Commutative Algebra and Local Cohomology

Jenny Kenkel

March 11, 2017
Looking for Structure

- the integers \mathbb{Z}

\[\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\]
Looking for Structure

- the integers \mathbb{Z}

\[\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \]

- the rational numbers, \mathbb{Q}

example: $1, \frac{3}{4}, \frac{17}{266}, \ldots$
Looking for Structure

▶ the integers \(\mathbb{Z} \)

\[\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \]

▶ the rational numbers, \(\mathbb{Q} \)

example: \(1, \frac{3}{4}, \frac{17}{266}, \ldots \)

▶ rational polynomials in \(x \) (rational numbers with whole powers of \(x \))

example.: \(1, 7 + 2x, \frac{3}{4}x^2 - 17x^{10} - \frac{2}{3}x^{11} \)

non example: \(\frac{1}{x}, \sqrt{x}, y \)

We call these \(\mathbb{Q}[x] \)
A ring is a collection of objects that you can add, subtract, and multiply, and always stay in that collection of numbers. However, you can’t necessarily divide.

- The integers, \(\mathbb{Z} \):
 \(-3, -2, -1, 0, 1, 2, 3, \ldots \)

- The rational numbers, \(\mathbb{Q} \):
 \(1, \frac{3}{4}, \frac{17}{266}, \ldots \)

- Rational polynomials, \(\mathbb{Q}[x] \):
 \(1, 7 + 2x, \frac{3}{4}x^2 - 17x^{10} - \frac{2}{3}x^{11}\)

- Not a ring: The set of numbers 0, 1 and 2
 \((1 + 2 = 3, \text{ not in the collection!})\)
Integers, \(\mathbb{Z} \), AND the square root of \(-5\) are all numbers that look like:

\[(\text{integer}) + (\text{integer})\sqrt{-5}:\]

For example,

\[1 + \sqrt{-5} \quad 2\sqrt{-5} \quad 3 - 6\sqrt{-5}\]

We can still add, subtract, and multiply

\[(1 + \sqrt{-5})(2\sqrt{-5}) = \]
Another Ring: Integers, \mathbb{Z} AND the square root of -5

Integers, \mathbb{Z}, AND the square root of -5 are all numbers that look like:

$$(\text{integer}) + (\text{integer})\sqrt{-5}:$$

For example,

$$1 + \sqrt{-5} \quad 2\sqrt{-5} \quad 3 - 6\sqrt{-5}$$

We can still add, subtract, and multiply

$$(1 + \sqrt{-5})(2\sqrt{-5}) =$$

$$2\sqrt{-5} + 2(\sqrt{-5})(\sqrt{-5}) =$$
Another Ring: Integers, \(\mathbb{Z} \), AND the square root of \(-5\) are all numbers that look like:

\[(\text{integer}) + (\text{integer})\sqrt{-5}:\]

For example,

\[1 + \sqrt{-5} \quad 2\sqrt{-5} \quad 3 - 6\sqrt{-5}\]

We can still add, subtract, and multiply

\[(1 + \sqrt{-5})(2\sqrt{-5}) =\]

\[2\sqrt{-5} + 2(\sqrt{-5})(\sqrt{-5}) =\]

\[2\sqrt{-5} + (2 \times -5) =\]
Integers, \(\mathbb{Z} \), AND the square root of \(-5\) are all numbers that look like:

\[
\text{(integer) + (integer)\(\sqrt{-5}\)}:
\]

For example,

\[
1 + \sqrt{-5} \quad 2\sqrt{-5} \quad 3 - 6\sqrt{-5}
\]

We can still add, subtract, and multiply

\[
(1 + \sqrt{-5})(2\sqrt{-5}) =
\]

\[
2\sqrt{-5} + 2(\sqrt{-5})(\sqrt{-5}) =
\]

\[
2\sqrt{-5} + (2 \times -5) =
\]

\[
-10 + 2\sqrt{-5}
\]
Another Ring: Integers, \(\mathbb{Z} \), AND the square root of \(-5\)

Integers, \(\mathbb{Z} \), AND the square root of \(-5\) are all numbers that look like:

\[
\text{(integer)} + \text{(integer)}\sqrt{-5}:
\]

For example,

\[
1 + \sqrt{-5} \quad 2\sqrt{-5} \quad 3 - 6\sqrt{-5}
\]

We can still add, subtract, and multiply

\[
(1 + \sqrt{-5})(2\sqrt{-5}) =
\]

\[
2\sqrt{-5} + 2(\sqrt{-5})(\sqrt{-5}) =
\]

\[
2\sqrt{-5} + (2 \times -5) =
\]

\[
-10 + 2\sqrt{-5}
\]

This ring is referred to as \(\mathbb{Z}[\sqrt{-5}] \)
In the integers (\mathbb{Z}) a number can be factored into a set of prime (only divisible by itself and 1) numbers.

$$12 = 2 \times 2 \times 3$$

We can rearrange, but we can’t choose different primes. In $\mathbb{Z}[\sqrt{-5}]$, what *is* and *isn’t* a prime is not so clear...
In the integers (\mathbb{Z}) a number can be factored into a set of prime (only divisible by itself and 1) numbers.

$$12 = 2 \times 2 \times 3$$

We can rearrange, but we can’t choose different primes. In $\mathbb{Z}[\sqrt{-5}]$, what is and isn’t a prime is not so clear...

$$1 + \sqrt{-5} ???$$
Non Unique Factorization

It turns out

\[1 + \sqrt{-5} \]

is prime (only divisible by itself and 1) in \(\mathbb{Z}[\sqrt{-5}] \). So are 3 and 2.

\[6 = 2 \times 3 \]

but also ...

\[(1 + \sqrt{-5})(1 - \sqrt{-5}) = \]
Non Unique Factorization

It turns out

\[1 + \sqrt{-5} \]

is **prime** (only divisible by itself and 1) in \(\mathbb{Z}[\sqrt{-5}] \) So are 3 and 2.

\[6 = 2 \times 3 \]

but also ...

\[(1 + \sqrt{-5})(1 - \sqrt{-5}) = \]

\[(1 - \sqrt{-5} + \sqrt{-5} - (\sqrt{-5})(\sqrt{-5})) = \]
Non Unique Factorization

It turns out

\[1 + \sqrt{-5} \]

is prime (only divisible by itself and 1) in \(\mathbb{Z}[\sqrt{-5}] \) So are 3 and 2.

\[6 = 2 \times 3 \]

but also ...

\[(1 + \sqrt{-5})(1 - \sqrt{-5}) = \]

\[(1 - \sqrt{-5} + \sqrt{-5} - (\sqrt{-5})(\sqrt{-5})) = \]

\[1 - (-5) = \]
Non Unique Factorization

It turns out

$$1 + \sqrt{-5}$$

is \textbf{prime} (only divisible by itself and 1) in \(\mathbb{Z}[\sqrt{-5}]\) So are 3 and 2.

$$6 = 2 \times 3$$

but also ...

$$(1 + \sqrt{-5})(1 - \sqrt{-5}) =$$

$$(1 - \sqrt{-5} + \sqrt{-5} - (\sqrt{-5})(\sqrt{-5})) =$$

$$1 - (-5) =$$

$$1 + 5 = 6$$
Non Unique Factorization

It turns out

$$1 + \sqrt{-5}$$

is **prime** (only divisible by itself and 1) in $$\mathbb{Z}[\sqrt{-5}]$$ So are 3 and 2.

$$6 = 2 \times 3$$

but also ...

$$(1 + \sqrt{-5})(1 - \sqrt{-5}) =$$

$$\left(1 - \sqrt{-5} + \sqrt{-5} - (\sqrt{-5})(\sqrt{-5})\right) =$$

$$1 - (-5) =$$

$$1 + 5 = 6$$

$$(1 + \sqrt{-5})(1 - \sqrt{-5}) = 6 = 2 \times 3$$
Unique Factorization Domains

- Rings like \(\mathbb{Z} \), where numbers can be uniquely factored, are called **Unique Factorization Domains**.

- Rings like \(\mathbb{Z}[\sqrt{-5}] \) are not **Unique Factorization Domains**.

- The study of **local cohomology** was invented to answer a question about Unique Factorization Domains.

- Exactly how local cohomology relates to UFD’s is outside the scope of this talk.
Local Cohomology

The local cohomologies of a ring are a sequence that starts counting at 0 and tells you something about the ring.

- The 0^{th} local cohomology of \mathbb{Q} is \mathbb{Q}
- The 1^{st} local cohomology of \mathbb{Q} is 0
- The 2^{nd} local cohomology of \mathbb{Q} is 0
Local Cohomology

The **local cohomologies** of a ring are a sequence that starts counting at 0 and tells you something about the ring.

- The 0^{th} local cohomology of \mathbb{Q} is \mathbb{Q}
- The 1^{st} local cohomology of \mathbb{Q} is 0
- The 2^{nd} local cohomology of \mathbb{Q} is 0
Size of Rings

The last nonzero local cohomology of a ring measures how big the ring is.

- \mathbb{Q} (e.g. 1, $\frac{3}{4}$, $\frac{17}{266}$)
- $\mathbb{Q}[x]$ (e.g. 1, $7 + 2x$, $\frac{3}{4}x^2 - 17x^{10} - \frac{2}{3}x^{11}$)
- $\mathbb{Q}[x, y]$ (e.g. 1, $7 + 2x$, $2x^2 + y^3 + 6xy$)

Everything in \mathbb{Q} is also in $\mathbb{Q}[x]$, and everything in $\mathbb{Q}[x]$ is also in $\mathbb{Q}[x, y]$.

Diagram:

- \mathbb{Q}
- $\mathbb{Q}[x]$ in \mathbb{Q}
- $\mathbb{Q}[x, y]$ in $\mathbb{Q}[x]$
The last nonzero local cohomology of \mathbb{Q} is the 0th one

The last nonzero local cohomology of $\mathbb{Q}[x]$ is the 1st one

The last nonzero local cohomology of $\mathbb{Q}[x, y]$ is the 2nd one
Consider the ring of polynomials where we can use $x^4, x^3 y, xy^3$, and y^4 as variables, and rational numbers as coefficients, e.g.

$$\frac{1}{2}x^4 + x^3 y + xy^3, \quad x^7 y, \quad x^4 y^4$$

Everything in this ring is a polynomial with x and y (that is, $\mathbb{Q}[x, y]$); but this weird ring doesn’t have x, y, $x^2 y^2$, etc. in it.
Local Cohomology Measures Weirdness

How far the first nonzero local cohomology is from the last nonzero local cohomology measures the weirdness of the ring.

\[\mathbb{Q}[x, y] \text{ has one nonzero local cohomology} \]

\[\begin{align*}
\mathbb{Q}[x^4, x^3y, xy^3, y^4] & \text{ has two nonzero local cohomologies} \\
\end{align*} \]
Thank You!