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Set Up: Rings

A ring R is a set together with two binary op-
erations + and × (called addition and multi-
plication) satisfying the following axioms:

• (R,+) is an abelian group

• (a× b)× c = a× (b× c)

• (a + b)× c = (a× c) + (b× c)

• a× (b + c) = (a× b) + (a× c)

• If a × b = b × a for all elements, then R is
called a commutative ring

Examples of Rings
• The integers, Z: −3,−2,−1, 0, 1, 2, 3, . . .
• The rational numbers, Q : 1, 34,

17
266, . . .

• Rational polynomials, Q[x] : 1, 7 + 2x, 3
4x

2 − 17x10 − 2
3x

11

• Integers, Z, AND the square root of −5 are all numbers that look
like:

(integer) + (integer)
√
−5:

For example,

1 +
√
−5, 2

√
−5 , 3− 6

√
−5

We can still add, subtract, and multiply:

(1 +
√
−5)(2

√
−5) =

2
√
−5 + 2(

√
−5)(
√
−5) =

−10 + 2
√
−5

This ring is referred to as Z[
√
−5]

• The set of all n× n matrices is a non commutative ring

Unique Factorization Domains
In the integers (Z) a number can be factored into a set of prime (only
divisible by itself and 1) numbers.

12 = 2× 2× 3

We can rearrange, but we can’t choose different primes.
In Z[
√
−5], what is and isn’t a prime is not so clear... It turns out

1 +
√
−5

is prime in Z[
√
−5] So are 3 and 2, but then:

(1 +
√
−5)(1−

√
−5) = 6 = 2× 3

Rings like Z , where numbers
can be uniquely factored, are called
Unique Factorization Domains.
Rings like Z[

√
−5] are not Unique

Factorization Domains .

The study of local cohomology was invented to answer a question
about Unique Factorization Domains.

Size of a Ring
The last nonzero local cohomology of a ring measures how “big” the
ring is.

An ideal I is a subset of a commutative ring R

• (I,+) is an abelian group (closed under addition)

• For all r ∈ R, a ∈ I , ra ∈ I (closed under multiplication)

Examples of Ideals
• the set {0} is an ideal for all rings

• the ring is, itself, an ideal for all rings

• the set (. . . ,−7, 0, 7, 14, 21, . . . ) is an ideal of Z
• the set of all polynomials in x with no constant term,

{a1x + a2x
2 + . . . anx

n|ai ∈ Q}

is an ideal of Q[x]

• the set of all polynomials in x and y with no constant term,

{a1,0x + a0,1y + a2,0x
2 + a1,1xy + a0,2y

2 + · · · + an,mxnym}

is an ideal of Q[x, y]

• the set of all polynomials in x and y such that every term has at least
one x is an ideal of Q[x, y]

Let A be some subset of a ring. The ideal generated by A is the
smallest ideal containing A.
The ideal generated by A can also be thought of as the set of all
finite sums of elements of the form ra, where r ∈ R and a ∈ A.

Examples of Ideals Generated by Subsets
• the set {. . . ,−7, 0, 7, 14, . . . } is the ideal generated by 7

• the subset of Q[x] that is all polynomials in x with no constant term
is the ideal generated by x

• the subset of Q[x, y] that is all polynomials such that every term has
at least one x is the ideal generated by x in Q[x, y]

• the subset of Q[x, y] that is all polynomials with no constant term is
the ideal generated by x and y in Q[x, y]

An prime ideal I is an ideal such that

• I 6= R

• if an element, ab ∈ I , then a ∈ I or b ∈ I .

The dimension of a ring is the longest chain of distinct prime ideals:

I0 ⊂ I1 ⊂ · · · ⊂ In

Examples of Dimension

• dim(Q) = 0 :

{0} is the only prime ideal in Q

• dim(Q[x]) = 1 :

{0} ( {a1x + a2x
2 + . . . anx

n|ai ∈ Q}

• dim(Q[x, y]) = 2:

{0} ( (x) ( (x, y)

Local Cohomology Measures Size

The local cohomologies of a ring are a sequence that starts counting
at 0 and tells you something about the ring.

• The 0th local cohomology of Q is Q

• The 1st local cohomology of Q is 0

• The 2nd local cohomology of Q is 0

• The last nonzero local cohomol-
ogy of Q is the 0th one

• The last nonzero local cohomol-
ogy of Q[x] is the 1st one

• The last nonzero local cohomol-
ogy of Q[x, y] is the 2nd one

A weird ring

Consider the ring of polynomials where we can use x4,x3y,xy3, and y4

as variables, and rational numbers as coefficients, e.g.

1

2
x4 + x3y + xy3, x7y x4y4

Everything in this ring is a polynomial with x and y (that is, Q[x, y]);
but this weird ring doesn’t have x, y, x2y2, etc. in it.

Local Cohomology Measures Weirdness

How far the first nonzero local cohomology is from the last nonzero
local cohomology measures the weirdness of the ring.

Q[x, y] has one nonzero
local cohomology

Q[x4, x3y, xy3, y4] has two
nonzero local cohomologies

Rings with only one nonzero local cohomology are called Cohen
Macualay Rings

Quotient Rings and Powers of Ideals

The quotient group R/I inherits a unique multiplication from the
ring, R, which makes R/I itself a ring.

Examples of Quotient Rings
• The ring Z/(7) is the set of representatives {0, 1, 2, 3, 4, 5, 6} such

that the product of two integers is their remainder when divided by
7. For example, 25̇ = 3 in Z (7)

• The ring Q[x, y]/(x) is isomorphic to Q[y], as we have essentially
declared that (x) is 0

Note that quotienting out by an ideal can change the local cohomology
quite a bit!

The product of two ideals, I, J in R is the ideal IJ generated by all
products xy where x ∈ I, y ∈ J .
Then the power of an ideal I is the ideal, It, generated by all prod-
ucts x1 . . . xt where xi ∈ I .

Examples of Powers of Ideals
• If I = {· · · − 7, 0, 7, 14, 21, . . . } ⊂ Z, then

I2 = {· · · − 49, 0, 49, 98, 147, . . . }

• If I = {all polynomials with no constant term } ⊆ Q[x], then

I2 = {all polynomials with no constant term and no xterm}

My Problem
Consider the ring with rational coefficients and 6 variables,arranged
into a matrix:

Q
[
u v w
x y z

]
Now consider the ideal I = (vz − wy,wx− uz, uy − vx), that is, the

ideal generated by 2× 2 minors of the matrix
[
u v w
x y z

]
By Hochster and Eagon, the quotient ring

Q
[
w u v
x y z

]
/ (vz − wy,wx− uz, uy − vx)

is Cohen Macaulay!
However, the rings R/It, where t > 1, are known to not Cohen
Macaulay. My project centers around understanding the other local
cohomology modules.
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