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Abstract
Quantifying and understanding the uncertainty in isotopic mixing relationships is critical to isotopic applications in carbon cycle

studies at all spatial and temporal scales. Studies that depend on stable isotope approaches must also address quantification of

uncertainty for parameters derived from isotopic studies. An important application of isotopic mixing relationships is determination

of the isotopic content of ecosystem respiration (d13CS) via an inverse relationship (a Keeling plot) between atmospheric CO2

concentrations ([CO2]) and carbon isotope ratios of CO2 (d13C). Alternatively, a linear relationship between [CO2] and the product

of [CO2] and d13C (a Miller/Tans plot) can also be applied.

We used three datasets of [CO2] and d13C in air to examine contrasting approaches to determine d13CS and its uncertainty. These

datasets were from the Niwot Ridge, Colorado, AmeriFlux site, the Biosphere-Atmosphere Stable Isotope Network (BASIN), and from

the Grünschwaige Grassland Research Station in Germany. The analysis of this data included Keeling plots and Miller/Tans plots fit

with both Model I (ordinary least squares) and Model II regressions (geometric mean regression and orthogonal distance regression).

Our analysis confirms previous observations that increasing the range of the measurements ([CO2] range) used for a mixing line

reduces the uncertainty associated with d13CS. Using a Model II regression technique to determine d13CS introduces a negatively

skewed bias in d13CS which is especially significant for small [CO2] ranges. This bias arises from comparatively greater variability

in the dependent variable than the independent variable for a linear regression. For carbon isotope studies, uncertainty in the isotopic

measurements has a greater effect on the uncertainty of d13CS than the uncertainty in [CO2]. As a result, studies that estimate

parameters via a Model II regression technique maybe biased in their conclusions. In contrast to earlier studies, we advocate Model I

(ordinary least squares) regression to calculate d13CS and its uncertainty. Reducing the uncertainty of isotopic measurements

reduces the uncertainty of d13CS, even when the [CO2] range of samples is small (<20 ppm). As a result, improvement in isotope

(rather than [CO2]) measuring capability is presently needed to substantially reduce uncertainty in d13CS. We find for carbon isotope

studies no inherent advantage or disadvantage to using either a Keeling or Miller/Tans approach to determine d13CS. We anticipate

that the mathematical methods developed in this paper can be applied to other applications where linear regression is utilized.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the balance between photosynthesis

and respiration for terrestrial ecosystems represents one
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of the current challenges in carbon cycle research

(Schimel et al., 1994, 2001; Piovesan and Adams, 2000;

Valentini et al., 2000; Van Dijk and Dolman, 2004;

Janssens et al., 2001). On the global scale terrestrial

ecosystems uptake a large amount of carbon annually

(1–2 Gt C/yr) (Prentice et al., 2001). With the increas-

ing amount of atmospheric CO2 from anthropogenic
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Fig. 1. Comparison of standard error of OLS intercept vs. CO2 range

from BASIN data in Pataki et al. (2003b) and this study. The BASIN

data represent 146 Keeling plots from 33 sites in many biomes. The

TDL study represents a single site. The solid line represents a

theoretical expression for uncertainty in d13CS vs. [CO2] range

determined from Eq. (13) developed in the text. This error line

assumes that errors in [CO2] are from a normal distribution with a

standard deviation of 0.15 ppm and errors in d13C are from a normal

distribution with standard deviation of 0.15%, corresponding to the

analytical uncertainty of the TDL system in Bowling et al. (2005).

Notice that as the [CO2] range decreases, the error in the intercept

increases.
sources coupled with current predictions of increase in

global temperature, the role that forests and other

biomes will play in a warmer climate is uncertain

(Goulden et al., 1996; Huxman et al., 2003). On

regional spatial scales, the balance of gross primary

production and total ecosystem respiration can be

measured as net ecosystem exchange (NEE). NEE is

measured worldwide at more than 260 sites in a variety

of biomes through the FLUXNET network (Baldocchi

et al., 2001, http://www.fluxnet.ornl.gov). Understand-

ing photosynthesis and respiration can help elucidate

factors controlling NEE.

Isotopic mixing relationships provide a way to

determine the isotopic content of net sinks or sources of

ecosystem fluxes. During the night, isotopic mixing

lines can determine large-scale ecosystem respiration

(d13CS). Even though d13CS is subject to biological

variability (Flanagan et al., 1996; Buchmann et al.,

1997a,b; Bowling et al., 2002, 2003a,b; Miller et al.,

2003; Pataki et al., 2003a,b; Still et al., 2003; Lai et al.,

2004; Scartazza et al., 2004; Knohl et al., 2005; Lai

et al., 2005; Hemming et al., 2005), for this study we

focus on the mathematical propagation of uncertainty of

calculating d13CS. By comparing observations of CO2

and d13C to simulations, it is possible to understand how

errors in the ability to measure CO2 and d13C translate

into errors in d13CS. Only by understanding and working

to minimize measurement uncertainty in CO2 and d13C

will it subsequently be possible to understand the effect

of biological influences on d13CS. While we focus

entirely on terrestrial carbon isotopic studies, we expect

the results to generalize to other applications where

such isotopic mixing lines are appropriate (e.g. see

dietary ecology studies, Best and Schell, 1996; Burton

and Koch, 1999).

d13CS can be found through regressions of d13C and

CO2 mixing ratios ([CO2]). A Keeling isotopic mixing

line determines d13CS as the intercept of a regression

between d13C and the inverse of [CO2] (Keeling, 1958). A

Miller/Tans approach determines d13CS as the slope of a

linear regression between the product of d13C and [CO2]

versus [CO2] (Miller and Tans, 2003). These mixing

relationships will be further quantified in Section 3.2.

Pataki et al. (2003b) summarized the use of Keeling

isotopic mixing lines in terrestrial carbon cycle

research. Two recommendations from that study were

that (a) a large sampling range of [CO2] will minimize

errors in d13CS (see Fig. 1) and (b) Model II geometric

mean regression (GMR) should be used to calculate

d13CS rather than Model I ordinary least squares

regression (OLS). Fig. 1 compares errors in d13CS

versus a sample range of [CO2] from three different
studies, including Pataki et al. (2003b). In general, as

the sample range of [CO2] decreases, the uncertainty on

d13CS increases.

The motivation for this study arose from inspection

of large datasets of [CO2] and d13C as collected through

TDL spectrometry (Bowling et al., 2005). Such datasets

have only become available recently. Because of their

large size, for the first time an in-depth analysis of

statistical properties of d13CS estimates can be done.

When this was done (e.g. Fig. 3), a strong bias of d13CS

estimates was revealed at low [CO2] ranges. This bias is

in contrast to previously published values of d13CS (see

panel ‘b’ of Fig. 3 for data from Pataki et al. (2003b)).

One highly possible explanation for the lack of a

negative bias from Pataki et al. (2003b) is that the data

were evaluated and screened to remove any biologically

meaningless or unrealistic values of d13CS. Such quality

assurance techniques include examining the standard

error of the intercept or removing values with a low r2,

or coefficient of correlation. For this study we selected

data near the analytical limit of the instruments and

below conventional Keeling plot quality standards that

would be found in the BASIN database.

Error can arise from two factors: systematic model

error or analytical (measurement) error (Taylor, 1997).

http://www.fluxnet.ornl.gov/
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Measurement error can be characterized, and, in many

cases, minimized by the experimenter. Model error

deals with how suitable a given model is for the data and

is more difficult to quantify. For this study, we assume

that the contributing factor to error in d13CS is entirely

measurement error, and not from the model assump-

tions underlying a mixing line.

This study examines precision (uncertainty or error)

and accuracy (bias) of estimates of d13CS obtained by

Model II regression using isotopic mixing lines. To

improve precision of d13CS, two protocols are to

increase the number of samples taken, or in the case of

field-based mass spectrometry (Schnyder et al., 2004),

enhance the sample [CO2] range. While these are good

experimental protocols, there are instances (e.g. Figs. 3

and 4) where a low sample range of [CO2] is obtained in

spite of following the first protocol.

In the present study we examine the nature of this

uncertainty and bias from a mathematical perspective

in order to understand how our ability to measure

[CO2] and d13C influences the calculation and

interpretation of d13CS. One goal of this study was

to examine if it is possible to determine d13CS at low

CO2 ranges (<10 ppm) at an acceptable level of

uncertainty in d13CS (<l%). Such determination is

necessary to interpret isotopic mixing lines during the

daytime. An isotopic mixing line performed during the

day yields d13CN, the isotopic signature of the net

exchange flux because two processes (photosynthesis

and respiration) are occurring. In order to interpret

daytime mixing lines, it is necessary to examine the

differences between Keeling and Miller/Tans isotopic

mixing lines as well as Models I and II regression

techniques. As we will demonstrate, Model II

regression introduces a bias in the estimation of

d13CS at small [CO2] ranges. How does this bias

influence our interpretation of d13CS?

This study examines theoretical aspects of linear

regression and applies the theory to characterize the

calculation and statistical uncertainty of d13CS. For the

theoretical aspect we (a) clarify and explain the use of

Models I and II regressions and show the relationship

between the two, (b) demonstrate where a bias arises in

Model II regression, (c) explain the differences between

a Keeling and a Miller/Tans isotopic mixing line, and

(d) develop a theoretical expression for d13CS uncer-

tainty that describes how uncertainties in the ability to

measure [CO2] and d13C influence uncertainty in d13CS

independent of regression type (Model I or II) or

isotopic mixing line.

Using simulated data of [CO2] and d13C, we then

apply these theoretical aspects to isotopic mixing lines
by (a) comparing estimates of d13CS to Models I and II

regressions with different isotopic mixing lines (Keel-

ing or Miller/Tans), (b) using the theoretical uncertainty

expression developed to explain how the uncertainty of

d13C measurements has a greater influence on the

uncertainty in d13CS than [CO2] measurements, (c)

determining target levels of d13C uncertainty that will

allow precise calculation of d13CS at low [CO2] ranges,

(d) recommending a regression type and isotopic

mixing line for carbon cycle studies.

2. Experimental data and simulations

Direct measurements from three sources, as well as

simulations, were used to examine relationships

between [CO2] and d13C of CO2:
1. N
ighttime samples: The first, described in detail by

Pataki et al. (2003b), comes from the Biosphere-

Atmosphere Stable Isotope Network (BASIN)

program (http://basinisotopes.org). This database

includes nighttime air samples collected in 33 C3

biomes by many different investigators and labora-

tories over many different years. Although different

sampling methods were used, in all cases air samples

were collected in flasks and returned to a laboratory

for subsequent isotopic analysis via mass spectro-

metry. [CO2] measurements were made by infrared

gas analysis or mass spectrometry in either the field

or the lab.
2. N
ighttime and daytime samples: The second dataset

was collected over three consecutive summer months

in a subalpine coniferous forest in Colorado, USA

(the Niwot Ridge AmeriFlux site). [CO2] and d13C

measurements were made by tunable diode laser

absorption spectrometry (TDL) as described by

Bowling et al. (2005). Measurements were made

within the vegetation canopy (5, 7, 9, and 11 m

height, with the canopy height 11–12 m) or near the

ground (0.1, 0.5, 1, and 2 m height). Mixing lines are

calculated in this paper for the two height categories

separately, covering the time periods 2100–0300 h

(nighttime) or 0900–1500 h (daytime). All measure-

ments were made at the Niwot Ridge field site using

the TDL. No outliers were removed from the original

dataset.
3. D
aytime samples: The third dataset was collected

[CO2] and d13C data collected using a field-based

mass spectrometer and instrumentation as described

in Schnyder et al. (2004). The advantages to this

approach include a high measurement frequency

(approximately 520 [CO2] and d13C measurements

http://basinisotopes.org/
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per day), and brief sampling times (0.025 s per

sample) of small sample volumes (250 ml). These

features increase the probability of sampling the

maximum [CO2] and d13C range in a given time-

window at a given site. The system is automated and

obviates flask sampling and handling, and hence al

lows extended near-continuous measurement cam-

paigns with minimal attendance. This dataset was

obtained during a 1-week measurement campaign

(3–9 September 2004) on a grazed grassland plot at

Grünschwaige Grassland Research Station (Schny-

der et al., 2004). In this period the system collected

[CO2] and d13C measurements a few centimeters

above the 7 cm tall grassland canopy approximately

every 3 min. The nighttime CO2 range was generally

very large, but daytime fluctuations of CO2 mixing

ratios were small (typically less than 50 ppm in 1 h

intervals). Here, we present daytime mixing lines

obtained from groups of 4 or 16 pairs of [CO2] and

d13C data (corresponding to measurement periods of

11 and 45 min) collected between 0900 and 1700 h

local time, the brightest part of the day. No outliers

were removed from the original dataset.

In addition to the observational data used, mathe-

matical simulations were performed to investigate

some aspects of mixing line methods. For these

simulations, noise was added to a straight Keeling

mixing relationship (d13C = A(1/[CO2]) + d13CS,

where A = 6567.7 and d13CS = �25.6749). This Keel-

ing-type relationship is further explained in Section

3.2. This relationship was arbitrarily derived from the

TDL dataset to obtain realistic [CO2] and d13C values.

Noise was generated by randomly sampling a normal

distribution with zero mean and specified variance

(described below) and adding that random sample to a

particular [CO2] or d13C value on the line. Relation-

ships (with noise added) were generated with a sample

population of 1100 values, and paired subsamples of

[CO2] and d13C were randomly selected from this

population to create a single mixing line. We then

applied Models I and II regression methods (described

in Section 3.1) and the Keeling or Miller/Tans

approaches to the subsamples, and repeated the entire

process 10,000 times. The variances of the noise

distributions added in different simulations were 0.005,

0.01, 0.1, and 0.15 ppm for [CO2] and 0.0005, 0.0075,

0.01, 0.05, 0.15% for d13C. Typical analytical

uncertainties for laboratory infrared absorption and

mass spectrometer measurements on flask samples are

0.1 ppm and 0.01% for [CO2] and d13C, respectively

(Miller and Tans, 2003). Uncertainties for TDL
measurements are typically 0.15 ppm and 0.15%
(Bowling et al., 2005).

3. Theory: determining d13CS from

measurements

In this section we describe linear regression methods,

isotopic mixing lines used, and discuss uncertainty in

d13CS.

3.1. Linear regression formulas

When fitting experimental observations to a theore-

tical relationship, one needs to consider the purpose of

the regression. Predictive regression utilizes a relation-

ship from measured data to determine the dependent

variable for a measured independent variable. Func-

tional regression estimates parameters from an assumed

functional relationship between measured values. One

goal of functional regression is to compare the same

parameters estimated from two different datasets

(Ricker, 1973; Sprent and Dolby, 1980).

A linear regression seeks to find the best-fit line

(y = a + bx) that can be fit through a collection of data

points (xi, yi). As shown in Fig. 2 there are at least three

conceptual ways to determine this best-fit line. By

practicality we would expect that different regression

techniques yield consistent parameter estimates. The

most common type of linear regression is Model I

regression, known as ordinary least squares (OLS). OLS

assumes a definite relationship between the independent

(x) and dependent (y) variables with no variation in the

independent variable. OLS seeks to minimize the sum

of the squared residuals from the hypothetical best-fit

line to each data point. Using standard calculus

techniques, one can find that the a and the b that

minimize the residual are given by

bOLS ¼
PN

i¼1ðxi � x̄Þðyi � ȳÞPN
i¼1ðxi � x̄Þ2

; aOLS ¼ ȳ� bOLSx̄;

(1)

where an overbar represents the mean of the data

(Taylor, 1997; Laws, 1997). Model I regression is

appropriate for predictive purposes (Ricker, 1973).

If there is no preferred independent variable between

data x and y, Model II regression is used to reduce the

influence of forcing a deterministic relationship

between data. Instead of minimizing just the vertical

residuals through data points, Model II regression

minimizes the vertical and horizontal residuals as well.

There are many different ways one can minimize the
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Fig. 2. Conceptual comparison of regression methods and minimi-

zation of residual, or the distance from a data point to the best-fit

line. A Model I regression is ordinary least squares (OLS), which

minimizes the vertical residual. Model II regression techniques

include geometric mean regression (GMR), which incorporates

the minimum of the vertical and horizontal residual from the

best-fit line, and orthogonal distance regression (ODR), which

minimizes the perpendicular distance of the residual from the

best-fit line. Note that the final values of the best-fit line coefficients

for each method may be different.
sum of the vertical and horizontal residuals. Two types

commonly used in the literature are geometric mean

regression (GMR) (Ricker, 1973; Laws, 1997) or

orthogonal distance regression (ODR) (Laws, 1997).
GMR was recommended by Flanagan et al. (1996) as

well as Pataki et al. (2003b) for determining d13CS

using Keeling plots because there is no clear

specification of an independent variable (e.g. [CO2]

does not produce a d13C measurement and vice versa).

Geometric mean regression can be derived by rearran-

ging the equation y = a + bx to x = (1/b)y � (a/b) and

performing an OLS regression with y as the indepen-

dent variable. As a result, note that doing the regression

with y as the independent variable, the slope is equal to

the reciprocal of an OLS regression with x as the

independent variable. Thus, we have two candidates for

the slope, and we take the geometric mean of them to

find b and subsequently a:

bGMR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
byx

1

bxy

s
; aGMR ¼ ȳ� bGMRx̄; (2)

where byx is the slope obtained by doing a regression

with x as the independent variable and bxy is the slope

obtained by doing a regression with y as the independent

variable. The coefficient bGMR can be rewritten in terms

of the correlation coefficient r, where r is equal to

(Taylor, 1997):

r ¼
PN

i¼1ðxi � x̄Þðyi � ȳÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðxi � x̄Þ2

PN
i¼1ðyi � ȳÞ2

q : (3)

Doing this we see that

bGMR¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
byx

1

bxy

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
byx

byx

byx

PN
i¼1ðyi � ȳÞ2PN

i¼1ðxi � x̄Þðyi � ȳÞ

s

¼byx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðxi �x̄Þ2

PN
i¼1ðyi �ȳÞ2PN

i¼1ðxi � x̄Þðyi � ȳÞ
PN

i¼1ðxi � x̄Þðyi � ȳÞ

s

¼byx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðxi � x̄Þ2

PN
i¼1ðyi � ȳÞ2

q
PN

i¼1ðxi � x̄Þðyi � ȳÞ

¼byx

r
¼ bOLS

jrj : (4)

The absolute value on r is necessary in order for bGMR to

have the same sign as bOLS. Eq. (4) will be come

important later when examining the relative merits of

each regression method (e.g. Section 4).

Using planar trigonometry the appropriate resi-

dual for orthogonal distance regression can be

calculated, and when done so, the coefficients for
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the best-fit line obtained are (Boggs and Rogers,

2001; Laws, 1997):

bODR ¼ �B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 1

p
;

where B ¼ 1

2

PN
i¼1ðxi � x̄Þ2 � ðyi � ȳÞ2PN

i¼1ðxi � x̄Þðyi � ȳÞ
;

(5)

aODR ¼ ȳ� bODRx̄: (6)

3.2. Isotopic mixing lines

To determine d13CS, the isotopic signature of eco-

system respiration, a widely used approach is the Keeling

plot method (Keeling, 1958). Assume that there are

only two pools of carbon dioxide, a net source or sink

pool and a background pool. For notational convenience

let CX be equal to CO2 from pool X and let d13CX, the

isotopic signature of that pool, be denoted by dX.

By mass conservation:

CObs ¼ CB þ CS; (7)

where CObs is the total measured CO2, CS the pool of

CO2 influenced by biological sources (photosynthesis

and respiration), and CB is the background CO2. Simi-

larly, conservation of 13CO2 is given by the following

equation:

dObsCObs ¼ dBCB þ dSCS; (8)

See Keeling (1958) for the derivation of Eq. (8). Sub-

stituting Eq. (7) into Eq. (8) and rearranging terms, one

obtains the usual Keeling relationship:

dObs ¼
CBðdB � dSÞ

CObs

þ dS: (9)

Multiplying through by CObs in Eq. (9), one obtains an

alternative regression which we refer to as the Miller/

Tans regression (Miller and Tans, 2003):

dObsCObs ¼ CBðdB � dSÞ þ dSCObs: (10)

Eqs. (9) and (10) are nonlinear in [CO2] and d13C, but

under the appropriate transformations (x = 1/CObs,

y =dObs for Keeling, x = CObs, y = CObsdObs for Miller/

Tans), they become linear. For a Keeling regression,

d13CS is the y-intercept of a regression between the

transformed data, and for a Miller/Tans regression,

d13CS is the slope.
It is known that [CO2] is negatively correlated with

values of d13C, so the inverse of [CO2] in a Keeling

regression is positively correlated with d13C. With a

similar argument we expect that the slope of a Miller/

Tans regression should be negative.

3.3. Theoretical expression of uncertainty in d13CS

We wish to examine the uncertainty in d13CS

associated with various methods of calculating it.

Pataki et al. (2003b) recommend using GMR (a Model

II regression technique) to determine d13CS but also

recommend using the standard error of the intercept and

slope of a Model I regression to determine uncertainty.

A formula for the standard error of the OLS intercept

and slope can be found in standard statistical texts

(Taylor, 1997). A criticism of using a Model I

uncertainty estimate for Model II regression is that

since Model II regression accounts for errors in both the

independent and dependent variables, using a Model I

technique may not completely characterize the uncer-

tainty. What if the standard error of the intercept

overestimates the uncertainty on d13CS? Furthermore,

the standard error of the intercept provides little insight

into how measurement or sampling errors might

influence uncertainty in d13CS (Miller and Tans,

2003). As stated in Section 1, we assume that systematic

error is negligible.

To investigate the influence of measurement errors

of [CO2] and d13C on uncertainty of d13CS, we develop

here a theoretical relationship between measurement

error of [CO2] and d13C and investigate how that

translates to error in d13CS. The importance of such an

expression is that it allows one to directly investigate

the effect of uncertainty in the measured variables

([CO2] and d13C) on the uncertainty of d13CS. We

represent measurement errors on [CO2] or d13C as

random variables. In effect what is measured is a

characterization of the ‘‘true’’ value with some error. It

is also possible to characterize the various values the

error may take on as a distribution. For a random

variable Z with a distribution, two key parameters that

characterize it are its expected value (or mean) and its

standard deviation. Denote the expected value of Z by

hZi and its standard deviation by sZ.

Assume our measurements of [CO2] and d13C are

nonlinearly related, either through a Keeling or a Miller/

Tans isotopic mixing line. Since d13CS is a parameter

estimated from a mixing line, it will also be a random

variable with a distribution. In particular, we wish to

determine the expected value and variance of the

distribution of d13CS.
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To conduct an uncertainty analysis on the dataset,

observe that the slope (b) or intercept (a) in Eqs. (1), (2)

and (5) all depend continuously on the data (xi, yi).

Assume that both the independent and dependent

variables have errors that are normally distributed with

mean 0 and standard deviation s. As a result, a particular

measurement xi = Xi � ei, where ei is a sample of a

normal distribution with variance s2
x , and Xi represents

the true measured value without error. A similar

statement holds for yi: yi = Yi � hi. Denote the set of n

measurements of x by~x, the set of n measurements of y

by~y, the term~e is the vector of errors for the variable
~X, and~h is the vector of errors for the variable~Y .~e and~h
are both Gaussian random variables with zero mean and

standard deviation sX and sY, respectively. Note that the

expected value of~e and~h are both zero by definition.

Assuming that the particular errors involved are

small, we can expand a or b from our linear regression

formula in a Taylor series about the point (Xi, Yi) and

neglect the higher order terms (denoted by O(e2 + s2)).

This is an n dimensional Taylor series expansion.

For the following, A will denote either the intercept (a)

or slope (b):

Að~x;~yÞ ¼Að~X �~e;~Y �~hÞ � Að~X;~YÞ

þ
Xn

i¼1

@AðXi; YiÞ
@Xi

ei þ
Xn

i¼1

@AðXi; YiÞ
@Yi

hi

þ Oðe2 þ h2Þ � Að~X;~YÞ
þ rxAðXi; YiÞ �~eþryAðXi; YiÞ �~h; (11)

where

Xn

i¼1

@AðXi; YiÞ
@Xi

ei ¼ rxAðXi; YiÞ �~e;

Xn

i¼1

@AðXi; YiÞ
@Yi

hi ¼ ryAðXi; YiÞ �~h;

The expression Að~x;~yÞ is a random variable. Denote its

expected value as hAð~x;~yÞi, which can be found using

standard statistical techniques (Gubbins, 2004):

hAðxi; yiÞi ¼hAðXi; YiÞ þ rxAðXi; YiÞ �~e
þryAðXi; YiÞ �~hi ¼ AðXi; YiÞ
þ hrxAðXi; YiÞ �~ei þ hryAðXi; YiÞ �~hi
¼ AðXi; YiÞ þ rxAðXi; YiÞ � h~ei
þ ryAðXi; YiÞ � h~hi ¼ AðXi; YiÞ: (12)

Eq. (12) states that even though~x and~y have measure-

ment error, the expected value of the distribution is the

value that A would be if~x and~y have no measurement
error. The variance s2
A of A(xi, yi) is defined as the

expected value of

½Aðxi; yiÞ � AðXi; YiÞ�2:

Assume that errors~e and~h are independent and uncor-

related. Carrying out this calculation in much the same

manner as above, it can be shown that

s2
A ¼

�Xn

i¼1

�
@AðXi; YiÞ

@Xi

�2�
s2

X

þ
�Xn

i¼1

�
@AðXi; YiÞ

@Xi

�2�
s2

Y (13)

¼ að~X;~YÞs2
X þ bð~X;~YÞs2

Y ; (14)

If there were correlation between errors ~e and ~h (i.e.

heieji 6¼ 0 or hhihji 6¼ 0 for i 6¼ j, or hhieji 6¼ 0 for all i

and j), then additional terms in Eq. (13) would arise, but

these covariance terms would not affect Eq. (12).

The main result of this analysis is that the variance in

either of the regression parameter a or b is a linear

combination of the variances on x and y. The terms

að~X;~YÞ;bð~X;~YÞ (or for simplicity a and b) are the error

reduction/amplification factors. These are dependent on

the following:
� T
he values of the true data (Xi, Yi). These values

certainly will not be known a priori, however if one

knows the prior measurement errors sx and sy, we

recommend subtracting from the data errors that have

been drawn from a normal distribution a mean 0 and

variance s2 to obtain a best approximation to a and b.
� T
he type of regression used (OLS, GMR, ODR). For

each regression, the coefficients a and b have explicit

formulas. The error amplification factors a and b in

Eq. (13) can be quite complicated to determine.
� T
he isotopic mixing line used (Keeling or Miller/

Tans). Calculating the error reduction factors involves

differentiating a vector. In Appendix A, we show how

to calculate the sensitivity factors for a Miller/Tans

OLS regression.
� F
or carbon isotope studies, we can now conclude that

to first order in Eq. (13), measurement uncertainties

in the measured variables [CO2] and d13C are linearly

related to uncertainty in d13CS, irrespective of

whether a Keeling or a Miller/Tans plot is used.

What could potentially distinguish a Keeling from

a Miller/Tans plot are different error reduction/

amplification factors.
� E
q. (13) provides a general theoretical estimate of

uncertainty in d13CS. This is a useful point for
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Fig. 3. Nighttime Keeling and Miller/Tans d13CS for each of the regression schemes (OLS, GMR, ODR). Data from Pataki et al. (2003b) are included

with Keeling GMR for comparison. Note the negative bias associated with the Model II (GMR, ODR) regression methods. d13CS for the present

study was calculated from nighttime TDL data by grouping inlets located at 5, 7, 9, and 11 m together and 0.1, 0.5, 1 and 2 m together in a 6 h interval

centered on midnight (Bowling et al., 2005). Each point on the figure for the Niwot Ridge study represents a mixing line with n � 20 samples of

[CO2] and d13C.
comparison to the standard error of the OLS intercept

recommended by Pataki et al. (2003b).

With Eq. (13) we now have an expression for the

uncertainty of d13CS. Ignoring model error, this

expression is dependent on the analytical uncertainty

in measured quantities and the type of regression and

mixing line used to calculate d13CS. Because of its

generality, we can investigate how analytical uncer-

tainty influences d13CS uncertainty on all the different

possible combinations used to calculate d13CS (OLS,

GMR, or ODR paired with Keeling or Miller/Tans

mixing lines).

4. Discussion

4.1. Evaluation of regression methods

Bowling et al. (2005) demonstrated that there was

a negative bias in GMR Keeling plot determinations

of d13CS when the range of [CO2] is small. Shown in

Fig. 3 are nighttime calculations of d13CS versus [CO2]

range for OLS and GMR regressions for both Keeling

or Miller/Tans isotopic mixing lines from data

collected by the TDL. For comparison, panel ‘b’ of

Fig. 3 features BASIN data from Pataki et al. (2003b)

with variable precision from each measurement site.

The BASIN data are provided as a point of comparison
to the TDL. As we explain below, BASIN data should

not be assumed to have equal measurement precision to

the TDL, and thus comparing the two is misleading.

Panels ‘b’ and ‘d’ in Fig. 3 demonstrate that GMR

negatively biases d13CS if either a Keeling or Miller/

Tans mixing line is used. Plots of ODR produced

similar results as GMR and are not shown.

The bias is more pronounced when mixing lines are

performed using daytime measurements. Fig. 4 is

structured similarly to Fig. 3, but presents daytime

results for the mixing lines. Daytime ranges for the

mixing ratios collected by the TDL are smaller than

nighttime ranges, leading to greater variability in d13CS.

Panel ‘d’ of Fig. 4 compares TDL data to data from

the field-based mass spectrometer at Grünschwaige.

Furthermore, note that in Fig. 4 GMR negatively biases

d13CS.

The three datasets represent very different methods

of collection, yet Figs. 3 and 4 suggest that determining

d13CS from a Keeling or a Miller/Tans regression give

consistent results. (This point is discussed in Section 4.4

and Fig. 11.) One way to circumvent the negative bias is

to increase the probability of sampling maximum range

of [CO2] and d13C for a given time window, as done in

the Grünschwaige study in Fig. 5. However, note that

even when this is done, the possibility for bias at low

[CO2] ranges still exists. Furthermore, Fig. 5 demon-

strates that increasing the number of samples for a
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Fig. 4. Daytime Keeling and Miller/Tans d13CS for each of the regression schemes (OLS, GMR, ODR). Note the negative bias associated with the

Model II (GMR, ODR) regression methods. Data from the Grünschwaige field-based IRMS are included for comparison (Schnyder et al., 2004).

Each d13CS from the Grünschwaige field-based IRMS represents a mixing line with four pairs of [CO2] and d13C data. d13CS for the present study was

calculated from daytime TDL data by grouping inlets located at 5, 7, 9, and 11 m together and 0.1, 0.5, 1 and 2 m together in a 6 h interval centered on

1200 h (Bowling et al., 2005). Each point on the Figure for the Niwot Ridge study represents a mixing line with n � 20 samples of [CO2] and d13C.

Fig. 5. Daytime Miller/Tans d13CS calculated via OLS (panel a) or

GMR (panel b) using a field-based mass spectrometer as described in

Schnyder et al. (2004). Each point represents a mixing line with either

4 (triangles) or 16 pairs (squares) of [CO2] and d13C data.
mixing line from n = 4 or n = 16 reduces the effect of

the bias, but yet it is still present in panel ‘b’ of Fig. 5.

We discuss the effect of increasing the number of

samples on d13CS estimates in Section 4.4.

The BASIN data do not show a bias as strong as the

Niwot Ridge data or Grünschwaige data. We randomly
Fig. 6. Comparison of correlation coefficient r to [CO2] range for the

BASIN subsampling described in text (squares), the Grünschwaige

field-based IRMS (triangles) (Schnyder et al., 2004), and the Niwot

Ridge study (circles) (Bowling et al., 2005). Note the sharp drop in jrj
values at low [CO2] ranges for the Grünschwaige and Niwot Ridge

studies, but not for the BASIN subsampling.
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Fig. 7. Simulation results for d13CS vs. [CO2] range for each of the regression schemes (OLS, GMR, ODR) and mixing relationships (Keeling or

Miller/Tans) using a straight mixing line that has been randomly perturbed by 0.15 ppm in CO2 and 0.15% in d13C (dark symbols) or 0.15 ppm and

0.01% (light symbols). The correct d13CS (with no error added) is �25.67%. Each mixing line had 20 samples. Note the significant reduction in

uncertainty for the 0.01% data.
subsampled each BASIN site [CO2] and d13C dataset to

see if a bias could be produced. We randomly picked at

least four subsamples from the data for each site and

computed d13CS for each of the three regression

methods fit with both Keeling or Miller/Tans mixing

lines. After 250 subsamples of each dataset for a site, a

strong bias (as shown in Figs. 3 and 4) was not produced

(results not shown). However, we can attribute this lack

of a bias to the fact that each dataset was likely screened

before publication to remove erroneous results. Eq. (4)

shows that as the coefficient of correlation r decreases,

the estimate of bGMR is biased relative to bOLS. Fig. 6

shows a plot of r versus [CO2] range for the BASIN

subsampling, Niwot Ridge, and Grünschwaige stu-

dies. Even when the range of samples is small, the

BASIN data still exhibit high r values. This may be

attributable to many factors: processing of d13C

samples at a higher level of precision compared to

the TDL or field-based mass spectrometry, prescreen-

ing of data to remove outliers, or rejection of datasets

with poor r values. Due to this higher apparent

precision of the BASIN data, it is misleading to

compare the BASIN data to the Niwot Ridge data as

done in panel ‘b’ of Fig. 3. Fig. 6 underscores the

strength of the BASIN data and the conclusions of

Pataki et al. (2003b) in spite of the mathematical

challenges underlying Model II regression. Further-

more, Fig. 6 demonstrates the usefulness of high-
resolution measurements to investigate basic assump-

tions about data (e.g. Model I versus Model II, Keeling

versus Miller/Tans) that would not be possible with

flask-based measurements or instrumentation.

To investigate whether this bias arose due to

problems with the datasets, we simulated mixing lines

with artificial data as described in Section 2. These

results are presented in Figs. 7 and 8. The dark symbols

in Fig. 7 represent a dataset of [CO2] and d13C that has

been perturbed with normally distributed random error

with zero mean and standard deviation of 0.15 ppm,

0.15%, respectively. The light symbols represent a

dataset perturbed with 0.15 ppm, 0.01% error, respec-

tively. The correct d13CS (with no error added) is

�25.67%. The same trends in Figs. 3 and 4 emerge in

Fig. 7: Model II negatively biases d13CS at low [CO2]

ranges and using a Keeling or Miller/Tans regression

give consistent estimates of d13CS. Estimates of d13CS

for high [CO2] ranges converge on the ‘‘correct’’ value

of d13CS with no error added for any regression or

mixing line. As a result, we expect large sample ranges

to lead to consistent parameter estimates for either

Model I or II regression. While decreasing the random

error in d13C seems to reduce the variability in d13CS at

low [CO2] ranges, Fig. 8 shows that the variability is

still present, although the [CO2] range where this

variability dominates is smaller. These results indicate

that estimating d13CS at low [CO2] ranges depends on
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Fig. 8. Same data as gray symbols in Fig. 7 but with changed scales.
the ability to measure [CO2] and d13C with a minimum

amount of measurement or sampling error rather than a

particular choice of isotopic mixing line (Keeling or

Miller/Tans).

4.2. Explaining Model II regression bias

From Eq. (4) we see that as data become less

correlated (as jrj approaches 0), then bOLS 6¼ bGMR. In

particular as the correlation coefficient goes to 0, bGMR

will diverge to positive or negative infinity, depending

on the sign of bOLS. (For d13CS it will be negative

infinity.) In effect, geometric mean regression biases the

regression coefficients a and b at low jrj. This bias is

apparent in Figs. 3–5 for both Keeling and Miller/Tans

regressions calculated with GMR as well as ODR (ODR

results not shown). Furthermore, because the slopes for

bGMR and bODR can be related to bOLS (Eqs. (1)–(5)), we

expect that any variability in bOLS at low [CO2] ranges

will lead to variability in bODR and bGMR (similarly for

aGMR and aODR). In spite of this variability, are the

estimates of bGMR and bODR (aGMR and aODR)

consistent or unbiased with respect to bOLS (aOLS)?

To further investigate the reasons for this bias, one

can scale the regression axes appropriately so that the

independent and dependent variables for a particular

regression are scaled between �1 and 1 and have zero

mean and unit variance. This is necessary for our

application because for a given mixing line, there is a

mismatch between the signal to noise ratios (SNR) for a

[CO2] and d13C measurement, respectively. This
nondimensionalization is done by the following

transformation:

x! x� ¼ x� x̄

sxdata

; y! y� ¼ y� ȳ

sydata

(15)

The result of this transformation is that one variable

will not unduly influence the regression coefficients

a and b because the variables are dimensionless (Gub-

bins, 2004). Note that in Eq. (15), sxdata
is the standard

deviation of all the x samples on a particular mixing

line, which will usually be different from the analytical

uncertainty in an individual measurement. Denote

the intercept and slope from a fitted relationship in

the (x*, y*) dimensionless coordinate system as a*

and b*, respectively. When this is done, translating back

to the original dimensional coordinate system (x, y), the

a and b are scaled accordingly:

b ¼ sydata

sxdata

b� (16)

a ¼ sydata
a� þ ȳ� bx̄ (17)

Under the assumption that the errors in the dependent

variable are normally distributed, then the coefficients

a* and b* for OLS will then be normally distributed

(Taylor, 1997; Tarantola, 2005). This property for OLS

will also be preserved when transforming back into the

dimensional coordinate system. However, in the (x*, y*)

coordinate system both axes are symmetrical, and so a
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fit of y* versus x* will yield the same slope as a

regression with x* as the dependent variable. As a result,

for geometric mean regression, b�GMR will equal 1.

Similarly, x* and y* in this coordinate system have a

variance of 1, so B in Eq. (5) will be zero, giving

b�ODR ¼ 1. For a Miller/Tans mixing line, b* = �1 for

GMR and ODR. As the (x*, y*) coordinate system is

scaled between�1 and 1, one should expect that a* be 0.

For both Model II regressions, simulations (not shown)

using artificial data (described in Section 2) confirmed

that a* was normally distributed about 0.

The bias associated with Model II regression arises

due to the term sydata
=sxdata

¼ u in Eq. (16). Fig. 9

presents simulation results of sydata
=sxdata

for both

Keeling and Miller–Tans regressions from an artificial

dataset with 0.15 ppm, 0.15% random error. Notice

how this ratio tends to positive infinity as [CO2] sample

range decreases. When translating back into the

dimensional coordinate system, this ratio biases the

regression coefficient a or b.

Model II estimates of b (and concurrently a) in the

dimensioned space will have an increasing bias as

[CO2] range decreases. Since b* = �1 for Model II

regression, b will diverge to negative infinity as [CO2]

range decreases. Recall that for a Miller/Tans mixing

line, b = d13CS. For a Keeling mixing line, a in Eq. (17)

is weighted by the biased factor bx̄ and will likewise

bias a to negative infinity. Since a in a Keeling mixing

line is d13CS, then d13CS will have a negative bias.

Contrast this result to Model I estimates of a and b.

The factor sydata
=sxdata

when translating back to the (x,

y) coordinate system is still relevant for Model I

regression, however examination of Eq. (1) shows that

b* will not be 1, and will vary as [CO2] range decreases,

leading to a normal distribution of b*.

As a result, the bias associated with Model II

regression is mathematical in nature. If GMR or ODR
Fig. 9. Comparison of the ratios of u ¼ sydata
=sxdata

for Keeling and Miller/T

0.15% random error. Note the different dimensional units on u for a Keeling

both of these ratios diverge to infinity, explaining the reason for bias in M
is used to estimate d13CS, they will bias d13CS

particularly at low r (correlation coefficient). Further-

more, this bias arises independent of a particular mixing

line choice (Keeling or Miller/Tans).

We acknowledge that the bias arising from the term

sydata
=sxdata

in Eq. (16) is specific to the particular data

and study at hand. When this ratio was calculated for

the BASIN subsampling scheme (described in Section

4.1), sydata
=sxdata

was constant at low [CO2] ranges

(results not shown). Furthermore, we do not exclude

the possibility that Model I regression may be biased at

low ranges in the independent variable if there is a

consistent covariance between the regression variables

(i.e. the term
P

x�i y�i in Eq. (1) is consistently positive

or negative at all ranges). However, for the mixing line

studies examined here, investigation of mixing lines at

low [CO2] ranges showed mixing lines that would

produce slopes (and hence intercepts) that were

opposite in sign to our mixing line assumptions in

Section 3.2. This random covariance at low [CO2]

ranges was also reflected in our simulated data (Fig. 7).

We argue that the mixing line relationships developed

should hold at small [CO2] ranges, but our ability to

measure these relationships at low ranges breaks down

because of a small signal to noise ratio (Table 2,

discussed below). Thus, for current analytical error

levels we should not expect a bias for OLS in mixing

line studies.

4.3. Determining d13CS at low [CO2] ranges

Fig. 7 shows results of d13CS versus [CO2] range

from two simulated datasets with normally distributed

random errors with 0.15 ppm, 0.15% and 0.15 ppm,

0.01% standard deviations, respectively. For each

simulation, the uncertainty in d13CS was calculated

for each particular regression type (OLS and GMR) and
ans regressions vs. [CO2] range using artificial data that has 0.15 ppm,

or a Miller/Tans regression. Also note that as [CO2] range decreases,

odel II regressions.
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Table 1

Mean, median, and skewness for each of the distributions of d13CS generated from simulations shown in Fig. 7

Dataset Regression Mean

(%)

Median

(%)

Median � mean

(%)

Skewness Mean

(%)

Median

(%)

Median �
mean (%)

Skewness

A kOLS �25.62 �25.67 �0.05 5.94 �25.67 �25.68 �0.01 0.59

A kGMR �27.60 �26.07 1.53 0.73 �26.48 �26.03 0.45 �2.73

A mtOLS �25.62 �25.67 �0.05 5.93 �25.67 �25.67 0.00 0.49

A mtGMR �33.18 �26.14 7.04 �31.92 �26.57 �26.07 0.50 �2.69

B kOLS �25.67 �25.67 0.00 5.94 �25.67 �25.67 0.00 5.62

B kGMR �25.71 �25.67 0.04 0.73 �25.71 �25.68 0.03 �17.91

B mtOLS �25.67 �25.67 0.00 5.93 �25.67 �25.67 0.00 5.63

B mtGMR �25.72 �25.68 0.04 �31.92 �25.72 �25.68 0.04 �26.78

Simulations from dataset ‘‘A’’ represent data with normally distributed random errors with 0.15 ppm, 0.15% standard deviations. Simulations

from dataset ‘‘B’’ represent data with normally distributed random errors with 0.15 ppm, 0.01% standard deviations. The column ‘‘regression’’

specifies the type of regression (OLS or GMR) and mixing line used (k = Keeling, mt = Miller/Tans). For ODR, similar results to GMR were

obtained and hence omitted. The left columns represent the mean, median, and skewness of the entire population of d13CS from a particular

regression. The right columns report the mean, median, and skewness for the population of d13CS restricted to be within 10% of �25.67%, the

correct d13CS with no error added.
isotopic mixing line (Keeling or Miller/Tans) from

Eq. (13). For ODR, similar results to GMR were

obtained and hence omitted.

If a distribution is normally centered about a mean,

then the mean will be equal to the median of that

distribution. If a distribution is negatively skewed, then

the mean will be less than the median, implying the

mean subtracted from the median is positive. Asym-

metry can also be calculated from the skewness (Sokal

and Rohlf, 1995). A normal distribution will have its

skewness as 0, and a negatively skewed distribution will

have negative skewness. Table 1 reports the mean,

median, and skewness of each population of d13CS

presented in Figs. 7 and 8. When the mean, median, and

skewness are calculated for the entire sample popula-

tion, in general Model II (GMR and ODR) regression is

negatively skewed, whereas Model I (OLS) is not (ODR

results not shown in Table 1). What is interesting is that

the mean, median, and skewness calculated from a

Keeling GMR with simulated data with normally

distributed random errors with 0.15 ppm and 0.15%
standard deviations has its mean (�27.60%) less than

its median (�26.07%), yet it has a skewness close to

zero, suggesting a normal distribution. This may be due

to the influence of outliers. Due to the large random

errors on d13C (0.15%), it was possible to obtain

simulation values of d13CS (>0 or <�50%) that were

not biologically plausible. This occurred when the

[CO2] range was small. To minimize this effect, we

recalculated the mean, median, and skewness for d13CS

that fell within 10% of �25.67%, the correct d13CS

with no error added. When this was done (right columns

of Table 1) Model II regression consistently had

negative skewness.
Fig. 10 shows fitted results of the theoretical

uncertainty in d13CS calculated from Eq. (13) versus

[CO2] range. This is similar to Fig. 1, but Fig. 10

contains the results of six different simulations. The

uncertainty in [CO2] was normally distributed with a

standard deviation of 0.15 ppm for each simulation in

the top panels of Fig. 10, and 0.10 ppm in the bottom

panels. The uncertainty in d13C was normally dis-

tributed with a standard deviation of 0.15%, 0.01%, or

0.005%. The top panels are representative of the

analytical uncertainty in Bowling et al. (2005), and the

lower panels are representative of the analytical

uncertainty in Miller and Tans (2003). [CO2] range

and d13CS uncertainty were then fit to a power function.

(y = axb where y is d13CS error, x is [CO2] range.)

Fig. 10 shows the results for OLS and GMR. ODR was

omitted because similar results to GMR were obtained.

Note that in Fig. 10 there is no appreciable difference

between Models I and II regression for the uncertainty

in d13CS. However, note the significant reduction in

d13CS error at low [CO2] ranges when the precision on

d13C measurements is improved.

To investigate whether improvements in [CO2]

versus d13C measurement capability might decrease

uncertainty in d13CS, we ran additional simulations with

varying degrees of error in [CO2] and d13C and then

fitted d13CS error versus [CO2] range to a power

function for each simulation. The motivation for this

was to examine d13CS uncertainty for typical night

ranges (50 ppm) and typical day ranges (5 ppm).

Corresponding isotope ratio variation in C3 ecosystems

is conservatively �0.05%/ppm (Bowling et al., 1999),

so these CO2 ranges correspond to a d13C signal of 2.5%
and 0.25%, respectively. We then compared signal to
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Fig. 10. Fitted results of the theoretical uncertainty in d13CS calculated from Eq. (13) vs. [CO2] range for Keeling OLS (left panels) and Keeling

GMR (right panels). For ODR, similar results to GMR were obtained and hence omitted. The top panels come from simulations where [CO2] have

been randomly perturbed by 0.15 ppm, corresponding to the analytical uncertainty of [CO2] in Bowling et al. (2005). The lower panels are from

datasets where CO2 has been randomly perturbed by 0.10 ppm, corresponding to the analytical uncertainty in Miller and Tans (2003). The legends

correspond to the magnitude of the perturbation in d13C.
noise ratios of [CO2] and d13C and the resulting d13CS

error for each simulation. The results are shown in

Table 2. The fifth and sixth columns of Table 2 highlight

the fact that the signal to noise ratios of [CO2] and d13C

are not equal with present analytical capabilities. At

current measurement capability of the TDL (precision

of 0.15 ppm and 0.15%), it is possible to determine

d13CS at an uncertainty of 0.71% when a sample [CO2]

range of 50 ppm is obtained. However, if a sample range

of 5 ppm is obtained, the TDL can only determine d13CS

with an uncertainty near 6%. This contrasts sharply

with IRGA/mass spectrometry (Miller and Tans, 2003),

which can resolve d13CS to an uncertainty of 0.05% for

a 50 ppm range, and 0.46% for a 5 ppm range of [CO2].

Furthermore, the last two columns of Table 2 indicate

that Model I and Model II regression give equivalent

results for uncertainty in d13CS. If we wish to calculate

d13CS at small [CO2] ranges – which is needed to

interpret the daytime isotopic signals – improving the

precision of [CO2] measurements will not have as great

an effect as improving the precision of d13C measure-

ments because [CO2] is currently measured at a

relatively higher precision than d13C.

The conclusion that improving analytical uncer-

tainty on d13C more than [CO2] will improve d13CS

precision can also be inferred from examining the error

reduction factors (a and b in Eq. (13)). Table 3 lists the

error reduction factor for [CO2] and d13C for the TDL

dataset. Note that the error reduction factor for d13C is

three orders of magnitude larger than the reduction
factor for [CO2], regardless of regression choice or

isotopic mixing line.

We recognize the complexity associated with

Eq. (13) to determine the error in d13CS for a particular

regression choice and isotopic mixing line. In

Appendix A, we calculate the sensitivity factors a

and b for a Miller/Tans OLS regression. Due to the

equivalence in Fig. 10 between the d13CS error for a

Model I and a Model II regression, we can justify the

use of Model I standard error to determine d13CS error,

even when Model II regression is used. Eq. (13) and the

standard error of the OLS intercept (Keeling mixing

line) or slope (Miller/Tans mixing line) give similar

results for simulations (results not shown). For practical

convenience, we recommend using these OLS standard

error formulas as recommended by Pataki et al. (2003b)

to determine uncertainty in d13CS. We do not expect this

result to generalize to all studies, but this conclusion is a

consequence of the fact that [CO2] is measured with

higher relative precision than d13C. The fitted theore-

tical relationship in d13CS uncertainty [CO2] range for

0.15 ppm, 0.15% measurement uncertainty is shown in

Fig. 1. Note that most of the uncertainty in d13CS for the

TDL fall at or below the fitted relationship.

To reduce the effect of the bias, one possible

measurement protocol is to increase the number of

samples. Due to the complexity of Eqs. (1)–(5), it is

difficult to disentangle the effect of the range from the

number of samples on parameter estimates. Fig. 5 shows

results where the number of regression points is
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Table 2

Calculation of signal to noise ratios for CO2 and d13C with the corresponding uncertainty in d13CS determined from fitting the theoretical error vs.

CO2 range to a power function y = axb where x = 50 or x = 5

CO2 signal (ppm) d13C signal (%) Uncertainty in CO2 (ppm) Uncertainty in d13C (%) CO2 SNR d13C SNR kOLS (%) kGMR (%)

50 2.50 0.15 0.15 333.3 16.67 0.71 0.71
50 2.50 0.15 0.05 333.3 50 0.23 0.23

50 2.50 0.15 0.01 333.3 250 0.05 0.05

50 2.50 0.15 0.0075 333.3 333.3 0.04 0.04

50 2.50 0.15 0.0005 333.3 5000 0.03 0.03

50 2.50 0.1 0.15 500 16.67 0.69 0.69

50 2.50 0.1 0.05 500 50 0.23 0.23

50 2.50 0.1 0.01 500 250 0.05 0.05
50 2.50 0.1 0.0075 500 333.3 0.04 0.04

50 2.50 0.1 0.005 500 5000 0.02 0.02

50 2.50 0.01 0.15 5000 16.67 0.70 0.70

50 2.50 0.01 0.05 5000 50 0.23 0.23

50 2.50 0.01 0.01 5000 250 0.05 0.05

50 2.50 0.01 0.0075 5000 333.3 0.04 0.04

50 2.50 0.01 0.0005 5000 5000 0.003 0.003

50 2.50 0.005 0.15 10000 16.67 0.69 0.69

50 2.50 0.005 0.05 10000 50 0.23 0.23

50 2.50 0.005 0.01 10000 250 0.04 0.04

50 2.50 0.005 0.0075 10000 333.3 0.03 0.03

50 2.50 0.005 0.005 10000 5000 0.003 0.003

5 0.25 0.15 0.15 33.3 1.67 6.36 6.36
5 0.25 0.15 0.05 33.3 5 2.02 2.02

5 0.25 0.15 0.01 33.3 25 0.45 0.45

5 0.25 0.15 0.0075 33.3 33.3 0.40 0.39

5 0.25 0.15 0.0005 33.3 500 0.23 0.23

5 0.25 0.1 0.15 50 1.67 6.15 6.15

5 0.25 0.1 0.05 50 5 2.08 2.08

5 0.25 0.1 0.01 50 25 0.46 0.46
5 0.25 0.1 0.0075 50 33.3 0.36 0.36

5 0.25 0.1 0.0005 50 500 0.16 0.16

5 0.25 0.01 0.15 500 1.67 6.25 6.25

5 0.25 0.01 2.05 500 5 2.05 2.05

5 0.25 0.01 0.01 500 25 0.42 0.42

5 0.25 0.01 0.0075 500 33.3 0.32 0.32

5 0.25 0.01 0.0005 500 500 0.03 0.03

5 0.25 0.005 0.15 1000 1.67 6.30 6.30

5 0.25 0.005 0.05 1000 5 2.03 2.03

5 0.25 0.005 0.01 1000 25 0.39 0.39

5 0.25 0.005 0.0075 1000 33.3 0.31 0.03

5 0.25 0.005 0.005 1000 500 0.02 0.02

Values in bold represent current measurement capabilities with the TDL (0.15 ppm, 0.15%) (Bowling et al., 2005) or IRGA/mass spectrometry

(0.10 ppm, 0.01%) (Miller and Tans, 2003). kOLS represents the uncertainty in d13CS for a Keeling OLS regression, kGMR a d13CS Keeling GMR

regression uncertainty. For ODR, similar results to GMR were obtained and hence omitted.
increased from 4 to 16. For n = 4, there are more

estimates of d13CS at small ranges (which is to be

expected) and by inspection the bias problem is less

pronounced.

Clearly, increasing the number of samples can

generate a dataset more representative of the mixing

line. The number of samples is usually study dependent,

but for mixing lines, 20 samples is a conservative

estimate. All the regression estimates (OLS, GMR, and

ODR) rely on minimizing some residual from the best-
fit line (see Fig. 2). A sample of data points with similar

x values (i.e. a small range) should have similar

residuals from the best-fit line. Fig. 11 shows results of

simulations where the number of samples was

constrained to be either n = 5, 20, or 80. (Keeling

OLS and GMR estimates only; similar results were

obtained for Miller/Tans and ODR and hence omitted.)

By inspection there is no apparent difference between

the number of samples and the strength of Model II bias.

Because of this discrepancy between simulated results
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Table 3

Calculation of error reduction factors for OLS and GMR discussed in

the text using TDL data from all measurement heights

Regression CO2 reduction

factor, a

d13C reduction

factor, b

kOLS 0.000295 0.203

mtOLS 0.000278 0.207

kGMR 0.000313 0.203

mtGMR 0.000277 0.208

For ODR, similar results to GMR were obtained and hence omitted.

The initials preceding the regression types denote a Keeling (k) or a

Miller/Tans (mt) isotopic mixing line.
(Fig. 11) and actual data (Fig. 5), we hypothesize that

the differences between the estimates in Fig. 5 are due to

biological and environmental variability. At small

ranges with a low number of samples, it may be

difficult to capture the linear relationship between 1/

[CO2] and d13C, and the mixing line is extremely

sensitive to biological variation that generate large

outliers from the best-fit line. At low ranges with a large

number of samples, these outliers have less of an effect

because the mixing line (albeit at small ranges) is well

sampled for that range.

4.4. Recommendation of regression type and

isotopic mixing line

One application of Keeling or Miller/Tans isotopic

mixing lines is to compare estimates of d13CS across

biomes as done in Pataki et al. (2003b). As stated in

Section 3.1, determining d13CS from [CO2] and d13C
Fig. 11. Simulation results of d13CS bias vs. [CO2] range for mixing lines wi

0%. The d13CS bias is calculated as d13CS less the value from a straight mixin

been randomly perturbed by 0.15 ppm in [CO2], 0.15% in d13C. The top pane

Keeling GMR estimates of d13CS. Similar results for ODR regression techn
measurements is an example of functional regression

rather than forecasting values of d13C for a given [CO2]

measurement. Model II regression has been tradition-

ally recommended in this case because it removes the

influence of determining an independent and dependent

variable. Model II regression is heavily used in

allometry studies where no ‘‘independent’’ variable

exists (Henry and Aarssen, 1999). Pataki et al. (2003b)

used this logic to advocate Model II regression for

isotopic mixing lines.

At low [CO2] ranges, our analytical ability to

measure a relationship between [CO2] and d13C is

decreased. Model II regression is not appropriate when

there is no apparent relationship in the data (Sprent and

Dolby, 1980). If a relationship is still posited between

the data, then Model I regression is recommended in

order to get some idea (albeit with large errors) of the

functional relationship (Sprent and Dolby, 1980). For

isotopic mixing lines, mass conservation (Eqs. (7) and

(8)) still applies at low [CO2] ranges, however it is

difficult to determine d13CS at these ranges due to a low

signal to noise ratio in the measurements (Table 2).

Fig. 4 shows that using OLS regression to estimate

d13CS will be normally distributed about the coeffi-

cients. Data from simulations were generated from a

straight mixing line with d13CS = �25.67%. When

[CO2] and d13CS data were perturbed with random error,

simulations in Figs. 7 and 8 demonstrate that OLS

regression estimates d13CS in a range distributed about

the ‘‘correct’’ d13CS whereas Model II regression does

not. Fig. 11 also demonstrates that there is no bias

(plotted as d13CS less the true value of �25.67%)
th a variable number of samples (n = 5, 20 or 80). The gray line marks

g line (�25.67%). All the simulation results come from data that have

ls represent Keeling OLS estimates of d13CS and the bottom panels are

iques and Miller/Tans mixing lines were obtained and hence omitted.
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Fig. 12. (Top panel) Comparison of the difference between d13CS

calculated from a Keeling mixing line and a Miller/Tans mixing line

for OLS and GMR using the TDL data (nighttime and daytime). On

the vertical axis g ¼ d13CSKeeling
� d13CSMiller=Tans

. For ODR, similar

results to GMR were obtained and hence omitted. Bottom panel:

Comparison of the difference between d13CS calculated from a Miller/

Tans mixing line using OLS and a Miller/Tans mixing line using GMR

for the Niwot Ridge TDL (Bowling et al., 2005) and the 45 min

Grünschwaige field-based IRMS (Schnyder et al., 2004). On the

vertical axis n ¼ d13CSOLS
� d13CSGMR

.

associated with OLS across a range of sample sizes.

This conclusion of using OLS at low ranges has been

examined in other studies (Angleton and Bonham,

1995).

For large [CO2] ranges the recommendation to use

GMR from Pataki et al. (2003b) gives reasonable

results. However, as shown in Figs. 7 and 8, GMR

regressions are unbiased compared to OLS only for

large [CO2] and high r2. This result may affect studies

where GMR is used to estimate d13CS. If d13CS was

calculated using Model II regression from a mixing line

with a low [CO2] range, we should expect a more

negative calculation of d13CS. The amount of the bias is

dependent on the level of analytical uncertainty in

[CO2] and d13C. Our sensitivity analysis demonstrates

that reducing measurement uncertainty reduces our

uncertainty in d13CS, and hence will reduce the effect of

the bias (Figs. 7 and 8).

Pataki et al. (2003b) argue that Model II regression

should be used over Model I because there is no clear

independent variable in isotopic mixing lines. Because

of comparatively greater signal to noise ratios in d13C

measurements than [CO2] measurements (Table 2), and

the lack of a bias in Model I regression in real data

(Figs. 3 and 4) and simulated data (Figs. 6–8 and 11) the

use of Model I regression with d13C as the dependent

variable is justifiable for isotopic mixing lines.

As shown in Section 3.2, the Keeling and Miller/Tans

isotopic mixing lines are derived from the same

conservation equations. In theory they should give an

equivalent estimate of d13CS. Simulations shown in

Figs. 7 and 8 show no inherent difference between the

two, and the theoretical uncertainty analysis for d13CS

does not illustrate an advantage of one over the other

three. Note, however, the Miller/Tans formulation of the

isotopic mixing line offers an advantage when the

background values can be specified (Miller and Tans,

2003; Lai et al., 2004, 2005).

Differences were found between d13CS calculated

from a Keeling or a Miller/Tans regression for Model II

regression. The top panel of Fig. 12 demonstrates that

the difference between the two (g) increases as [CO2]

range decreases for Model II only, whereas the

difference for Model I does not. Using a Model II

regression to reduce the influence of the independent

variable gives rise to a bias as discussed because

Keeling and Miller/Tans regressions occur in different

dimensional space. GMR and ODR have different

strategies to minimize the vertical and horizontal

residuals. Conceptually shown in Fig. 2, GMR performs

two OLS regressions and takes the geometric mean of

them. ODR minimizes the perpendicular residual from
the hypothetical best-fit line. Because of these different

strategies, GMR and ODR produce a bias that is

dependent on the correlation between the variables.

Because there is no bias associated with Model I

regression, this is further justification for its use in this

application.

An implication of this study is the re-interpretation

of highly negative values of d13CS in studies that use

geometric mean regression (Bowling et al., 2002; Pataki

et al., 2003a; McDowell et al., 2004; Lai et al., 2004,

2005; Hemming et al., 2005). Highly negative values of

d13CS may be indicative of anthropogenic effects

(Pataki et al., 2003a; Lai et al., 2004) or situations

when there is a small isotopic disequilibrium between a

source and a sink of [CO2] (this may occur with

photosynthesis and respiration, see Miller and Tans

(2003)). If d13CS was calculated from a mixing line with

low r, then the result will be even more biased. The

bottom panel of Fig. 12 presents the difference (n)

between d13CS calculated via a Miller/Tans OLS

regression and a Miller/Tans GMR regression using

the TDL data, separated into upper canopy inlets (5, 7,

9, and 11 m aboveground) and lower canopy inlets (0.1,

0.5, 1 and 2 m aboveground) as done in Bowling et al.
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(2005) and data from the field-based mass spectrometer

at Grünschwaige. The lower half of Fig. 11 clearly

demonstrates low r may bias d13CS by 50%. The

magnitude of the bias is dependent on the analytical

uncertainty of the measurements.

Fig. 6 demonstrates the marked contrast between the

BASIN dataset and datasets collected by TDL and

field-based mass spectrometry. As described in Section

4.1, this difference may be attributed to higher

precision on the BASIN dataset or rejection of data

points of poor quality. The Niwot Ridge and

Grünschwaige studies have a higher proportion of

poor quality datasets (low r) at low [CO2] range; this is

also reflected in simulated data as well at all levels of

error in [CO2] and d13C. We hypothesize the difference

between the two is rejection of data of poor quality

(either outliers or datasets with low [CO2] range). If

data are also excluded because they seem ‘‘biologically

meaningless,’’ an implication is biased (prejudiced)

data reporting of d13CS values. To resolve this

epistemological issue on the criteria for ‘‘good’’ data,

we advocate a thorough discussion about objectivity in

data elimination and reporting.

The mathematical results of this study (increased

Model II bias at low r) and sensitivity analysis (Eq. (13))

can apply to many diverse areas outside of carbon cycle

research (e.g. isotopic diet studies, Best and Schell,

1996; Burton and Koch, 1999; tree allometry studies,

Henry and Aarssen, 1999; or ecotoxicology studies,

Angleton and Bonham, 1995). To obtain consistent

parameter estimates via linear regression, it is necessary

to understand (a) the differences between different types

of linear regression (OLS, GMR, and ODR), and (b) the

influence of regression choice on the calculation and

interpretation of regression parameters.

5. Conclusions

From this study we conclude the following:
� T
he use of Model II regression to determine d13CS is

inappropriate because it is a biased estimator of d13CS.

On the other hand, Model I regression gives unbiased

estimates of d13CS at all [CO2] ranges with all relevant

scenarios of instrument precision (encompassing

laboratory-based dual inlet mass spectrometry field-

based mass spectrometry, and TDL). This conclusion

is also justified from simulations of isotopic mixing

lines from [CO2] and d13C data that have varying

levels of random error.
� T
he standard error formulas for Model I regression

are fine as a measure of d13CS uncertainty.
� T
here is no inherent advantage or disadvantage to

using either a Keeling or a Miller/Tans approach to

determine d13CS.
� O
ur ability to estimate d13CS at low [CO2] ranges is

determined primarily on the measurement uncertain-

ties of d13C. Instrument development is necessary to

minimize this uncertainty in order to minimize d13CS

uncertainty.
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Appendix A

Assume that we have N measurements of [CO2]

and d13C. Denote the ith measurement by; [CO2] by ci

and d13C by di. The slope of a Miller/Tans OLS

regression is given by

b ¼
N
P

c2
jd j �

P
c j

P
c jd j

N
P

c2
j �
�P

c j

�2
: (18)

The error reduction factor for [CO2] is given by

@b

@ci
¼�

2Ncidi �
P

c jd j � di

P
c j

��
N
P

c2
j �
�P

c j

�2�

�
�

N
P

c2
jd j �

P
c j

P
c jd j

��
2Nci � 2

P
c j

�
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N
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c j

�2�2

¼ 2cidi � d jc j � dic̄ j � 2bðci � c̄ jÞP
c2

j � N�1

�P
c j

�2
; (19)
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where x̄ j represents the mean of the variable x. Simi-

larly, the error reduction for d13C is given by

@b

@di
¼ Nc2

i � ci

P
c j

N
P

c2
j �
�P

c j

�2
¼

c2
j � c̄ jci

N
P

c2
j �
�P

c j

�2
:

(20)
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Schnyder, H., Schäufele, R., Wenzel, R., 2004. Mobile, outdoor

continuous-flow isotope-ratio mass spectrometer system for auto-

mated high-frequency 13C– and 18O–CO2 analysis for Keeling plot

applications. Rapid Commun. Mass Spectrom. 18, 3068–3074.

Sokal, R., Rohlf, J., 1995. Biometry. W.H. Freeman and Company,

New York.

Sprent, P., Dolby, G.R., 1980. The geometric mean functional relation-

ship. Biometrics 36, 547–550.

Still, C.J., Berry, J.A., Ribas-Carbo, M., Helliker, B.R., 2003. The

contribution of C3 and C4 plants to the carbon cycle of a tallgrass

prairie: an isotopic approach. Oecologia 136, 347–359.

Tarantola, A., 2005. Inverse Problem Theory and Model Parameter

Estimation. SIAM Books, Philadelphia, PA.

Taylor, J.R., 1997. An Introduction to Error Analysis, 2nd ed.

University Science Books, Sausalito, CA.

Valentini, R., Matteucci, G., Dolman, A.J., Schulze, E.-D., Rebmann,

C., Moors, E.J., Granier, A., Gross, P., Jensen, N.O., Pilegaard, K.,

Lindroth, A., Grelle, A., Bernhofer, C., Grünwald, T., Aubinet, M.,

Ceulemans, R., Kowalski, A.S., Vesala, T., Rannik, Ü., Berbigier,
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