Commutative Algebra and Local Cohomology Jenny Kenkel University of Utah

Set Up: Rings

A ring R is a set together with two binary operations + and \times (called addition and multiplication) satisfying the following axioms:

- (R, +) is an abelian group
- $\bullet (a \times b) \times c = a \times (b \times c)$
- $\bullet (a+b) \times c = (a \times c) + (b \times c)$
- $\bullet a \times (b+c) = (a \times b) + (a \times c)$
- If $a \times b = b \times a$ for all elements, then R is called a *commutative ring*

Examples of Rings

- The integers, \mathbb{Z} : $-3, -2, -1, 0, 1, 2, 3, \dots$
- The rational numbers, $\mathbb{Q}: 1, \frac{3}{4}, \frac{17}{266}, \ldots$
- Rational polynomials, $\mathbb{Q}[x] : 1, 7 + 2x, \quad \frac{3}{4}x^2 17x^{10} \frac{2}{3}x^{11}$
- Integers, \mathbb{Z} , AND the square root of -5 are all numbers that look like:

(integer) + (integer)
$$\sqrt{-5}$$

For example,

$$+\sqrt{-5}, 2\sqrt{-5}, 3-6\sqrt{-5}$$

We can still add, subtract, and multiply:

$$(1 + \sqrt{-5})(2\sqrt{-5}) = 2\sqrt{-5} + 2(\sqrt{-5})(\sqrt{-5}) = -10 + 2\sqrt{-5}$$

This ring is referred to as $\mathbb{Z}[\sqrt{-5}]$

• The set of all $n \times n$ matrices is a *non commutative* ring

Unique Factorization Domains

In the integers (\mathbb{Z}) a number can be factored into a set of prime (only divisible by itself and 1) numbers.

 $12 = 2 \times 2 \times 3$

We can rearrange, but we can't choose different primes. In $\mathbb{Z}[\sqrt{-5}]$, what *is* and *isn't* a prime is not so clear... It turns out

 $1 + \sqrt{-5}$

is **prime** in $\mathbb{Z}[\sqrt{-5}]$ So are 3 and 2, but then:

$$(1 + \sqrt{-5})(1 - \sqrt{-5}) = 6 = 2 \times 3$$

Rings like \mathbb{Z} , where numbers can be uniquely factored, are called **Unique Factorization Domains**. Rings like $\mathbb{Z}[\sqrt{-5}]$ are *not* Unique **Factorization Domains**.

The study of local cohomology was invented to answer a question about Unique Factorization Domains.

Size of a Ring

The last nonzero local cohomology of a ring measures how "big" the ring is.

- An *ideal I* is a subset of a commutative ring R
- (I, +) is an abelian group (closed under addition)
- For all $r \in R$, $a \in I$, $ra \in I$ (closed under multiplication)

Examples of Ideals

- the set $\{0\}$ is an ideal for all rings
- the ring is, itself, an ideal for all rings
- the set (..., -7, 0, 7, 14, 21, ...) is an ideal of \mathbb{Z}
- the set of all polynomials in x with no constant term,

$$\{a_1x + a_2x^2 + \dots a_nx^n | a_i \in \mathbb{Q}\}$$

is an ideal of $\mathbb{Q}[x]$

• the set of all polynomials in x and y with no constant term,

$$\{a_{1,0}x + a_{0,1}y + a_{2,0}x^2 + a_{1,1}xy + a_{0,2}y^2 + \dots + a_{n,m}x^ny^m\}$$

is an ideal of $\mathbb{Q}[x, y]$

• the set of all polynomials in x and y such that every term has at least one x is an ideal of $\mathbb{Q}[x, y]$

Let A be some subset of a ring. The *ideal generated by* A is the smallest ideal containing A. The ideal generated by A can also be thought of as the set of all finite sums of elements of the form ra, where $r \in R$ and $a \in A$.

Examples of Ideals Generated by Subsets

- the set $\{\ldots, -7, 0, 7, 14, \ldots\}$ is the ideal generated by 7
- the subset of $\mathbb{Q}[x]$ that is all polynomials in x with no constant term is the ideal generated by x
- the subset of $\mathbb{Q}[x, y]$ that is all polynomials such that every term has at least one x is the ideal generated by x in $\mathbb{Q}[x, y]$
- the subset of $\mathbb{Q}[x, y]$ that is all polynomials with no constant term is the ideal generated by x and y in $\mathbb{Q}[x, y]$

An *prime* ideal *I* is an ideal such that

• $I \neq R$

• if an element, $ab \in I$, then $a \in I$ or $b \in I$.

The *dimension* of a ring is the *longest chain of distinct prime ideals*:

$$I_0 \subset I_1 \subset \cdots \subset I_n$$

- dim

• din

A weird ring

Consider the ring of polynomials where we can use x^4, x^3y, xy^3 , and y^4 as variables, and rational numbers as coefficients, e.g.

Everything in this ring is a polynomial with x and y (that is, $\mathbb{Q}[x, y]$); but this weird ring doesn't have x, y, x^2y^2 , etc. in it.

Local Cohomology Measures Weirdness

 $\mathbb{Q}[x,y]$

Rings with only one nonzero local cohomology are called Cohen **Macualay Rings**

Contact Information:

University of Utah

Email: kenkel@math.utah.edu

Examples of Dimension

• $\dim(\mathbb{Q}) = 0$:

 $\{0\}$ is the only prime ideal in \mathbb{Q}

$$\operatorname{m}(\mathbb{Q}[x]) = 1$$

 $\{0\} \subsetneq \{a_1x + a_2x^2 + \dots a_nx^n | a_i \in \mathbb{Q}\}$

$$\operatorname{m}(\mathbb{Q}[x,y]) = 2:$$

$$\{0\} \subsetneq (x) \subsetneq (x,y)$$

Local Cohomology Measures Size

The local cohomologies of a ring are a sequence that starts counting at 0 and tells you something about the ring.

• The 0^{th} local cohomology of \mathbb{Q} is \mathbb{Q}

• The 1^{st} local cohomology of \mathbb{Q} is 0

• The 2^{nd} local cohomology of \mathbb{Q} is 0

• The last nonzero local cohomology of \mathbb{Q} is the 0^{th} one

• The last nonzero local cohomology of $\mathbb{Q}[x]$ is the 1^{st} one

• The last nonzero local cohomology of $\mathbb{Q}[x, y]$ is the 2^{nd} one

 $\frac{1}{2}x^4 + x^3y + xy^3$, $x^7y \ x^4y^4$

How far the first nonzero local cohomology is from the last nonzero local cohomology measures the weirdness of the ring.

y] has one nonzero	$\mathbb{Q}[x^4, x^3y, xy^3, y^4]$ has two
conomology	nonzero local cohomologies
	least asherealast are called

Quotient Rings and Powers of Ideals

The quotient group R/I inherits a unique multiplication from the ring, R, which makes R/I itself a ring.

Examples of Quotient Rings

- declared that (x) is 0

quite a bit!

The product of two ideals, I, J in R is the ideal IJ generated by all products xy where $x \in I, y \in J$. Then the power of an ideal I is the ideal, I^t , generated by all products $x_1 \dots x_t$ where $x_i \in I$.

Examples of Powers of Ideals

My Problem

into a matrix:

By Hochster and Eagon, the quotient ring

is **Cohen Macaulay!** However, the rings R/I^t , where t > 1, are known to not Cohen Macaulay. My project centers around understanding the other local cohomology modules.

References

M. Hochster and J. Eagon, Cohen-Macaulay Rings, Invariant Theory, and the Generic Perfection of Determinantal Loci, Amer. J. Math. 93 (1971), 1020-1058.

• The ring $\mathbb{Z}/(7)$ is the set of representatives $\{0, 1, 2, 3, 4, 5, 6\}$ such that the product of two integers is their remainder when divided by 7. For example, 25 = 3 in $\mathbb{Z}(7)$

• The ring $\mathbb{Q}[x,y]/(x)$ is isomorphic to $\mathbb{Q}[y]$, as we have essentially

Note that quotienting out by an ideal can change the local cohomology

• If $I = \{\dots -7, 0, 7, 14, 21, \dots\} \subset \mathbb{Z}$, then

 $I^2 = \{\cdots - 49, 0, 49, 98, 147, \ldots\}$

• If $I = \{ \text{all polynomials with no constant term } \} \subseteq \mathbb{Q}[x], \text{ then } \}$

 $I^2 = \{$ all polynomials with no constant term and no x term $\}$

Consider the ring with rational coefficients and 6 variables, arranged

$$\mathbb{Q}\begin{bmatrix} u & v & w \\ x & y & z \end{bmatrix}$$

Now consider the ideal I = (vz - wy, wx - uz, uy - vx), that is, the ideal generated by 2×2 minors of the matrix

$$\begin{bmatrix} w & u & v \\ x & y & z \end{bmatrix} / (vz - wy, wx - uz, uy - vx)$$