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Abstract We study spatiotemporal patterns of activity that emerge inneural fields in
the presence of linear adaptation. Using an amplitude equation approach, we show
that bifurcations from the homogeneous rest state can lead to a wide variety of sta-
tionary and propagating patterns, especially in the case oflateral-inhibitory synap-
tic weights. Typical solutions are stationary bumps, traveling bumps, and stationary
patterns. However, we do witness more exotic time-periodicpatterns as well. Using
linear stability analysis that perturbs about stationary and traveling bump solutions,
we then study conditions for activity to lock to the positionof an external input.
This analysis is performed in both periodic and infinite one-dimensional spatial do-
mains. Both Hopf and saddle-node bifurcations can signify the boundary beyond
which stationary or traveling bumps fail to lock to externalinputs. Just beyond Hopf
bifurcations, bumps begin to oscillate, becomingbreatheror sloshersolutions.

1 Introduction

Neural fields that include local negative feedback have proven very useful in
qualitatively describing the propagation of experimentally observed neural activ-
ity [26, 39]. Disinhibitedin vitro cortical slices can support traveling pulses and
spiral waves [27, 53], suggesting that some process other than inhibition must cur-
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tail large-scale neural excitations. A common candidate for this negative feedback
is spike frequency adaptation, a cellular process that brings neurons back to their
resting voltage after periods of high activity [48, 2]. Often, adaptation is modeled
as an additional subtractive variable in the activity equation of a spatially extended
neural field [38, 26, 39]. Pinto, in his PhD dissertation withErmentrout, explored
how linear adaptation leads to the formation of traveling pulses [38]. Both singular
perturbation theory and the Heaviside formalism of Amari [1] were used to an-
alyze an excitatory network on the infinite spatial domain [38, 39]. At the same
time, Hansel and Sompolinsky showed adaptation leads to traveling pulses (travel-
ing bumps) in a neural field on the ring domain [26]. In the absence of adaptation,
excitatory neural fields generate stable traveling fronts [21, 25]. For weak adapta-
tion, the model still supports fronts which undergo a symmetry breaking bifurca-
tion, leading to bidirectional front propagation at a critical value of the adaptation
rate [6]. In fact, adaptive neural fields generate a rich variety of spatiotemporal dy-
namics like stimulus-induced breathers [7], spiral waves [27], multipulse solutions
[52], and self-sustained oscillations [46]. Coombes and Owen have implemented a
related model, employing nonlinear adaptation, that is shown to generate breathers,
traveling bumps, and more exotic solutions [11]. However, it has been shown that
great care must taken when performing stability analysis ofsuch a model [29]. Thus,
we restrict the contents of this chapter to analyzing modelswith linear adaptation.

We review a variety of results concerning bifurcations thatarise in spatially ex-
tended neural fields when an auxiliary variable representing linear adaptation is
included [13, 23, 25, 31]. In particular, we study the dynamics of the system of
non-local integro-differential equations [26, 39, 35, 10]

τ
∂u(x, t)

∂ t
=−u(x, t)−βv(x, t)+

∫

D
w(x− y)F(u(y, t))dy+ I(x, t), (1a)

1
α

∂v(x, t)
∂ t

= u(x, t)− v(x, t). (1b)

The variableu(x, t) represents the total synaptic input arriving at locationx ∈ D
in the network at timet. We can fix time units by settingτ = 1, without loss of
generality. The convolution term represents the effects ofrecurrent synaptic interac-
tions, andw(x− y) = w(y− x) is a reflection-symmetric synaptic weight encoding
the strength of connections between locationy andx. The nonlinearityF is a trans-
fer function that converts the synaptic inputs to an output firing rate. Local negative
feedbackv(x, t) represents the effects of spike frequency adaptation [26, 48, 39, 2],
occurring at rateα with strengthβ . Finally, I(x, t) represents external spatiotempo-
ral inputs. In section 2, we begin by analyzing bifurcationsfrom the rest state on one-
and two-dimensional periodic domains, in the absence of inputs (I(x, t) ≡ 0) with
the use of amplitude equations. We show that a lateral-inhibitory synaptic weight
organizes activity of the network into a wide variety of stationary and propagating
spatiotemporal patterns. In section 3, we study the processing of external inputs by
in ring domain (D = (−π ,π)). Since adaptation can lead to spontaneous propaga-
tion of activity, inputs must move at a speed that is close to the natural wavespeed
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of the network to be well tracked by its activity. Finally, insection 4, we study
bifurcations of stationary and traveling bumps in a networkon the infinite spatial
domain (D = (−∞,∞)). Both natural and stimulus-induced bump solutions are an-
alyzed. Depending on whether the synaptic weight function is purely excitatory or
lateral-inhibitory, either spatial mode of a stimulus-locked bump can destabilize in
a Hopf bifurcation, leading to abreatheror aslosher. Conditions for the locking of
traveling bumps to moving inputs are discussed as well.

2 Bifurcations from the homogeneous state.

The simplest type of analysis that can be done with continuumneural field models
is to study bifurcations from the homogeneous state. As in [13], we focus on the
one-dimensional ring model, and then make some comments about the dynamics
of systems in two space dimensions with periodic boundary conditions. Here, our
domain is either the ring (D = (−π ,π)) or the square (D = (−π ,π)× (−π ,π))
with periodic boundary conditions. With some abuse of notation,x is either a scalar
or a two-dimensional vector. The functionw(x) is periodic in its coordinates and
furthermore, we assume that it is symmetric in one-dimension and isotropic in two-
dimensions. Translation invariance and periodicity assures us that

∫

D w(x− y)dy=
W0. A constant steady state has the form

u(x, t) = ū, where (1+β )ū=W0F(ū).

SinceF is monotonically increasing withF(−∞) = 0 andF(+∞) = 1, we are
guaranteed at least one root. To simplify the analysis further, we assume that
F(u) = k( f (u)− f (0))/ f ′(0) with f (u) = 1/(1+exp(−r(u−uth))) as in [13]. Note
that F(0) = 0 andF ′(0) = k which serves as our bifurcation parameter. With this
assumption, ¯u= v̄= 0 is the homogeneous rest state.

To study the stability, we linearize, lettingu(x, t) = ū+q(x, t) andv(x, t) = ū+
p(x,y) so that to linear order inq(x, t), p(x, t) we have

∂q
∂ t

= −q(x, t)+ k
∫

Ω
w(x− y)q(y, t) dy−β p(x, t) (1)

∂ p
∂ t

= α(−p(x, t)+q(x, t)).

Becausew(x) is translational invariant and the domain is periodic, solutions to the
linearized equations have the form exp(λ t)exp(in · x) where in one-dimensionn is
an integer and in two-dimensions, it is a pair of integers,(n1,n2). Let m= |n| be the
magnitude of this vector (scalar) and let

W(m) :=
∫

Ω
w(y)e−in·y dy.
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(The isotropy ofw guarantees that the integral depends only on the magnitude of n.)
We then see thatλ must satisfy

λ
(

χ1

χ2

)

=

(

−1+ kWm −β
α −α

)(

χ1

χ2

)

, (2)

where(χ1,χ2)
T is a constant eigenvector.

There are several cases with which to contend, and we now describe them. The
easiest parameter to vary in this system is the sensitivity,k (This is the slope ofF at
the equilibrium point). The trace of this matrix isT (m) :=−(1+α)+kW(m) and
the determinant isD(m) :=α[1+β −kW(m)]. Note thatW(0) =W0 andW(m)→ 0
asm→∞. The uniform state is linearly stable if and only ifT (m)< 0 andD(m)>0
for all m. If W(m) < 0, then both stability conditions hold, so, consider the sets
kT

m = (1+α)/W(m) andkD
m = (1+β )/W(m) which represent critical values ofk

where the trace and determinant vanish respectively. We areinterested in the min-
imum of these sets over all values ofm whereW(m) > 0. Let n denote the critical
wavenumber at whichW(m) is maximal. It is clear that ifα > β then the deter-
minant vanishes at a lower value ofk than the trace does andvice versa.That
is, there is a critical ratioR= β/α such that ifR> 1, then the trace is critical
(and there is a Hopf bifurcation) while ifR< 1, the determinant is critical (and
there is a stationary bifurcation). The ratioR is the product of the strength and
the time constant of the adaptation. If the adaptation is weak and fast, there is a
steady state bifurcation, while if it is large and slow, there is a Hopf bifurcation.
[13] studied the special case whereR is close to 1. AtR= 1, there is a double
zero eigenvalue at the critical wavenumberm and thus a Takens-Bogdanov bifur-
cation. For the rest of this section, letm∗ denote the value of|n| at whichW(m)
is maximal. We also assume thatW(m∗) > 0. For one dimension,n= ±m∗ and in

two spatial dimensions, at criticality,n= (n1,n2) wherem∗ =
√

n2
1+n2

2. For con-

creteness and illustration of the results, we usef (u) = 1/(1+ exp(−r(u− uth)))
with two free parameters that set the shape off and thusF. We remark that (i)
if uth = 0, thenF ′′(0) = 0 and (ii) for a range ofuth surrounding 0,F ′′′(0) < 0.
We also usew(x) = Aap/2exp(−ax2)−Bbp/2exp(−bx2) (where p is the dimen-
sion of the domain and note thatW(m) = π(Aexp(−m2/a)−Bexp(−m2/b)). With
A= 5,a= .125,B= 4,b= .005, this kernel has a fairly narrow Mexican hat profile.

2.1 One spatial dimension.

2.1.1 Zero eigenvalue.

In the case ofR< 1, the bifurcation is at a zero eigenvalue and we expect a spa-
tial pattern that has the formu(x, t) = zexp(im∗x) + c.c (here c.c means complex
conjugates) and

zt = z(a(k− kc)−b|z|2)
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Fig. 1 Space-time plots of the
solutions to (1). (A) Station-
ary stripes fork= 0.24,β = 0,
α = 0.1, uth = 0.05, and
r = 0.25; (B) Traveling waves
with parameters as in (A), but
β = 0.25,k= 0.26,uth= 0.05;
(C) Standing waves with
parameters as inA,B, but
uth = 0.3.
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wherea andb are complicated, but readily computed, functions ofw, F ′′(0)2, and
F ′′′(0). Both a,b are real,a > 0, and for our choice ofw andF , we haveb > 0.
The non-zero solution to this equation isz= Ae−iΘ whereA2 = a(k− kc)/b and
Θ is an arbitrary constant corresponding to a phase-shift of the periodic pattern.
The solution exists as long ask ≥ kc (sincea,b are positive) and, furthermore, the
solution is stable. Thus as we increasek, we expect to see a spatially periodic pattern
emerge that has the form

u(x) =
√

a(k− kc)/bcos(m∗x+Θ)+O(k− kc).

Fig. 1A shows a simulation of equation (1) where we have discretized the one-
dimensional ring into 100 units. In this caseW(m) takes its maximum atm∗ = 4, so
as expected, we see a stationary pattern consisting of four peaks. In the case where
m∗ = 1, (which occurs for sufficiently broad inhibition) these spatially periodic pat-
terns are interpreted as localized activity for tuning in a directionally based neural
system [26, 54]. This single stationary “bump” can be perturbed and pinned with
external stimuli as we see in subsequent sections of this chapter.

2.1.2 Imaginary eigenvalues.

WhenR> 1 (strong or slow adaptation), then the trace vanishes at a lower criti-
cal k than the determinant. Letm∗ > 0 be the critical wavenumber andiω be the
imaginary eigenvalue. Thenu(x, t) has the form

u(x, t) = z(t)ei(ωt−m∗x)+w(t)ei(ωt+m∗x)+ c.c

where
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z′ = z[(a1+ ia2)(k− kc)− (b1+ ib2)|z|2− (c1+ ic2)|w|2] (3)

w′ = w[(a1+ ia2)(k− kc)− (b1+ ib2)|w|2− (c1+ ic2)|z|2].

These coefficients can be computed for (1) (and, indeed, for avariant of the equa-
tions [13] computes them explicitly) and they depend only onF ′′(0)2 , F ′′′(0),
W(2m), W(m), α, andβ . In particular, with our choice off (u) and for uth not
large, b1,c1 > 0. There are three distinct types of nontrivial solutions:(z,w) =
{(Z,0),(0,Z),(Y,Y)}, where:

Z = AeiΩt , A2 = (a1/b1)(k− kc),
Ω = (a2−a1b2/b1)(k− kc), Y = BeiΞ t ,
B2 = (a1/(b1+ c1))(k− kc), Ξ = (a2−a1(b2+ c2)/(b1+ c1))(k− kc).

Solutions of the form(Z,0),(0,Z) correspond to traveling wavetrains with opposite
velocities and those of the form(Y,Y) correspond to standing time-periodic waves.
To see this, we note that the solutions have the form

u(x, t) = ℜ{zei(ωt+m∗x)+wei(ωt−m∗x)},

so that for the solution,(Z,0), we get

u(x, t) = Acos((ω +Ω)t +m∗x),

while for the(Y,Y) case

u(x, t) = Bcos((ω +Ξ)t)cos(m∗x).

The traveling (standing) waves are stable if and only ifc1 > b1 (resp.c1 < b1) and,
importantly, ifF ′′(0) is zero or close to zero (that is,uth ≈ 0), thenc1 > b1 no matter
what you choose for the other parameters. Thus, foruth small, we expect to see only
stable traveling waves. Fig. 1B,C shows simulations of (1) for two different choices
of uth; near zero, the result is traveling waves, while foruth = 0.3, standing waves
emerge. Choosing the interaction kernel,w(x), so thatm∗ = 1, leads to a single
traveling pulse or bump of activity which, itself, can be entrained and perturbed by
external stimuli (see the next sections).

2.2 Two-dimensions.

While most of the focus in this chapter is on one space dimension, the theory of
pattern formation is much richer in two-dimensions and equation (1) provides an
excellent example of the variety of patterns. The isotropy of the weight matrix im-
plies that the eigensolutions to the linear convolution equation (1) have the form
exp(in ·x). In two dimensions,n is a two-vector of integers. We then obtain exactly
the same formula for the determinant and the trace as in one-dimension, however,
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Fig. 2 Three different cases
of critical wavenumbers in
the square lattice. The critical
wavenumbers are (from out
to in), {(±1,0), (0,±1)},
{(±2,1), (±2,−1),(±1,2), (±1,−2)}
and
{(±3,4), (±3,−4),(±4,3), (±4,−3),(±5,0), (0,±5)}.

=

*
m*= 1

m*

 = 5

5

m

m= |n| in this case so that there are at least two distinct eigenvectors and their com-
plex conjugates and there are often many more. Fig. 2 illustrates three cases where
m∗ = 1,

√
5,5 corresponding to four, eight, and twelve different pairs(n1,n2). We

treat and numerically illustrate several possibilities bydiscretizing (1) on a 50×50
array. Our choice ofw(x) gives a maximum atm∗ = 2 which is the simplest case.

2.2.1 Zero eigenvalue.

The simplest possible case in two dimensions has only four distinct wave vectors (in-
ner circle in Fig. 2). For example, ifm∗ = 2, thenn∈{(2,0),(0,2),(−2,0),(0,−2)}.
(Note that in those cases where there are only four vectors, the critical waves must
have either of the two forms,(k,0),(0,k),(−k,0),(0,−k) or (k,k),(k,−k),(−k,−k),(−k,k).)
If we write x = (x1,x2), then, u(x, t) has the formu(x1,x2, t) = z1exp(i2x1) +
z2exp(i2x2)+ c.c and

z′1 = z1(a(k− kc)−b|z1|2− c|z2|2), (4)

z′2 = z2(a(k− kc)−b|z2|2− c|z1|2),

where as in the one-dimensional case,b,cdepend onF ′′(0)2,F ′′′(0).All coefficients
are real and can be computed. They are all positive for our choices ofF(u). We let
zj = A jeiΘ j and we then find that

A′
1 = A1(a(k− kc)−bA2

1− cA2
2),

A′
2 = A2(a(k− kc)−bA2

2− cA2
1).

It is an elementary calculation to show that there are three types of solutions,
(z1,z2) = {(r1,0),(0, r1),(r2, r2)} wherer2

1 = a(k− kc)/b andr2
2 = a(k− kc)/(b+

c). For this example, the first two solutions correspond to vertical and horizontal
stripes respectively and the third solution represents a spotted or checkerboard pat-
tern. Stripes (spots) are stable if and only ifb < c (resp.b > c) [16]. As in the
traveling/standing wave case above, ifF ′′(0) is zero (uth = 0), then,c> b and there
are only stable stripes [16]. The resulting stationary patterns look identical to those
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in Fig. 3A,B without the implied motion. (To get stationary patterns, choose, e.g.,
β = 0, r = 3, anduth = 0 for stripes oruth = 0.3 for spots .)

This case (of two real amplitude equations) is the simplest case. The criti-
cal wave vector can be more complicated, for example, ifm∗ =

√
5, then,n ∈

{(1,2),(1,−2),(2,1),(2,−1),(−1,−2),(−1,2),(−2,−1),(−2,1)} for which there
are eight eigenvectors and the solution has the form

u(x, t) =
4

∑
j=1

zj(t)e
in j ·x+ c.c,

wheren j = (1,2), . . . andzj satisfy the four independent amplitude equations

z′1 = z1(a(k− kc)−b|z1|2− c|z2|2−d|z3|2−e|z4|2),
z′2 = z2(a(k− kc)−b|z2|2− c|z1|2−d|z4|2−e|z3|2),
z′3 = z3(a(k− kc)−b|z3|2− c|z4|2−d|z1|2−e|z2|2),
z′4 = z4(a(k− kc)−b|z4|2− c|z3|2−d|z2|2−e|z2|2).

As in equations (4), sincea, . . . ,eare all real coefficients, this model can be reduced
to the analysis of a four dimensional real system. [15] derive and analyze this case
(among many others). In the context of neural fields, Tass [49] and Ermentrout [17]
provide stability conditions for the equilibria, all of which consist ofzj taking on
values of someA 6= 0 or 0. For example, the pure patternsz1 = A, z2,z3,z4 = 0 are
stable if and only ifa< {b,c,d}, there are also pairwise mixed solutions (checker-
boards) of the formz1 = z2 = A′, z3 = z4 = 0, etc, and fully nonzero solutions,
z1 = z2 = z3 = z4 = A′′ which are stable ifa > {d+ c− b,d+ b− c,b+ c− d}.
We remark that the triplet solutionszj = zk = zl = A′′′ are never stable and that if
F ′′(0) = 0, then only stripes (onezj , nonzero).

In two spatial dimensions,m∗ = 1 can correspond to a single bump of activity
which has been used to model hippocampal place cells [28]. For narrower inhibition,
the more complex patterns describe the onset of geometric visual hallucinations
[18, 49, 50, 5]. Simple geometric hallucinations take the form of spirals, pinwheels,
bullseyes, mosaics, and honeycombs [33]. When transformedfrom the retinocentric
coordinates of the eyeball to the coordinates of the visual cortex, these patterns take
the form of simple geometric planforms such as rolls, hexagons, squares, etc. [45]
Thus, spontaneous bifurcations to patterned activity forma natural model for the
simple visual patterns seen when the visual system is perturbed by hallucinogens,
flicker [43] or other excitation. (See [3] for a comprehensive review.)

2.2.2 Imaginary eigenvalues.

The case of imaginary eigenvalues on a square lattice is quite complicated and only
partially analyzed. [50] has studied this case extensivelywhen there are no even
terms in the nonlinear equations (corresponding tout = 0 in our model. [47] provide
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a comprehensive and extremely readable analysis of of case where there are four
critical wavenumbers.

Let us first consider the four dimensional case and take as a specific example:
n∈ {(2,0),(0,2),(−2,0),(0,−2)}. In this case, the firing rate has the form:

u(x, t) = z1ei2x1+iωt + z2ei2x2+iωt + z3e−i2x1+iωt + z4e−i2x2+iωt + c.c.

The complex amplitudeszj satisfy normal form equations ([47], equation 5.3):

z′1 = z1[a(k− kc)−b|z1|2− cN1−dN2]−ez̄3z2z4 (5)

z′2 = z2[a(k− kc)−b|z2|2− cN2−dN1]−ez̄4z1z3

z′3 = z3[a(k− kc)−b|z3|2− cN1−dN2]−ez̄1z2z4

z′4 = z4[a(k− kc)−b|z4|2− cN2−dN1]−ez̄2z1z3

where N1 = |z1|2 + |z3|2 and N2 = |z2|2 + |z4|2. Here, a, . . . ,e are all complex
numbers;a depends only on the linearized equation, whileb, . . . ,e depend on
F ′′(0)2,F ′′′(0) and w(x). For the case of no quadratic nonlinearities (ut = 0),
b = c = d = e. There are many qualitatively different solutions to this system
which correspond to interesting patterns. [47] describe each of them as well as
their conditions for stability. Travelling roll patterns (TR) consist of either hori-
zontal or vertical traveling waves that are constant along one direction. They cor-
respond to solutions to equation (5) where exactly onezj 6= 0. Standing rolls cor-
respond toz1 = z3 6= 0, z2 = z4 = 0. (Note, the contrary case withz1 = z3 = 0
andz2 = z4 6= 0 are also standing rolls.) Traveling squares or spots correspond to
z1 = z2 6= 0 andz3 = z3 = 0. Standing squares (a blinking checkerboard pattern)
correspond toz1 = z2 = z3 = z4 6= 0. A very interesting patern that we see is the
alternating roll pattern where horizontal blinking stripes switch to vertical blinking
stripes. These correspond to solutions of the formz1 = −iz2 = z3 = −iz4 6= 0. Fig.
3 illustrates the results of simulations of equation (1) on the square doubly periodic
domain in the cse wherem∗ = 2. Thus, all the patterns show two spatial cycles along
the principle directions. In the simulations illustrated in the figure, we changeuth, r
which affect the values ofF ′′(0),F ′′′(0) and thus the values of the coefficients of
the normal form, (5). The relative sizes of these coefficients determin both the am-
plitude and the stability of the patterns. Fig. 3A shows the TR solutions foruth = 0
(which makesF ′′(0) vanish), while panel B shows a traveling spot pattern. Neither
of these patterns can be simultaneosusly stable. However, there can be other patterns
that stably coexist. Fig. 3C illustrates the “alternating roll” pattern in which there is
a switch from vertical to horizontal standing roles. Fig. 3Dshows a pattern that
combines a standing roll (alternating vertical stripes) with a checkerboard pattern in
between.

[14] has partially analyzed the more complicated case in which there are 8 crit-
ical wave vectors, for examplem∗ =

√
5 in Fig. 2. All of the patterns we described

above are also found as solutions to his amplitude equations. In some specific cases,
he finds evidence of chaotic behavior. Thus, even near the bifurcation, we can expect
the possibility of complex spatiotemporal dynamics in models like present equa-
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Fig. 3 Two-dimensional time-periodic patterns with periodT in (1) for β = 0.25,α = 0.1: (A)
k= 0.1, r = 3,uth = 0; (B) k= 0.09, r = 5,uth = 0.3; (C)k= 0.085, r = 3,uth = 0; (D) k= 0.09, r =
3,uth = 0.



Spatiotemporal pattern formation in neural fields with linear adaptation 11

tions. [50] also considers this case, but only when the quadratic terms (e.g.,F ′′(0))
are zero. Obviously, there is a great reduction in the complexity of the patterns and
the resulting possibilites are restricted. Them∗ = 5 case has, to our knowledge, not
yet been analyzed.

2.3 Summary of pattern formation.

On a periodic one-dimensional domain, equation (1) can undergo a variety of bifur-
cations from the homogeneous state and these can be reduced via the construction
of normal forms to one or two ordinary differential equations for the complex am-
plitudes. These bifurcations are generic in the sense that you can expect them to
happen as you vary asingleparameter. If you have the freedom to vary several pa-
rameters, then it is possible to arrange them so that multiple instabilities occur at
the same time. For example [19] looked at the Wilson-Cowan neural field equations
whenW(m) =W(m+1) with corresponding imaginary eigenvalues (a double Hopf
bifurcation). More recently, [13] studied (1) nearR= 1. WhenR= 1, recall that both
the trace and the determinant vanish at the critical wave number and critical sensi-
tivity k. Thus, there is a Bogdanov-Takens bifurcation. The normal form is more
complicated in this case; however for (1), the only solutions that were found were
the stationary periodic patterns, standing waves, and traveling waves.

In two spatial dimensions, the dynamics is considerably richer due to the fact that
the symmetry of the square allows for many critical wave vectors becoming unstable
simultaneously. The richness increases with the size of thecritical wavenumber,m∗.
As a ballpark estimate, the critical wavenumber is proportional to the ratio of the
domain size and the spatial scale of the connectivity function,w(x). Thus, for, say,
global inhibition, the critical wavenumber is close to 1 andthe possible patterns are
very simple. We remark that by estimating the spatial frequency of visual halluci-
nations, it is possible to then estimate the characteristiclength scale in visual cortex
[5].

3 Response to inputs in the ring network

We now consider the effects of linear adaptation in the ring model [26, 13] in the
presence of external inputs. We show that adaptation usually degrades the ability of
the network to track input locations. We consider the domainD = (−π ,π) and take
w to be the cosine function [26]

w(x− y) = cos(x− y), (1)

so w(x− y) ≷ 0 when |x− y| ≶ π/2. Networks with lateral-inhibitory synaptic
weights like (1) are known to sustain stable stationary bumps [1, 26, 8, 4]. Many
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of our calculations are demonstrated in the case that the firing rate functionf is the
Heaviside step function [1, 39, 8, 4]

F(u)≡ H(u−θ ) =
{

1 : x> θ ,
0 : x< θ . (2)

We consider both stationary and propagating inputs with thesimple functional form

I(x, t) = I0cos(x− c0t), (3)

so they are unimodal inx. We study the variety of bifurcations that can arise in the
system (1) due to the inclusion of adaptation and inputs.

For vanishing adaptation (β → 0), we find stable stationary bumps. For suf-
ficiently strong adaptation, the input-free (I0 = 0) network (1) supports traveling
bumps (pulses). The network locks to moving inputs as long astheir speed is suffi-
ciently close to that of naturally arising traveling bumps.Otherwise, activity period-
ically slips off of the stimulus or sloshes about the vicinity of the stimulus location.
Previously, Hansel and Sompolinsky [26] studied many of these results, and recently
[31] reinterpreted many of these findings in the context of hallucinogen-related vi-
sual pathologies.

3.1 Existence of stationary bumps

First, we study existence of stationary bump solutions in the presence of sta-
tionary inputs (I(x, t) ≡ I(x))). Assuming stationary solutions(u(x, t),v(x, t)) =
(U(x),V(x)) to (1) generates the single equation

(1+β )U(x) =
∫ π

−π
w(x− y)F(U(y))dy+ I(x). (4)

For a cosine weight kernel (1), we can exploit the trigonometric identity

cos(x− y) = cosycosx+ sinysinx, (5)

and consider the cosine input (3), which we take to be stationary (c0 = 0). This
suggests looking for even-symmetric solutions

U(x) =

(

A+
I0

1+β

)

cosx, (6)

so that the amplitude of (6) is specified by the implicit equation

A=
1

1+β

∫ π

−π
cosyF((A+(1+β )−1I0)cosy)dy. (7)
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For a Heaviside firing rate function (2), we can simplify the implicit equation (7),
using the fact that (6) is unimodal and symmetric so thatU(x) > θ for x∈ (−a,a)
for solutionsA> 0. First of all, this means that the profile ofU(x) crosses through
thresholdθ at two distinct points [1, 8, 4]

U(±a) = [A+(1+β )−1I0]cosa= θ ⇒ a= cos−1
[

(1+β )θ
(1+β )A+ I0

]

. (8)

The threshold condition (8) converts the integral equation(7) to

A=
1

1+β

∫ a

−a
cosydy=

2
1+β

√

1− (1+β )2θ 2

((1+β )A+ I0)2 , (9)

which can be converted to a quartic equation and solved analytically [30].
In the limit of no inputI0 → 0, the amplitude of the bump is given by the pair of

real roots of (9)

A± =

√

1+(1+β )θ ±
√

1− (1+β )θ
1+β

, (10)

so there are two bump solutions. As is usually found in lateral inhibitory neural
fields, the wide bump (+) is stable and the narrow bump (−) is unstable in the
limit of vanishing adaptation (β → 0) [1, 40, 4, 12]. At a criticalβ , the wide bump
undergoes a drift instability leading to a traveling bump.

3.2 Linear stability of stationary bumps

We now compute stability of the bump (6) by studying the evolution of small,
smooth, separable perturbations. By pluggingu= U(x)+ψ(x)eλ t andv= V(x)+
φ(x)eλ t (where|ψ(x)| ≪ 1 and|φ(x)| ≪ 1) into (1), Taylor expanding, and truncat-
ing to first order we find the linear system

(λ +1)ψ(x) =−β φ(x)+
∫ π

−π
w(x− y)F ′(U(y))ψ(y)dy, (11)

(λ +α)φ(x) = αψ(x). (12)

For the cosine weight function (1), we apply the identity (5)and substitute (12) into
(11) to yield the single equation

Q(λ )ψ(x) = (λ +α)(A cosx+B sinx) (13)

whereQ(λ ) = (λ +α)(λ +1)+αβ and

A =

∫ π

−π
cosxF′(U(x))ψ(x)dx, B =

∫ π

−π
sinxF′(U(x))ψ(x)dx. (14)



14 Bard Ermentrout, Stefanos E. Folias, and Zachary P. Kilpatrick

We can then plug (13) into the system of equations (14) and simplify to yield

Q(λ )A = (λ +α)

(

∫ π

−π
F ′(U(x))dx− (1+β )2A

(1+β )A+ I0

)

A , (15)

Q(λ )B =
(λ +α)(1+β )2A
(1+β )A+ I0

B, (16)

where we have used the fact that integrating (7) by parts yields

A=
A+(1+β )−1I0

1+β

∫ π

−π
sin2xF′((A+(1+β )−1I0)cosx)dx,

as well as the fact that the off-diagonal terms vanish, sincetheir integrands are odd.
This means that the eigenvalues determining the linear stability of the bump (6)
are of two classes: (a) those of even perturbations soψ(x) = cosx and (b) those
of odd perturbations whereψ(x) = Dφ(x) = sinx. We primarily study eigenvalues
associated with odd perturbations, given by the quadratic equation

λ 2+[1+α − (1+β )Ω ]λ +α(1+β )(1−Ω) = 0, Ω =
(1+β )A

(1+β )A+ I0
. (17)

We can use (17) to study two bifurcations of stationary bumpsin the system (1).
First, we show a drift instability arises in the input-free (I0 = 0) network, leading
to a pitchfork bifurcation whose resultant attracting solutions are traveling bumps
[26, 39, 35, 13, 10]. Second, we show that in the input-drivensystem (I0 > 0), an
oscillatory instability arises where the edges of the “slosh” periodically. This is a
Hopf bifurcation, which also persists for moving inputs (c0 > 0).

In the limit of no input (I0 → 0), Ω → 1, so (17) reduces to

λ 2+[α −β ]λ = 0. (18)

There is always a zero eigenvalue, due to the translation symmetry of the input-
free network [1, 40]. Fixing adaptation strengthβ , we can decrease the rateα from
infinity to find the other eigenvalue crosses zero whenα = β . We mark this point in
our partition of parameter space into different dynamical behaviors in Fig. 4(a). This
non-oscillatory instability results in a traveling bump, indicated by the associated
shift eigenfunction (sinx). Traveling pulses can propagate in either direction, so the
full system (1) undergoes a pitchfork bifurcation. We demonstrate the instability
resulting in a traveling bump in Fig. 4(b).

We could also ensure that instabilities associated with even perturbations (cosx)
of the bump (6) do not occur prior to this loss of instability of the odd perturbation.
For brevity, we omit this calculation. Numerical simulations (as shown in Fig. 4(b))
verify odd perturbations are the first to destabilize. Therefore, we would always
expect that asα is decreased from infinity, the first instability that arisesis associated
with odd perturbations of the bump, leading to a drift instability and thus a traveling
bump solution (see Fig. 4).
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(a) (b)

(c) (d)

Fig. 4 (a) Partition of (I0,α−1) parameter space into different dynamical behaviors of thebump
solution (6) for Heaviside firing rate (2). Numerical simulation of the (b) drift instabilty of the bump
(6) in the case of no input (I0 = 0); (c) sloshing oscillatory instability in the case of input I0 = 0.1;
and (d) translation variant propagation in the case of weak input I0 = 0.05. Other parameters are
θ = 0.5, α = 0.1, andβ = 0.2.

For nonzero input (I0 > 0), the primary bifurcation of the stable (wide) station-
ary bump solution is shown to be oscillatory. To identify thelocation of this Hopf
bifurcation, we plug the ansatzλ = iω into (17) to find

−ω2+ i[(1+α)− (1+β )Ω ]λ +α(1+β )(1−Ω) = 0. (19)

Equating real and imaginary parts of (19), we find a Hopf bifurcation occurs when

αH = (1+β )Ω −1, (20)

with onset frequency

ωH =
√

α(1+β )(1−Ω). (21)

SinceΩ ∈ (0,1) when I0 > 0, we know thatωH > 0 for all parameter values we
consider. Therefore, there is never an instability with purely real eigenvalues asso-
ciated with odd perturbations, in the case of nonzero input.We show the curve of
Hopf bifurcations in (I0,α−1) parameter space in Fig. 4(a) as well as a simulation



16 Bard Ermentrout, Stefanos E. Folias, and Zachary P. Kilpatrick

of the resulting oscillatory solution in Fig. 4(c). Studiesof input-driven excitatory
networks reveal it is the even mode that destabilizes into oscillations, yielding re-
flection symmetric breathers [23, 22]. Here, due to the lateral inhibitory kernel, the
odd eigenmode destabilizes, leading to sloshing breathers[22, 42]. As in the case
of the drift instability, we should ensure that instabilities associated with even per-
turbations do not arise prior to the Hopf bifurcation. We have ensured this for the
calculations of Fig. 4 but do not show this explicitly here.

Finally, we note a secondary bifurcation which leads to dynamics that evolves as
a propagating pattern with varying width (see Fig. 4(d)). Essentially, the “sloshing”
bump breaks free from the attraction of the pinning stimulusand begins to prop-
agate. As it passes over the location of the stimulus, it expands. Such secondary
bifurcations have been observed in adaptive neural fields oninfinite spatial domains
too [23]. While we cannot develop a linear theory for this bifurcation, we can deter-
mine the location of this bifurcation numerically.

3.3 Existence of traveling bumps

Our linear stability analysis of stationary bumps predictsthe existence of traveling
bumps for substantially slow and strong adaptation. We can also show that when
a moving input is introduced, the system tends to lock to it ifit has speed com-
mensurate with that of the natural wave. Converting to a wavecoordinate frame
ξ = x− c0t where we choose the stimulus speedc0, we can study traveling wave
solutions(u(x, t),v(x, t)) = (U(ξ ),V(ξ )) of (1) with the second order differential
equation [23]

−c2
0U

′′(ξ )+ c0(1+α)U ′(ξ )−α(1+β )U(ξ ) = G(ξ ) (22)

where

G(ξ ) =
(

c
d

dξ
−α

)[

∫ π

−π
w(ξ − y)F(U(y))dy+ I(ξ +∆I )

]

, (23)

and∆I specifies the spatial shift between the moving input and the pulse that tracks
it. In the case of a cosine weight kernel (1) and input (3), we can apply the identity
(5) to (23) so we may write the equation (22) as

−c2
0U

′′(ξ )+ c0(1+α)U ′(ξ )−α(1+β )U(ξ ) = C cosξ +S sinξ . (24)

where

C =

∫ π

−π
cosx

[

c0F ′(U(x))U ′(x)−αF(U(x))
]

dx− I0(α cos∆I + c0sin∆I ), (25)

S =

∫ π

−π
sinx

[

c0F ′(U(x)U ′(x)−αF(U(x)))
]

dx+ I0(α sin∆I − c0cos∆I ). (26)
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By treatingC andS as constants, it is straightforward to solve the second order
differential equation (24) to find

U(ξ ) =
(c2

0−α −αβ )[C cosξ +S sinξ ]+ c0(1+α)[C sinξ −S cosξ ]
(c2

0−α(1+β ))2+ c2
0(1+α)2

. (27)

In the case of a Heaviside firing rate function (2), we can evaluate the integral terms
of C andS directly. First, we break the translation symmetry of the system by
fixing the threshold crossing points,U(π) =U(π −∆) = θ . This specifies the input
shift parameter∆I as well. We also require that the superthreshold regionU(ξ )> θ
whenx∈ (π −∆ ,π) andU(ξ )< θ otherwise. This yields

C = α sin∆ + c0(1− cos∆)− I0(α cos∆I + c0sin∆I ), (28)

S = c0sin∆ −α(1− cos∆)+ I0(α sin∆I − c0cos∆I ). (29)

Plugging this into (27) and imposing threshold conditions,we have the system

X1[sin∆ − I0cos∆I ]−X2[1− cos∆ − I0sin∆I ]

(c2
0−α(1+β ))2+ c2

0(1+α)2
= θ , (30)

X1[sin∆ − I0cos(∆ −∆I )]+X2[1− cos∆ − I0sin(∆ −∆I )]

(c2
0−α(1+β ))2+ c2

0(1+α)2
= θ , (31)

whereX1 = c2
0+α2(1+β ) andX2 = c3

0+c0α2−c0αβ , which we could solve the
numerically (see [31]).

In the limit of no input (I0 → 0), we can treatc = c0 as an unknown parameter.
By taking the difference of (31) and (30) in this limit, we seethat we can compute
the speed of natural waves by studying solutions of

c3+ cα2− cαβ = 0, (32)

a cubic equation providing up to three possible speeds for a traveling bump solution.
The trivial c = 0 solution is the limiting case of stationary bump solutionsthat we
have already studied and is unstable whenα < β . In line with our bump stability
predictions, forα ≤ β , we have the two additional solutionsc± = ±

√

αβ −α2,
which provides a right-moving (+) and left-moving (−) traveling bump solution.
The pulse widths are then given applying the expression (32)into (30) and (31) and
taking their mean to find sin∆ =(1+α)θ . Thus, we can expect to find four traveling
bump solutions, two with each speed, that have widths∆s = π − sin−1[θ (1+α)]
and∆u = sin−1[θ (1+α)]. We can find, using linear stability analysis, that the two
traveling bumps associated with the width∆s are stable [35, 39].
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(a) (b)

(c) (d)

Fig. 5 Sloshing instability of stimulus-locked traveling bumps (27) in adaptive neural field (1)
with Heaviside firing rate (2). (a) Dependence of stimulus locked pulse width∆ on stimulus
speedc0, calculated using the implicit equations (30) and (31). (a)Zeros of the Evans function
E (λ ) = det(Ap− I), with (41), occur at the crossings of the zero contours of ReE (λ ) (black) and
ImE (λ ) (grey). Presented here for stimulus speedc0 = 0.042, just beyond the Hopf bifurcation
at cH ≈ 0.046. Breathing instability occurs in numerical simulations for (b) c0 = 0.036 and (c)
c0 = 0.042. (d) When stimulus speedc0 = 0.047 is sufficiently fast, stable traveling bumps lock.
Other parameters areθ = 0.5, α = 0.05,β = 0.2, andI0 = 0.1.

3.4 Linear stability of traveling bumps

To analyze the linear stability of stimulus-locked traveling bumps (27), we study the
evolution of small, smooth, separable perturbations to (U(ξ ),V(ξ )). To find this, we
plug the expansionsu(x, t) =U(ξ )+ψ(ξ )eλ t andv(x, t) =V(ξ )+φ(ξ )eλ t (where
|ψ(ξ )| ≪ 1 and|φ(ξ )| ≪ 1) and truncate to first order to find the linear equation
[56, 10, 25]

−c0ψ ′(ξ )+ (λ +1)ψ(ξ ) =−β φ(ξ )+
∫ π

−π
w(ξ − y)F ′(U(y))ψ(y)dy, (33)

−c0φ ′(ξ )+ (λ +α)φ(ξ ) = αψ(ξ ). (34)

For the cosine weight function (1), we can apply the identity(5), so that upon con-
verting the system to a second order differential equation,we
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−c2
0ψ ′′+ c(2λ +1+α)ψ ′− [(λ +1)(λ +α)+αβ ]ψ = A cosξ +B sinξ , (35)

where

A =−(λ +α)

∫ π

−π
cosξ F ′(U(ξ ))ψ(ξ )dξ + c0

∫ π

−π
sinξ F ′(U(ξ ))ψ(ξ )dξ , (36)

B =−c0

∫ π

−π
cosξ F ′(U(ξ ))ψ(ξ )dξ − (λ +α)

∫ π

−π
sinξ F ′(U(ξ ))ψ(ξ )dξ . (37)

Employing periodic boundary conditionsψ(−π) = ψ(π) andψ ′(−π) = ψ ′(π) and
treatingA andB as constants, it is then straightforward to solve (35) to find

ψ(ξ ) =
P2A −P1B

Dp
cosξ +

P1A +P2B

Dp
sinξ . (38)

whereP1 = c0(2λ +1+α), P2 = c2
0− [(λ +1)(λ +α)+αβ ], andDp = P2

1 +
P2

2 . We can then use self-consistency to determine the constantsA andB, which
implicitly depend uponψ itself. In the case that the firing rate function is a Heaviside
(2), we can reduce this to a pointwise dependence, so that

A =
c0sin∆ψ(π −∆)

|U ′(π −∆)| +(λ +α)

[

ψ(π)
|U ′(π)| +

cos∆ψ(π −∆)

|U ′(π −∆)|

]

, (39)

B = c0

[

ψ(π)
|U ′(π)| +

cos∆ψ(π −∆)

|U ′(π −∆)|

]

− (λ +α)sin∆ψ(π −∆)

|U ′(π −∆)| , (40)

and we can write the solution

ψ(ξ ) =
C1cosξ +S1sinξ

Dp

ψ(π)
|U ′(π)| +

C2cosξ +S2sinξ
Dp

ψ(π −∆)

|U ′(π −∆)| ,

where

C1 = P2(λ +α)−P1c0, S1 = P1(λ +α)+P2c0,

C2 = P1((λ +α)sin∆ − c0cos∆)+P2(c0sin∆ +(λ +α)cos∆),

S2 = P1((λ +α)cos∆ + c0sin∆)+P2(c0cos∆ − (λ +α)sin∆).

Applying self consistency, we have a 2×2 eigenvalue problemΨ = ApΨ , where

Ψ =

(

ψ(π)
ψ(π −∆)

)

, Ap =

(

Aππ Aπ∆
A∆π A∆∆

)

, (41)

with

Aππ =− C1

Dp|U ′(π)| , Aπ∆ =− C2

Dp|U ′(π −∆)| ,

A∆π =
S1sin∆ −C1cos∆

Dp|U ′(π)| , A∆∆ =
S2sin∆ −C2cos∆

Dp|U ′(π −∆)| .
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Then, applying the approach of previous stability analysesof traveling waves in
neural fields [56, 10, 25], we examine nontrivial solutions of Ψ = ApΨ so that
E (λ ) = 0, whereE (λ ) = det(Ap− I) is called the Evans function of the traveling
bump solution (27). Since no other parts of the spectrum contribute to instabilities in
this case, the traveling bump is linearly stable as long as Reλ < 0 for all λ such that
E (λ ) = 0. We can find the zeros of the Evans function by following the approach
of [10, 25] and writingλ = ν + iω and plotting the zero contours of ReE (λ ) and
Im E (λ ) in the(ν,ω)-plane. The Evans function is zero where the lines intersect.

We present examples of this analysis in Fig. 5. As shown, we can use the im-
plicit equations (30) and (31) to compute the width of a stimulus-locked pulse as it
depends upon the speed of the input in the case of a Heaviside firing rate function
(2). In parameter regime we show, there are two pulses for each parameter value,
either both are unstable or one is stable. As the speed of stimuli is decreased, a
stable traveling bump undergoes a Hopf bifurcation. For sufficiently fast stimuli, a
stable traveling bump can lock to the stimulus, as shown in Fig. 5(d). However, for
sufficiently, slow stimuli, the speed of natural traveling bumps of the stimulus free
network is too fast to track the stimuli. Therefore, an oscillatory instability results.
We plot the zeros of the Evans functions associated with thisinstability in Fig. 5(a).
The sloshing pulses that result are picture in Fig. 5(b) and (c). Note that, as was
shown in [31], it is possible for pulses to destabilize due tostimuli being too fast.
In this context, such an instability occurs through a saddle-node bifurcation, rather
than a Hopf.

4 Stationary and traveling activity bumps on the infinite line

We consider the neural field (1) in the case of a Heaviside firing rate function
F(u) = H(u−θ ) with firing thresholdθ whereu(x, t) andv(x, t) are defined along
the infinite line withu(x, t),v(x, t) → 0 asx → ±∞. The synaptic weight function
w is taken to be either excitatory(w(x) > 0) or of Mexican hat form (w(x) locally
positive, laterally negative) and is assumed to satisfyw(x) < w(0) for all x 6= 0 and
∫ ∞
−∞ w(y)dy< ∞. We considerstationaryactivity bumps in section 4.1 andtraveling

activity bumps in section 4.2 and examine the two cases of (i) bumps generated in-
trinsically by the network with no input(I(x, t) = 0) and (ii ) bumps induced by a
localized, excitatory input inhomogeneity(I(x, t) > 0) which can be either station-
ary (I(x)) or traveling(I(x− ct)) with constant speedc. The input is assumed to
have an even-symmetric, Gaussian-like profile satisfyingI(x)→ 0 asx→ ±∞.

4.1 Natural and stimulus-induced stationary activity bumps

Existence of stationary bumps.An equilibrium solution of (1) is expressed as
(u(x, t),v(x, t))T = (U◦(x),V◦(x))T and satisfiesV◦(x) =U◦(x) and
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Fig. 6 (a) Stationary bump profileU◦(x) with halfwidth a. Bifurcation curves satisfying (3) and
illustrating the dependence ofa on the bifurcation parameterI◦ are shown in (b) forβ < α and
in (c) for α < β . Black (gray) denote stability (instability) of the stationary bump.SN denotes a
saddle-node bifurcation andH⊕ andH⊖ denote Hopf bifurcations with respect to the sum modeΩ+

and difference modeΩ−, respectively. Parameters are ¯we = 1, σe = 1, w̄i = 0.4, σi = 2, θ = 0.3,
β = 1, α = 0.025,σ = 1.2. Fig. adapted fromFolias, Nonlinear analysis of breathing pulses in a
synaptically coupled neural network, SIAM J. Appl. Dyn. Syst., 10: 744-787, 2011.

(1+β )U◦(x) =
∫ ∞

−∞
w(x− y)H(U◦(y)−θ )dy+ I(x). (1)

We follow the approach of Amari [1] to use the Heaviside firingrate and make the
ansatz of an even-symmetric stationary bumpU◦(x) that is centered aboutx= 0, is
superthresholdU◦(x) > θ for x ∈ (−a,a), satisfiesU◦(±a) = θ , and is subthresh-
old otherwise withU◦(x) → 0 asx→ ±∞ (see Fig. 6). That the stationary bump is
centered aboutx = 0 is by choice both (i) in the case of no input (I(x) = 0) due
to translation symmetry of the bump and (ii ) in the presence of a stationary input
(I(x) 6= 0) where the stationary bump and the input share the same center, which is
set to bex= 0. The profileU◦(x) of the stationary bump can then be expressed as

(1+β )U◦(x) =
∫ a

−a
w(x− y)dy+ I(x) =

[

W(x+a)−W(x−a)+ I(x)
]

(2)

whereW(x) =
∫ x

0 w(y)dy. The bump halfwidtha is then determined by requiring (2)
to satisfy thethreshold conditions U◦(±a) = θ which, by even symmetry, result in

W(2a)+ I(a) = (1+β )θ . (3)

This determines the existence of the stationary bump if all assumptions are satisfied.
Condition (3) was solved numerically in Fig. 6 wherew andI were taken to be

w(x) = w̄e√
πσe

e−(x/σe)
2 − w̄i√

πσi
e−(x/σi)

2
, I(x) = I◦e−(x/σ)2. (4)

Existence results for stationary bumps for generalw and Gaussian-likeI .
CASE I: No Input (I(x) = 0). For an excitatory weight function(w(x)> 0), sta-

tionary bumps exist and satisfy (3) when parameters permit(0< θ < limx→∞ W(x));
however, they are always linearly unstable [39, 22, 23]. Thecase of a Mexican hat
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weight functionw is an extension of the Amari neural field [1] with the existence
equation containing an extra factor due to adaptation(W(2a) = θ (1+ β )); how-
ever, the dynamics of the adaptation variablev additionally governs the stability of
the stationary bump [22]. In particular, ifα < β , stationary bumps are always un-
stable. Stable bumps in the scalar model of Amari can extend to this model only
for α > β , and a stable bump forα > β destabilizes asα decreases throughα = β
leading to a drift instability [22] that can give rise to traveling bumps.

CASE II : Localized Excitatory Input(I(x)> 0). A variety of bifurcation scenar-
ios can occur [23, 22], and, importantly, stationary bumps can emerge in a saddle-
node bifurcation for strong inputs in parameter regions where stationary bumps do
not exist for weak or zero input as shown in Fig. 6. When stationary bumps exist
for α > β , the stability of a bump is determined directly by the geometry of the
bifurcation curves [22, 23] (e.g., see Fig. 6). Asα decreases throughα = β , a Hopf
bifurcation point emerges from a saddle-node bifurcation point (associated with the
sum modeΩ+) and destabilizes a segment of a branch of stable bumps forα < β .
Generally, Hopf bifurcations occur with respect to either of two spatial modesΩ±
(discussed later), and their relative positions (denoted by H⊕ andH⊖, respectively,
on the bifurcation curves in Fig. 6) can switch depending on parameters [22].

Stability of stationary bumps. By settingu(x, t)=U◦(x, t)+ϕ̃(x, t) andv(x, t)=
V◦(x, t)+ ψ̃(x, t), we study the evolution of small perturbations(ϕ̃ , ψ̃)T in a Taylor
expansion of (1) about the stationary bump(U◦,V◦)T. To first order in(ϕ̃ , ψ̃)T, the
perturbations are governed by the linearization

∂t ϕ̂ = −ϕ̂ −β ψ̂ +

∫ ∞

−∞
w(x− y)H ′(U◦(y)−θ

)

ϕ̂(y, t)dy,

1
α ∂t ψ̂ = +ϕ̂ − ψ̂.

(5)

Separating variables, we setϕ̂(x, t) = eλ tϕ(x) andψ̂(x, t) = eλ tψ(x) in (5) where
(ϕ ,ψ)T ∈ C1

u(R,C
2) denoting uniformly continuously differentiable vector-valued

functionsu : R−→C2. This leads to the spectral problem forλ and(ϕ ,ψ)T

M

(

ϕ
ψ

)

= λ
(

ϕ
ψ

)

, M

(

ϕ
ψ

)

=

[

−1 −β
α −α

](

ϕ
ψ

)

+

(

Nϕ
0

)

, (6)

whereNϕ(x) =
∫ ∞
−∞ w(x− y)H ′(U◦(y)−θ )ϕ(y)dy. The essential spectrum lies in

the left-half complex plane and plays no role in instability[23, 22]. To calculate the
point spectrum, defineρ(λ ) = λ +1+

αβ
λ+α and reduce (6) toψ(x) =

( α
λ+α

)

ϕ(x) and

ρ(λ )ϕ(x) =
w
(

x−a
)

|U ′◦(+a)| ϕ(a) +
w
(

x+a
)

|U ′◦(−a)| ϕ(−a). (7)

Settingx= ±a in (7) yields a compatibility condition for the values ofϕ(±a) where

(

Λ◦−ρ(λ ) I
)

(

ϕ(+a)
ϕ(−a)

)

= 0, Λ◦ = 1
|U ′◦(a)|

[

w(0) w(2a)
w(2a) w(0)

]

.
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Consequently, nontrivial solutions of (6) exist whendet(Λ◦−ρ(λ )I) = 0, thereby
identifying eigenvaluesλ . The point spectrum comprises two pairs of eigenvalues
λ+
±, λ−

± and eigenfunctionsv+
±,v

−
± defining two characteristic spatial modes [22, 23]:

Sum mode– eigenvaluesλ+

± and eigenvectorsv+
±(x) = Ω+(x)(λ+

±+ α,α
)T
,

λ
+

±(a) =− 1
2ϒ+± 1

2

√

ϒ 2
+ −4Γ+ , Ω+(x) = w(x−a)+w(x+a),

Difference mode– eigenvaluesλ−
± and eigenvectorsv−

±(x) = Ω−(x)(λ−
±+ α,α

)T
,

λ
−
±(a) =− 1

2ϒ−± 1
2

√

ϒ 2
− −4Γ− , Ω−(x) = w(x−a)−w(x+a),

whereΩ+(x) is even-symmetric,Ω−(x) is odd-symmetric, andϒ±,Γ± are given by

ϒ±(a) = (1+α)− (1+β )Ω±(a)
|U ′◦(a)|

, Γ±(a) = α (1+β )
[

1− Ω±(a)
|U ′◦(a)|

]

.

Stability results for stationary bumps for general w and Gaussian-likeI .
CASE I: No Input (I(x) = 0) [23, 25, 41, 22]. With no input,|U ′

◦(a)| = Ω−(a)
and the eigenvaluesλ−

± can be redefined asλ−
+ ≡ 0 andλ−

− = β −α. In this case,
the persistent 0-eigenvalueλ−

+ ≡ 0 corresponds to the translation invariance of the
stationary bump and is associated with an eigenfunction in the difference mode
Ω−. The other eigenfunction in the difference mode (associated with λ−

−) is stable
for β < α and unstable forα < β . Thus, forα < β , a stationary bump is always
linearly unstable. Forβ < α, a stationary bump can be linearly stable for a Mexican
hat weight function (ifw(2a) < 0) but is always unstable for an excitatory weight
function (w(x) > 0) [22]. Also, forβ < α, it is not possible for a stationary bump
to undergo a Hopf bifurcation and, asβ is increased throughα, a stable stationary
bump undergoes a drift instability due to eigenvalueλ−

− increasing through 0 [22].
Interestingly, multibump solutions in (1) on two-dimensional domains are capable
of undergoing a bifurcation to a rotating traveling multibump solution [37].

CASE II : Localized Excitatory Input(I(x)> 0) [7, 23, 22]. The presence of the
input inhomogeneity (I(x) 6= 0) breaks translation symmetry andλ−

+ 6= 0 generically.
A stationary bump is linearly stable whenλ+

±,λ−
± < 0 which reduce to the conditions

Ω+(a)
|U ′◦(a)|

< 1 if α > β , and
Ω±(a)
|U ′◦(a)|

<
1+α
1+β

if α < β .

If w(0) > w(x) for all x 6= 0, (2) implies(1+β )|U ′
◦(a)| = w(0)−w(2a)+ |I ′(a)|.

Consequently, the stability conditions translate, in terms of the gradient|I ′(a)|, to

α > β :
∣

∣I ′(a)
∣

∣ > DSN(a)≡ 2w(2a),

α < β :
∣

∣I ′(a)
∣

∣ > DH(a)≡







(β−α
1+α

)

Ω+(a)+2w(2a), w(2a)> 0,
(β−α

1+α
)

Ω−(a), w(2a)< 0.
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Fig. 7 Destabilization of spatial modesΩ+(x) andΩ−(x), as the bifurcation parameterI◦ is varied
through a Hopf bifurcation, can give rise to a stablebreatheror slosher, respectively, depending
on the relative position of the bifurcation point for each spatial mode (e.g.,H⊕ and H⊖ in Fig.
6(c)). (a) plot ofu(x, t) for a breather arising from destabilization of the sum modeΩ+(x) for
parametersI◦ = 1.9, w̄i = 0,β = 2.75,α = 0.1,θ = 0.357. (b) plot of u(x, t) for a slosher arising
from destabilization of the difference modeΩ−(x) for parametersI◦ = 1.5, w̄i = 0.4,σi = 2,β =
2.6,α = 0.01,θ = 0.35. Common parameters:σ = 1.2, w̄e = 1,σe = 1.

|I ′(a)|=DSN(a) denotes a saddle-note bifurcation point and|I ′(a)|= DH(a) denotes
a Hopf bifurcation where a pair of complex eigenvalues associated with one of the
two spatial modesΩ± crosses into the right-half plane. Ifw(2a) > 0 at the Hopf
bifurcation point, the sum modeΩ+ destabilizes and gives rise to abreather—a
time-periodic, localized bump-like solution that expandsand contracts. Ifw(2a)< 0
at the Hopf bifurcation point, the difference modeΩ− destabilizes and gives rise to
a slosher—a time-periodic localized solution that instead sloshes side-to-side as
shown in Fig. 7. Nonlinear analysis of the Hopf bifurcation reveals that, to first
order, the breather and slosher are time-periodic modulations of the stationary bump
U◦(x) based upon the even and odd geometry of the sum and differencemodes,
respectively [22]. Sloshers were also found to occur in [26]. The bifurcation can
be super/subcritical, which can be determined from the normal form or amplitude
equation derived in [22]. Stimulus-induced breathers can undergo further transitions
and can exhibit mode-locking between breathing and emission of traveling bumps
(when supported by the network) [23, 25]. Alternatively, breathing fronts can occur
for step function inhomogeneitiesI(x) [7, 6]. Hopf bifurcation of radially symmetric
stationary bumps extends to (1) on two-dimensional domains, leading to a variety
of localized time-periodic solutions including nonradially symmetric structures [23,
24].
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4.2 Natural and stimulus-locked traveling activity bumps

Existence of traveling bumps.We simultaneously consider the two cases ofnatural
traveling bumps(I(x, t) = 0) andstimulus-lockedtraveling bumps which are locked
to a stimulusI(x− ct) traveling with constant speedc. Natural traveling bumps in
neural field (1) on the infinite lineD= (−∞,∞) were first considered in [38, 39] and
can occur in the absence of an input or in a region of the neuralmedium where an
input is effectively zero. An important distinction between the two cases is that the
natural traveling bump in the absence of the input is translationally invariant and we
have stability with respect to a family of translates, whereas in the stimulus-locked
case there is a fixed position of the bump relative to the input.

Assumeu(x, t) = U(x− ct) andv(x, t) = V(x− ct) and, in traveling wave coor-
dinatesξ = x− ct, make the assumption that the activityU(ξ ) is superthreshold
U(ξ )> θ for ξ ∈ (ξ1,ξ2), satisfiesU(ξ1,2) = θ , and is substhreshold otherwise with
U(ξ )→ 0 asξ → ±∞. Consequently, the profile of the bump satisfies

−cUξ =−U −βV+

∫ ∞

−∞
w(ξ −η)H(Uc(η)−θ )dη + I(ξ ),

− c
α

Vξ =+U − V.
(8)

Variation of parameters [55, 25] can be used to solve (8) to construct the profile
(Uc,Vc)

T of the traveling bump which can be expressed as [25]

Uc(ξ ) = (1− µ−)M+(ξ ) − (1− µ+)M−(ξ )

Vc(ξ ) = −α
[

M+(ξ ) −M−(ξ )
]

.

wherem(ξ ) =W(ξ − ξ1)−W(ξ − ξ2)+ I(ξ ),

M±(ξ ) =
1

c(µ+−µ−)

∫ ∞

ξ
e

µ±
c (ξ−η)m(η)dη , µ± = 1

2

(

1+α ±
√

(1−α)2−4αβ
)

.

and 0< Reµ− ≤ Reµ+. Sincem(ξ ) is dependent uponξ1,ξ2, the threshold condi-
tionsUc(ξi) = θ , wherei = 1,2 andξ1 < ξ2, determine the relationship between the
input strengthI◦ and the position of the bump relative to the inputI(ξ ). This results
in consistency conditions for the existence of a stimulus-locked traveling bump:

θ = (1− µ−)M+(ξ1) − (1− µ+)M−(ξ1),

θ = (1− µ−)M+(ξ2) − (1− µ+)M−(ξ2).

These determines the existence of the traveling bump (provided the profile satisfies
the assumed threshold conditions) and include the case of natural waves (I◦ = 0).
Note that existence equations for the traveling bump in (8) can also be derived using
a second orderODE forumlation [39, 23] or an integral formulation in [9].
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Existence conditions for a positive, exponentialw and GaussianI . For explicit
calculations in this section,w andI are taken to be

w(x) = w̄e
2σe

e−|x|/σe, I(x− ct) = I◦e−((x−ct)/σ)2. (9)

CASE I: Natural traveling bump(I(ξ ) = 0) with speed c[25, 41, 23, 9, 39]. In
the absence of an input, translation invariance of the bump allows the simplification
(ξ1,ξ2) = (0,a) where the wave speedc and bump widtha are naturally selected by
the network according to the following threshold conditions [25]

θ = J+(−a), θ = K(−a), (10)

whereK(ζ ) = J−(ζ )−H+(ζ )+H−(ζ ), and, forw given in (9),

J±(ζ ) =
(α ± c)

(

1−eζ)

(c+ µ+)(c+ µ−)
, H±(ζ ) =

c2(1− µ∓)
(

1−e
µ±
c ζ )

µ±(c2− µ2
±)(µ+−µ−)

. (11)

Note that(c+ µ+)(c+ µ−) = c2 + c(1+α)+α(1+β ). Existence equations (10)
were solved numerically in Fig. 8(b) indicating two branches of traveling bumps
for small α. The wide, faster bump is found to be stable and the narrow, slower
bump is unstable. Detailed analyses of the existence of natural traveling bumps can
be found in [52, 41], including the case where the homogeneous state has complex
eigenvalues [52]. A singular perturbation construction for the pulse was carried out
for smooth smooth firing rate functionsF in [39]. For moderate values ofβ trav-
eling fronts occur in (1) and were shown to undergo a front bifurcation as a cusp
bifurcation with respect to the wave speed of the front [6].

CASE II : Stimulus-locked traveling bump(I(ξ ) 6= 0) with speed c[25]. The wave
and stimulus speedsc are identical, and the threshold conditions for(ξ1,ξ2) are [25]

θ = K(ξ1− ξ2) + T+(ξ1)−T−(ξ1),

θ = J+(ξ1− ξ2) + T+(ξ2)−T−(ξ2),
(12)

whereK,J+ are given in (11) andT± arises from the input and is given by

T±(ζ ) =
√

π σ I◦
2 c

(

1− µ∓

µ+− µ−

)

exp
(µ±ζ

c
+
[µ±σ

2c

]2)

erfc
( ζ

σ
+

µ±σ
2c

)

,

with erfc(z) denoting the complementary error function. (12) can be solved numer-
ically to determine the regions of existence of stimulus-locked traveling bumps as
both the speedc and amplitudeI◦ are varied (assumingUc(ξ ) satisfies the threshold
assumptions). This allows us to connect the stationary bumps to natural traveling
bumps via stimulus-locked traveling bumps as shown in Fig. 8. This analysis for
stimulus-locked fronts was carried out in [6] and an extension of stimulus-locked
bumps for a general smooth firing rate functionF was studied in [20].
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Fig. 8 (a) Traveling bump profile. (b) Bifurcation curves fornatural traveling bumps (I◦ = 0) in (1)
in the (α ,a)-plane and (α ,c)-plane. The stable branch (black) of wide, fast bumps and the unstable
branch (gray) of narrow, slow bumps annihilate in a saddle-node bifurcation at a critical valueαc ≈
0.341. (c) Regions of existence (white) of thestimulus-lockedtraveling bumps in the (c, I◦)-plane
for fixed σ = 1,α = 0.03. The left and right regions form tongues that issue from the unstablecu

and stablecs natural traveling bumps, respectively. The curve of Hopf bifurcations within the left-
hand tongue is shown in gray, above which the bump is stable (s) and below which it is unstable
(u). Stable traveling breathers bifurcate from the left branch (solid gray) Hopf curve, and stationary
bumps correspond to the intersection of the tongue and the linec = 0. When bumps and breathers
are unstable or do not exist, there is mode-locking between breathing and the emission of natural
traveling bumps. Parameters in (c):θ = 0.3,β = 2.5,w̄e = σe= 1, w̄i = 0. Fig. adapted fromFolias
& Bressloff, Stimulus-locked waves and breathers in an excitatory neural network, SIAM J. Appl.
Math., 65:2067-2092, 2005.

Stability of traveling bumps. By settingu= Uc + ϕ̃ andv= Vc + ψ̃, we study
the evolution of small perturbations(ϕ̃ , ψ̃)T in the linearization of (1) about the
traveling bump(Uc,Vc)

T which, in traveling wave coordinates, are governed by

∂t ϕ̃ = c∂ξ ϕ̃ − ϕ̃ −β ψ̃ +

∫ ∞

−∞
w(ξ −η)H ′(Uc(η)−θ )ϕ̃(η , t)dη ,

∂tψ̃ = c∂ξ ψ̃ +αϕ̃ −αψ̃.

(13)

Separating variables by setting̃ϕ(ξ , t) = eλ tϕ(ξ ) andψ̃(ξ , t) = eλ tψ(ξ ) in (13),
where(ϕ ,ψ)T ∈C1

u(R,C
2), leads to the spectral problem forλ and(ϕ ,ψ)T

(L+N)

(

ϕ
ψ

)

= λ
(

ϕ
ψ

)

(14)

where

L = c
∂

∂ξ
−
[

1 β
−α α

]

, N

(

ϕ
ψ

)

=

(

1

0

)[

w(ξ − ξ1)
|U ′

c(ξ1)|
ϕ(ξ1)+

w(ξ − ξ2)
|U ′

c(ξ2)|
ϕ(ξ2)

]

.

The essential spectrum lies within the setD= {z:Rez∈ [−Reµ+,−Reµ−]}, where
Reµ± > 0, inducing no instability [55, 25, 41]. Stability is then determined by el-
ements of the point spectrum lying in the regionR= {z : Rez> −Reµ−} which
can be calculated using an Evans function. In particular, wedetermine a condition
for (L+N−λ I) to have a bounded inverse. The Evans functionE(λ ) subsequently
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arises from the condition that(L+N−λ I) is not invertible and(L+N−λ I) = 0
has nontrivial solutions. We setu= (ϕ ,ψ)T and use variation of parameters [55, 25]
to construct a bounded inverse for(L+N−λ I) based on the integral kernel

M(ξ ,η ,λ ) = 1
cβ (µ+−µ−)

[

Φ+(ξ )
∣

∣Φ−(ξ )
][

Ψ+(η)
∣

∣Ψ−(η)
]T

(15)

where[A|B] denotes the matrix with column vectors A and B, respectively, and

Φ±(ξ ) =
(

β
µ±−1

)

e
(

λ+µ±
c

)

ξ , Ψ±(ξ ) =±
(

1−µ∓
β

)

e−
(

λ+µ±
c

)

ξ .

ForRe(λ )>−µ−, we can express(L+N−λ I)u =−f, wheref = ( f1, f2)
T, as

u(ξ )−
∫ ∞

ξ
M(ξ ,η ,λ )Nu(η)dη =

∫ ∞

ξ
M(ξ ,η ,λ )f(η)dη . (16)

From (16),ψ is calculated in terms ofϕ(ξ1), ϕ(ξ2), F2, andλ ,ϕ are determined by

ϕ(ξ )−Λ1(λ ,ξ )ϕ(ξ1)−Λ2(λ ,ξ )ϕ(ξ2) = F1(ξ ) (17)

where M11 denotes the(1,1) entry of M in (15) andi = 1,2 in the expression below

Λi(λ ,ξ ) =
∫ ∞

ξ
M 11(ξ ,η ,λ )

w(η − ξi)

|U ′
c(ξi)|

dη ,
(

F1(ξ )

F2(ξ )

)

=

∫ ∞

ξ
M(ξ ,η ,λ ) f(η) dη .

By the Hölder inequality,Λi andF1,2 are bounded for allξ ∈R andf ∈C0
u(R,C

2). A
compatibility condition that determines the values ofϕ(ξ1) andϕ(ξ2) is produced
by substitutingξ = ξ1 andξ = ξ2 into (17) to obtain the matrix equation

(

I −Λ(λ )
)(

ϕ(ξ1)
ϕ(ξ2)

)

=

(

F1(ξ1)
F1(ξ2)

)

, Λ(λ ) =

[

Λ1(λ ,ξ1) Λ2(λ ,ξ1)

Λ1(λ ,ξ2) Λ2(λ ,ξ2)

]

which has a unique solution if and only ifdet(I−Λ(λ )) 6= 0, resulting in a bounded
inverse(L+N−λ I)−1 defined on all ofC0

u(R,C
2). Conversely, we cannot invert the

operator forλ such thatdet(I −Λ(λ )) = 0, in which case(L+N− λ )u = 0 has
nontrivial solutions corresponding to eigenvaluesλ and eigenfunctions(ϕ ,ψ)T in
the point spectrum. Thus, forRe(λ )>−µ−, we can express the Evans function as

E(λ ) = det
(

I −Λ(λ )
)

, Re (λ )>−µ−, (18)

which has eigenvaluesλ given by its zero set.
Evans function for an exponential weightw and Gaussian input I . The fol-

lowing gives an explicit construction of the Evans functionfor both natural traveling
bumps(I◦ = 0) and stimulus-locked bumps(I◦ > 0) in (1) with a Heavside firing
rate function, exponential weight distribution and Gaussian input given in (9). For
Re(λ )>−µ−, the Evans functionE(λ ) is given by [25]
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E(λ ) =
[

1− Θ+(λ )
|U ′

c(ξ1)|

][

1− Θ+(λ )
|U ′

c(ξ2)|

]

− Θ+(λ )Ξ(λ ,ξ1 − ξ2)

|U ′
c(ξ1)U ′

c(ξ2)
∣

∣

,

where

Γ±(λ ) =
(1− µ∓)c

(µ+−µ−)(c2− (λ + µ±)2)
, Θ±(λ ) =

λ +α ± c
2(λ + µ+± c)(λ + µ−± c)

,

Ξ(λ ,ζ ) =Θ−(λ )e2ζ +Γ+(λ )e

[

λ+µ++c
c

]

ζ −Γ−(λ )e

[

λ+µ−+c
c

]

ζ
.

For the case of natural waves whereI◦ = 0, translation invariance allows us to set
(ξ1,ξ2) = (0,a). Since the zero set of the Evans functionE(λ ) comprises solutions
of a transcendental equation, the eigenvaluesλ can be determined numerically by
finding the intersection points of the zero sets of the real and complex parts of the
Evans function which was used to determined the stability results in Fig. 8. Hopf
bifurcations, identified by complex conjugate eigenvaluescrossing the imaginary
axis, can give rise to traveling breathers or mode-locking between breathing and the
emission of natural traveling bumps [25].

For various treatments of the stability of natural traveling bumps and Evans func-
tions in (1) see [55, 10, 25, 41, 44, 4], and a comparison between different ap-
proaches is found in [44]. Zhang developed the Evans function and analyzed the
stability of traveling bumps in the singularly perturbed case 0<α ≪ 1 [55]. Finally,
on one-dimensional domains, traveling multibump waves were studied in [52], and
traveling waves have been extended to the case of inhomogeneous synaptic cou-
pling in [32] and asymmetric coupling [51]. On two-dimensional domains, spiral
waves [34, 52], traveling and rotating multibumps [37], andthe collision of travel-
ing bumps [36] have also been examined.
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