THE QUESTION: In a flock of chickens, for every two chickens in the flock, exactly one chicken pecks the other. However, it is not clear who is the head chicken in the flock. Perhaps Henrietta pecks Repecka and Repecka pecks Heidi Plume. But if Heidi Plume pecks Henrietta, who’s really in charge here?

THE MATH: It’s convenient to represent a flock of chickens with a digraph, which is a collection of vertices and directed edges. The chickens become vertices, and we draw an edge from Henrietta to Repecka if Henrietta pecks Repecka:

So the scenario where Henrietta pecks Repecka, and Repecka pecks Heidi Plume, and Heidi Plume pecks Henrietta, would be represented as:

We define a King Chicken as a chicken c, so that for every other chicken, d, either c pecks d, or c pecks some third chicken, b, and b pecks d.
1. Can you find a flock of chickens where every chicken is a king?
2. Can you find a flock of chickens where exactly one chicken is a king?

3. Can you find a flock of chickens where no chicken is a king? Remember: in every pair of chickens, exactly one chicken pecks the other, so there must be an edge between every vertex!
4. Some Notation

- Let A_c be the set of all chickens that chicken c pecks.
- Let B_c be the set of all chickens that peck chicken c.

From now on, a big circle will represent a set of vertices, and a thick arrow from a big circle to a vertex will mean every edge between the set and the vertex goes in the direction of the big arrow. So:

5. Proof that Every flock of chickens has a king!

- Let $a(c)$ be the number of chickens that chicken c pecks.
- Let c be the chicken for which $a(c)$ is maximum.

We will show that c is a king by a proof by contradiction!

Suppose c is not a king. Then there’s some other chicken, d, that c doesn’t peck, and no chicken that c does peck pecks chicken d.

How many chickens does d peck?
Chicken d pecks chicken c, and also, chicken d pecks every chicken in A_c. But then chicken d pecks at least $a(c) + 1$ chickens! **This is a contradiction!**

6. We will now show the following lemma (helper fact):

Lemma 1 *Every chicken who is pecked is pecked by a king.*

- Suppose chicken c is pecked; then the set B_c has at least one chicken in it.
- Consider the set B_c as a flock by itself; that is, ignore all the other chickens and connections to those other chickens.
- We know by the theorem we just proved that the subflock, B_c, has a king.

I claim that the king of B_c is the king of the entire flock. Why?

7. If a flock of chickens has exactly one king, then ____________________________

8. Can you find a flock of chickens with exactly 2 kings?
9. Now we want to tackle the question: “When can you find a flock where every chicken is king?”

We already found a flock of 3 chickens where every chicken is king:

![Diagram of a flock with arrows indicating the hierarchy between Henrietta, Repecka, and Heidi Plume.]

Can you find a way to add two new chickens, Chickole and Henelope, to the existing flock, so that you get a flock of 5 chickens, all of which are kings?
Suppose I add two new chickens: Chickole and Henelope, in the following way:

Are all 5 chickens kings?
Suppose I have a flock, F, of n chickens where all n chickens are kings, and I add two chickens in the same way I did above:

Are all chickens kings in the new flock of $n + 2$ chickens? Why or why not?

We’ve shown there exists a flock of n chickens, all kings, when __________________________

Can you find a flock of 6 chickens, all kings?
Questions For You To Ponder!

1. For any pair of whole numbers, \(n \) and \(k \) with \(k \neq 2 \) and \(k \leq n \), can you find a flock of \(n \) chickens with \(k \) kings?

2. Suppose we create a random n-flock of chickens by randomly assigning directions of the edges. So for every pair of chickens, \(c \) and \(d \), assign the event that \(c \) pecks \(d \) probability \(\frac{1}{2} \) and assign the event that \(d \) pecks \(c \) probability \(\frac{1}{2} \). What is the probability that a random \(n \)-flock has exactly one king?

3. What is the probability that a random \(n \)-flock has all kings?

4. Suppose I call a chicken, \(c \), a serf if every chicken either pecks it, or pecks some chicken who pecks \(c \). Can you find a flock of all serfs? No serfs? Exactly 2 serfs?

5. If a flock is all kings, how many serfs are there?

6. There can be lots of king chickens- perhaps we need a more restrictive definition! Suppose instead, we think of the king of kings chickens: first, find all the kings in a flock. Then, think of this as a subflock of the entire flock, and find the king of this smaller flock. When will this be the same? When will this be different?

7. Suppose I want to not only find the king of the chickens, but rank every chicken from most to least powerful. How might one do this?

For more information, see “The King Chicken Theorems” by Stephen B. Maurer (easily google-able). For questions, comments, and/or a link to the article, email me at: kenkel@math.utah.edu