibility condition for the values ¢f+a) where

(/\o - p(/\)l) (gf:ﬁ) =0, Mo = \us1<a>\ [v\\,/\g(zoaz) V\\//\E(ZOE;)] '
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Consequently, nontrivial solutions of (6) exist wha#t (A, — p(A)l) = 0, thereby
identifying eigenvalued . The point spectrum comprises two pairs of eigenvalues
AL, A7 and eigenfunctiong’, v defining two characteristic spatial modes [22, 23]:

Sum mode- eigenvalued . and eigenvectors! (x) = Q, (x) (AL + a,a)’,

A(@)=—3v,+3/vz—ar,, Q. (X) = W(X—a) +W(x+a),
Difference mode- eigenvalued, and eigenvectong, (x) = Q_(x) (A7 + a, a)T,
A(a) =—3iy £3/Y2—4r, Q_(X) = W(x—a) —w(x+a),
whereQ, (x) is evensymmetric,Q_(x) is odd-symmetric, and/;, [, are given by
_ Q. (a) _ Q. (a)
Yi(a) = (14’0’)_(14‘[5)@—(&)‘7 l.(a) = a(1+B) {1_U§T :

Stability results for stationary bumps for general w and Gaussian-likel.

CASE 11 No Input (1(x) = 0) [23, 25, 41, 22]. With no inpufU/(a)| = Q (a)
and the eigenvaluek, can be redefined as, = 0 andA~ = 3 — a. In this case,
the persistent O-eigenvalde = 0 corresponds to the translation invariance of the
stationary bump and is associated with an eigenfunctioméndifference mode
Q_. The other eigenfunction in the difference mode (assodiaiigh A~) is stable
for B < a and unstable foo < 3. Thus, fora < 3, a stationary bump is always
linearly unstable. FoB < a, a stationary bump can be linearly stable for a Mexican
hat weight function (ifw(2a) < 0) but is always unstable for an excitatory weight
function (w(x) > 0) [22]. Also, forf3 < a, it is not possible for a stationary bump
to undergo a Hopf bifurcation and, #sis increased through, a stable stationary
bump undergoes a drift instability due to eigenvalueincreasing through 0 [22].
Interestingly, multibump solutions in (1) on two-dimensid domains are capable
of undergoing a bifurcation to a rotating traveling multilp solution [37].

CASE II: Localized Excitatory Inputl (x) > 0) [7, 23, 22]. The presence of the
input inhomogeneityl(x) # 0) breaks translation symmetry ahd=~ 0 generically.

A stationary bump is linearly stable whan, A < 0 which reduce to the conditions

2.(a)
2@

Qi(a) - 1+a
i@l 1+8
If w(0) > w(x) for all x# 0, (2) implies(1+ 8)|U/(a)| = w(0) —w(2a) + |I'(a)|.
Consequently, the stability conditions translate, in teofithe gradieni’(a)|, to

o< p.

a>p:  ['(@)] > Ds(a) = 2w(2a),
B—a

a<B: |I'(@)] > Du(a)= (Tr) Q-(8) +2w(22),  w(2a) >0,
(590 (a), w(2a) < 0.



24 Bard Ermentrout, Stefanos E. Folias, and Zachary P. fita

(a) Breather (b) Slosher

Fig. 7 Destabilization of spatial mode3, (x) andQ_(x), as the bifurcation parametkris varied
through a Hopf bifurcation, can give rise to a stabteatheror slosher respectively, depending
on the relative position of the bifurcation point for eactatsgl mode (e.g.Hs andHs in Fig.
6(c)). (a) plot ofu(x,t) for a breather arising from destabilization of the sum m@nex) for
parameters, = 1.9,w; = 0,3 = 2.75,a = 0.1,0 = 0.357. (b) plot of u(x,t) for a slosher arising
from destabilization of the difference mode (x) for parameters, = 1.5,w; = 0.4,6; = 2,3 =
2.6,a =0.01, 6 = 0.35. Common parameterg:= 1.2, We = 1,0, = 1.

[I'(a)| = Dsy(a) denotes a saddle-note bifurcation point dn@)| = Dy (a) denotes
a Hopf bifurcation where a pair of complex eigenvalues assed with one of the
two spatial modes2. crosses into the right-half plane.W(2a) > 0 at the Hopf
bifurcation point, the sum mod@, destabilizes and gives rise tobeeather—a
time-periodic, localized bump-like solution that expaadsl contracts. ifv(2a) < 0
at the Hopf bifurcation point, the difference mo@e destabilizes and gives rise to
a slosher—a time-periodic localized solution that instead sloshds-f0-side as
shown in Fig. 7. Nonlinear analysis of the Hopf bifurcati@veals that, to first
order, the breather and slosher are time-periodic modunisitf the stationary bump
U,(x) based upon the even and odd geometry of the sum and differeades,
respectively [22]. Sloshers were also found to occur in [A®le bifurcation can
be super/subcritical, which can be determined from the abform or amplitude
equation derived in [22]. Stimulus-induced breathers aatengo further transitions
and can exhibit mode-locking between breathing and enmissidraveling bumps
(when supported by the network) [23, 25]. Alternativelye&thing fronts can occur
for step function inhomogeneiti¢é&x) [7, 6]. Hopf bifurcation of radially symmetric
stationary bumps extends to (1) on two-dimensional domééasling to a variety
of localized time-periodic solutions including nonradijaymmetric structures [23,
24].
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4.2 Natural and stimulus-locked traveling activity bumps

Existence of traveling bumpsWe simultaneously consider the two casesatiral
traveling bumpgl (x,t) = 0) andstimulus-lockedraveling bumps which are locked
to a stimulud (x — ct) traveling with constant speed Natural traveling bumps in
neural field (1) on the infinite lin® = (—oo, ) were first considered in [38, 39] and
can occur in the absence of an input or in a region of the nesedium where an
input is effectively zero. An important distinction betwethe two cases is that the
natural traveling bump in the absence of the input is traiosially invariant and we
have stability with respect to a family of translates, wilasra the stimulus-locked
case there is a fixed position of the bump relative to the input

Assumeu(x,t) = U (x—ct) andv(x,t) = V(x—ct) and, in traveling wave coor-
dinatesé = x — ct, make the assumption that the activity(é ) is superthreshold
U(&)>Bforé e (&), satisfied) (&,2) = 8, and is substhreshold otherwise with
U (&) — 0 asé — +o. Consequently, the profile of the bump satisfies

~cU =-U—pv+ [ w(E —mH(ULn) - 8)dn +1(8),

¢ (8)
——Vg=+U - V.
a

Variation of parameters [55, 25] can be used to solve (8) twstract the profile
(U, Ve)T of the traveling bump which can be expressed as [25]

Uc(é) = (1—p )M (&) — (1— p )M (&)
Ve(€) = —a [M. (&) = M (§)].
wherem(&) =W(& — &) —W(& — &) +1(&),

1 "0y

M. (&) = 7/ ec & MWmn)dn, o =31ra=x\/(1-a)>-4ap).
i( ) C(IJ+7I~L) c ( ) + 2( ( ) )

and 0< Rep_ < Re,. Sincem(&) is dependent upoé, &,, the threshold condi-

tionsU(&) = 08, wherei = 1,2 andé; < &,, determine the relationship between the

input strengtt, and the position of the bump relative to the inp{&). This results

in consistency conditions for the existence of a stimubgkéd traveling bump:

0= (1_ I-L)M+(El) - (1_ ”+)M7(El)a
6= (1—p)Mi(&) — (1—p )M (&)

These determines the existence of the traveling bump (geadvihe profile satisfies
the assumed threshold conditions) and include the casetofahavaves [, = 0).
Note that existence equations for the traveling bump in#8)also be derived using
a second ordenDE forumlation [39, 23] or an integral formulation in [9].
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Existence conditions for a positive, exponentialv and Gaussianl. For explicit
calculations in this sectiony andl are taken to be

W(x) = Je g X/0e, I(x—ct) = l,e (/@) (9)

CASE I: Natural traveling bump(I (&) = 0) with speed d25, 41, 23, 9, 39]. In
the absence of an input, translation invariance of the butowsithe simplification
(&1,&2) = (0,a) where the wave speexaind bump widtha are naturally selected by
the network according to the following threshold condiS¢a5]

0= J.(-a), 0= K(-a), (10)
whereK({) =J_({) —H.({) +H_({), and, forw given in (9),

(a+c)(1—€)
(C+u)(Ct+p)’

P p)(1-e¥9)
Oty MY

J.(Q) =

Note that(c+ p,)(c+u ) =c+c(1+a)+ a(l+ ). Existence equations (10)
were solved numerically in Fig. 8(b) indicating two branstaé# traveling bumps
for small a. The wide, faster bump is found to be stable and the narrawesl
bump is unstable. Detailed analyses of the existence ofalataveling bumps can
be found in [52, 41], including the case where the homogesstaie has complex
eigenvalues [52]. A singular perturbation constructiontf® pulse was carried out
for smooth smooth firing rate functiosin [39]. For moderate values ¢ trav-
eling fronts occur in (1) and were shown to undergo a frontro#ition as a cusp
bifurcation with respect to the wave speed of the front [6].

CASE 11: Stimulus-locked traveling bunp(&) # 0) with speed ¢25]. The wave
and stimulus speedsare identical, and the threshold conditionsér, &») are [25]

0= K(&—-&) + T, (&) —T (&),
0=J.(&L—&) + T (&) —T (&),

whereK,J, are given in (11) and. arises from the input and is given by

T.(¢) = \/Z:Io (ul:_“;) exp(%Jr [%r) erfc(ng%),

(12)

with erfc(z) denoting the complementary error function. (12) can beesblwmer-

ically to determine the regions of existence of stimuluskéd traveling bumps as
both the speed and amplitudé, are varied (assumingd,(¢ ) satisfies the threshold
assumptions). This allows us to connect the stationary lsummatural traveling

bumps via stimulus-locked traveling bumps as shown in Fidgl8s analysis for

stimulus-locked fronts was carried out in [6] and an extemsf stimulus-locked

bumps for a general smooth firing rate functfenvas studied in [20].
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Fig. 8 (a) Traveling bump profile. (b) Bifurcation curves foatural traveling bumpsl( = 0) in (1)
inthe (@, a)-plane andd, c)-plane. The stable branch (black) of wide, fast bumps aedittstable
branch (gray) of narrow, slow bumps annihilate in a saddiéerbifurcation at a critical value; ~
0.341. (c) Regions of existence (white) of tsttmulus-lockedraveling bumps in thec(l,)-plane
for fixed o0 = 1,a = 0.03. The left and right regions form tongues that issue froenuhstablec,
and stabless natural traveling bumps, respectively. The curve of Hofififeiations within the left-
hand tongue is shown in gray, above which the bump is stapkn¢s below which it is unstable
(u). Stable traveling breathers bifurcate from the leftlsta(solid gray) Hopf curve, and stationary
bumps correspond to the intersection of the tongue andribe k 0. When bumps and breathers
are unstable or do not exist, there is mode-locking betweeathing and the emission of natural
traveling bumps. Parameters in (6)= 0.3, = 2.5,we = 0c = 1,w; = 0. Fig. adapted frorfolias

& Bressloff, Stimulus-locked waves and breathers in antatary neural network, SIAM J. Appl.
Math., 65:2067-2092, 2005

Stability of traveling bumps. By settingu = U, + ¢ andv =V, + {, we study
the evolution of small perturbation®, )" in the linearization of (1) about the
traveling bumpU,, V)" which, in traveling wave coordinates, are governed by

A8 = pp— §—PP+ [ WE—mHU.n)— ) (n.t)n,
P = cosP+ad—al.

Separating variables by settigg&,t) = e*l¢ (&) and J(&,t) = eMy(&) in (13),
where(¢, )" € CL(R,C?), leads to the spectral problem fdrand (¢, )"

(13)

(L+N)<$) =A (3}) (14)
where
- efy [2] 5(0)- ([ v ]

The essential spectrum lies within the Bet {z: Reze [~Rep,,—Reu_|}, where
Re . > 0, inducing no instability [55, 25, 41]. Stability is thentdemined by el-
ements of the point spectrum lying in the regiRa= {z: Rez> —Rep_} which
can be calculated using an Evans function. In particulardetermine a condition
for (L+XN—Al) to have a bounded inverse. The Evans funcéi¢h) subsequently
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arises from the condition thgt + N — Al) is not invertible andL +N — A1) =0
has nontrivial solutions. We set= (¢, )" and use variation of parameters [55, 25]
to construct a bounded inverse far+N — A1) based on the integral kernel

M(E,1,A) = G [ O (E)| @ ()] [¥. (m)[¥-(m)]" (15)

where[A|B] denotes the matrix with column vectors A and B, respectjaeig

@m:( p )e(”é‘i)f, ‘Pi(f)Zi(lB“;)e(chi)f.

pe—1

ForRe(A) > —p_, we can expresd. + N — Al)u = —f, wheref = (f;, f,)", as
— mM A)N dn = ooM A)f(n)dn. 16
u(E)~ [ MEnA)Numdn = [ MEnAmdn. (16)

From (16),y is calculated in terms @b (&,), ¢ (&,), F», andA ,¢ are determined by
$(&) = Au(A, &) (&) — MR, E)D(&2) = Tu(S) 7

where M,; denotes thet,1) entry of M in (15) and = 1,2 in the expression below

¢

A6 = [Ma(Enp) S0 an (7

VL&)
By the Holder inequality)\; andF; , are bounded for aff € R andf € C)(R,C?). A
compatibility condition that determines the valuespd€,) and ¢ (¢,) is produced
by substitutingg = &; andé = &, into (17) to obtain the matrix equation

(a0 (881) = (218). an=[ 20 ]

which has a unique solution if and onlydét(l —A(A)) # 0, resulting in a bounded
inverse(L+XN — Al)~t defined on all o}(IR, C?). Conversely, we cannot invert the
operator forA such thatdet(l —A(A)) = 0, in which casglL +N — A)u =0 has
nontrivial solutions corresponding to eigenvalleand eigenfunctiongg, )" in
the point spectrum. Thus, f6te (A) > —pu_, we can express the Evans function as

:) :./:M(E’”v/\)f(l‘l)dn.

EA)=det(I—A(A)),  Re(A)>—p, (18)

which has eigenvalues given by its zero set.

Evans function for an exponential weightw and Gaussian inputl. The fol-
lowing gives an explicit construction of the Evans functionboth natural traveling
bumps(l, = 0) and stimulus-locked bumg$, > 0) in (1) with a Heavside firing
rate function, exponential weight distribution and Gaassnput given in (9). For
Re(A) > —u_, the Evans functiog (A) is given by [25]
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LM, 8. 6.0 E-&)

8“)‘{ |uc'<sl>|H |Uc/(52)|] UEUE]
where

FO) = (1—ps)c @i(/\)zz At+a+c

A+p,+c)A+p +c)’

A4pu_+c
e

(M~ p) (€ = (A + pe)?)’

Aty +c

Z(A,0) :e,(/\)ezunme[ c }Z_r,(A)e[

For the case of natural waves wheége= 0, translation invariance allows us to set
(&1,&2) = (0,a). Since the zero set of the Evans functid ) comprises solutions
of a transcendental equation, the eigenvaluesin be determined numerically by
finding the intersection points of the zero sets of the redl@mplex parts of the
Evans function which was used to determined the stabilgylte in Fig. 8. Hopf
bifurcations, identified by complex conjugate eigenvaloexssing the imaginary
axis, can give rise to traveling breathers or mode-locketgveen breathing and the
emission of natural traveling bumps [25].

For various treatments of the stability of natural travgllumps and Evans func-
tions in (1) see [55, 10, 25, 41, 44, 4], and a comparison bewdfferent ap-
proaches is found in [44]. Zhang developed the Evans funaitd analyzed the
stability of traveling bumps in the singularly perturbede®< o < 1 [55]. Finally,
on one-dimensional domains, traveling multibump wavesvstudied in [52], and
traveling waves have been extended to the case of inhomogsrsynaptic cou-
pling in [32] and asymmetric coupling [51]. On two-dimensa domains, spiral
waves [34, 52], traveling and rotating multibumps [37], dhe collision of travel-
ing bumps [36] have also been examined.
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