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AbstractSimple mathematical models are used to explore the rupture of molecular bonds subjectto a dynamically increasing force as applied in optical trapping and atomic force microscopyexperiments. The Markov-equation-based theory proposed by Evans and Ritchie (Biophys. J.,1997, 72, 1541-1555) assumes that the unbinding rate grows exponentially with the appliedforce and predicts a logarithmic dependence of rupture force on the loading rate, i.e., the rateat which the applied force is increased. In the current paper, simulations using Fokker-Planck-based models show that the rupture force is a biphasic function of loading rate, even for asingle-well binding potential. A Markov model that uses an appropriate unbinding rate canaccurately capture this behavior. The appropriate unbinding rate can be tabulated by solvinga sequence of steady-state Fokker-Planck equations for unbinding under constant force. Asa function of force, this unbinding rate grows much more slowly than exponentially, and therupture forces consistent with it are substantially larger than those predicted by the Evans andRitchie theory.
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IntroductionThe ability of bonds between macromolecules to withstand external forces is critical throughoutbiology. Important examples involve the adhesion of cells in the blood (e.g., leukocytes, platelets,tumor cells) to the vascular wall and to one another. In particular, during platelet aggregation, thedimeric plasma protein �brinogen binds to activated �IIb�3 integrin receptors on the surfaces of twodi�erent platelets, and forms a molecular bridge between the platelets. The number of such bridgesand the strength of each one are important factors in determining whether the platelets remaintogether in the background shear 
ow, and so in
uence whether a wall-bound platelet thrombusgrows and how large it gets.Using optical tweezers, atomic force microscopy, and other techniques, a large number of studiesof bond strength have been carried out (see [16] and references therein). In these studies it is notpossible to suddenly impose a constant force on the bond. Instead the applied force ramps up intime, and the rate of increase of the applied force is called the loading rate. Evans and Ritchie(E-R) [3, 5] proposed a theory to understand experiments of this kind, and made the importantobservation that the measured force at which the bond ruptures should depend on the loading rate.Further, their theory predicted that the rupture force should increase logarithmically as loadingrate increases.Weisel and coworkers used laser-tweezers (See Fig.1) to study the strength of the �brinogen-�IIb�3 bond [12]. They measured rupture forces for a range of loading rates (160 pN/sec to16,000 pN/sec) of physiological interest. At each loading rate, a distribution of rupture forces wasmeasured over many experiments; the peak of this distribution (approximately 85 pN) changedvery little as the loading rate varied, indicating that the rupture force for this bond has littlesensitivity to loading rate at least over the range of physiologically relevant loading rates. Thus,Weisel's results seem to disagree with the predictions of the E-R theory. Some experimental studiesof bond rupture for di�erent molecular systems report logarithmic dependence over the full rangeof loading rates studied [9] or piecewise logarithmic dependence with di�erent slopes in di�erentintervals of loading rates [4, 13, 15, 17]. Other studies report little sensitivity to loading rate [2]or other non-logarithmic dependence [8]. In some cases, complex models have been proposed toaccount for the non-logarithmic behavior [8]. Because of the range of results, including a numberthat are at odds with the existing theory, in this paper we re-examine the breaking of molecularbonds under dynamic forcing. We �nd that while there is a range of loading rates over which therupture force indeed depends logarithmically on loading rate, this range is sometimes quite limited,and so characterizing the overall dependence as 'logarithmic' is misleading. Even in the logarithmicrange, the rupture forces predicted by the E-R theory can be substantially in error. We also �ndthat, even for very simple models, it is common that there is a substantial range of loading rates3



over which the rupture force is quite insensitive to loading rate.The E-R theory is based on a Markov model dP=dt = �ko�P for the probability P (t) that thebond is intact at time t, in which, following Bell [1], it is assumed that the unbinding rate ko� isan exponential function of the instantaneous external force F applied to the molecule. That is,ko�(F ) = k0 exp(F=F0), where k0 and F0 are appropriate (F -independent) scale factors. By lookingat Langevin and Fokker-Planck (F-P) equation descriptions of the unbinding process, we �nd thatthis choice of o�-rate is often inappropriate. We also show that using a Markov model with ano�-rate tabulated by solving the appropriate steady-state F-P equation with constant applied force,there is good agreement with the predictions from the time-dependent F-P equation that describesunbinding under dynamic forcing.
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Figure 1: Left: Schematic of laser tweezers system. Fibrinogen molecules and �IIb�3 molecules areattached at low density to, respectively, a 1�m diameter latex bead and the surface of a stationarypedestal. The laser tweezers are used to move the bead toward the pedestal and then to pullit away. The laser is moved at a prescribed velocity and the distance between the center of thebeam and the center of the bead is measured. Using this distance and the e�ective spring constantfor the laser-bead system, the force applied by the laser to the bead at each instance of time iscomputed. Right: Schematic of rupture force measurement. The slight upward bump in the graphnear time 1 indicates contact of the bead and the pedestal. The laser's force on the bead increasesapproximately linearly as the beam is moved to pull the bead away from the pedestal and thendrops drastically when the bond ruptures.Three Variable ModelThe �rst model we consider involves Langevin equations for the positions of the bead centerX(�), the ligand head Y (�), and the center of the laser beam Z(�) as functions of time � :4



�XdX(�) = kl(Z �X)d� � ks(X � Y � r0)d�; (1)�Y dY (�) = �Fbd� + ks(X � Y � r0)d� +pkBT�Y d� dW (0; 1); (2)dZ(�) = vkl d�: (3)
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Figure 2: Model Schematic: Left, three variable model. Right, one variable model.These equations correspond to the schematic diagram in the left panel of Fig.2, and we note thatbecause of the small size of the objects involved we have ignored mass. Here, �X and �Y are thefriction coe�cients for the bead and ligand head, respectively; ks and kl are the spring constantsfor the ligand molecule and laser trap, respectively; r0 is the distance between the bead centerand ligand molecule head when the molecule is unstressed; kB is Boltzmann's constant; T is theabsolute temperature; Fb is the force due to the binding potential; dW are Gaussian steps withmean 0 and variance 1; and v is the loading rate for the laser trap system. Only the thermal motionof the ligand molecule is included in the equations as the random motion of the bead is negligibleby comparison.Throughout this paper, the bond potential force is assumed to come from a potential that isquadratic for �L < Y < L and constant for Y > L. For simulations, the transition at Y = L issmoothed using a cuto� function, so the force is given by Fb = (FmaxY=L)H(Y ) where H(Y ) =1=2(1 � tanh(
(Y � L)) is the cuto� function (
 > 0 is constant), L is the width of the potentialwell, and �G = FmaxL=2 is the well depth. Y (t) is restricted to being larger than �L by use ofre
ective boundary condition at �L. This restriction has no signi�cant e�ect on the behavior of5



the model system for the parameters and situations we studied, as Y (t) almost never approaches�L.The model given by Eqs.(1-3) contains a number of parameters, for some of which reasonablevalues can be obtained from the literature. Speci�cally, we use the value kl = 0:2 pN/nm measuredby Weisel, we compute the bead friction coe�cient to be �X � 0:19 � 10�4 pN sec/nm using Stokes'formula for the drag on a sphere of radius 1�m moving at low Reynolds number in water, and weuse kBT = 4:3 pN nm [11]. For the molecular friction coe�cient �Y , we use the value 0:6 � 10�7pN sec/nm given by [11] for the drag coe�cient of a globular protein. We adjust ks so that theextension of the ligand molecule is at most a few percent of its unstressed length, and �nd thatvalues of ks of 4.0 pN/nm or more are su�cient to achieve this.We explore how the system behaves for di�erent loading rates v and well depths �G. Real-izations of solution paths for these equations are computed as described in Appendix 1. For eachrealization, we compute the maximum of the force kl(Z(�) � X(�)) that would be measured ex-perimentally. We de�ne the rupture force as the mean of these maximum forces over the ensembleof simulated realizations. Results are shown in Fig.3 where we have plotted the mean ruptureforce against the loading rate on a logarithmic scale. We see that for a wide range of loading rates(including those used in Weisel's experiments), the rupture force shows very little sensitivity tothe loading rate. We also see that there is a stark transition in the system's behavior so that atsu�ciently high loading rates, the rupture force is very sensitive to loading rate. The transitionoccurs when the rupture force is the order of magnitude of the maximum force (Fmax) associatedwith the well potential. We also see that rupture forces of a magnitude similar to those measuredby Weisel can be obtained for reasonable parameter choices.
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Figure 3: Rupture force vs. Loading Rate for the Model (1-3) for �G=(kBT ) � 250.6



One Variable ModelThe second model we consider is a simpli�cation of the model (1-3). We now imagine that thelaser tweezers is able to apply a linearly increasing force directly to the molecule head (See Fig.2,right panel). The single equation of this model is for the position of the ligand molecule head and is�Y dY (�) = (�Fb+v�)d�+pkBT�Y d� dW (0; 1), where the variables and parameters have the samemeaning as earlier. It is useful to nondimensionalize this equation. We introduce nondimensionalvariables y and t de�ned by Y = Ly and � = L2�Y(kBT ) t, and obtain the nondimensional Langevinequation dy(t) = (�2ayH(y) + V t)dt+pdt dW (0; 1); (4)where H(y) is the cuto� function in the scaled variables, and a = �G=(kBT ) = FmaxL=(2kBT )and V = v(L3�Y =(kBT )2 are the non-dimensional well-depth and loading rate, respectively. Therupture force here is de�ned as the product of V and the ensemble average of the �rst time that aparticle reaches y = 1.Associated with the Langevin equation (4) is the F-P equation [6]:pt = �Jy = f(2ay � V t)pgy + pyy: (5)where J is the probability 
ux de�ned by J = (V t� 2ay)p� py. We consider the F-P equation forpositions within the well, �1 < y < 1, and impose the no 
ux condition J = 0 at y = �1, and theabsorbing boundary condition p = 0 at y = 1. For simulations, the initial data are taken to comefrom an approximate �-function centered at the well center y = 0. The solution to the F-P systemis computed using the �nite-di�erence method described in Appendix 2. For the F-P simulations,the rupture force is de�ned as the product of the loading rate V and the mean �rst exit time M(0)through the absorbing boundary at y = 1 for a particle beginning at y = 0, that is F = VM(0). Asa check on the numerical schemes for both the Langevin equations and the F-P equation, ruptureforces over a wide range of loading rates were compared and found to be in excellent agreement(not shown). Note that the mean �rst exit time for a F-P equation with time-dependent potentialcan be calculated from the solution p(y; tj0; 0) to the F-P equation as shown in Appendix 3.The simpler model behaves qualitatively much like the �rst model. As shown in Fig.4, for eachnondimensional well depth a, there is a wide range of nondimensional loading rates V over whichthe rupture force shows very little sensitivity to V . Again, for very high values of V there is asubstantially di�erent behavior; for this simpler model, the rupture force grows as V 1=2 for largeV . 7
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Figure 4: Rupture force VM(0) vs. Loading Rate V calculated from the mean-exit time M(0) forthe Fokker-Planck equation (5) for well depths a = �G=(kBT ) = 1, 11, 21, 31, 41, and 51 (bottomto top).Markov ModelsSimulations with Langevin or Fokker-Planck models can be expensive, so Markov models areoften used to approximate their behavior. For the one-variable model described by (4) or (5),consider the Markov model: dPdt = �ko�P; (6)where P (t) is the probability that the ligand is bound to the receptor at time t, and we haveignored the possibility of rebinding. The accuracy of the Markov model in approximating the othermodels depends on the choice of the o�-rate ko� . It also depends on whether the time scale onwhich statistical equilibrium is reached in (4) or (5) is fast compared to the time scale on whichko� changes.It is often assumed [1, 4, 13, 14] that the o�-rate has the formko�(F ) = k0 exp(F=F0); (7)where F is the applied force, and k0 and F0 are appropriate scale factors. This assumption ismotivated by the classical Arrhenius formula, namely that the o�-rate for a chemical bond isko� = �0 exp�� �GkBT � : (8)8



where �G is the free energy of the bond, i.e., the height of the potential well out of which thebound molecule must escape. The idea leading from (8) to (7) is that an applied force 'tilts' thepotential, changing the height of the barrier that the molecule must cross to unbind by an amountFL where L is the width of the well (for a quadratic well). According to this reasoning, the o�-ratefrom the modi�ed potential well should beko�(F ) = �0 exp(��G� FLkBT ) = k0 exp( FLkBT ): (9)We contend that (9) is a poor choice of o�-rate to use in a Markov model when FL approaches�G. To support this statement, we examine the F-P equation for a molecule subject to threeforces: the force from the potential well, a constant applied force F , and Brownian forcing:pt = f(2ay � f)pgy + pyy: (10)Here p(y; t) is the probability density that the particle is at y at time t, U(y) = ay2 is the bindingpotential, and a = �G=(kBT ) and f = FL=(kBT ) are the non-dimensional well-depth and appliedforce, respectively. Here we suppose that the binding site is contained in the interval �1 < y < 1,that the boundary y = �1 is re
ecting, and that the boundary y = 1 is absorbing. The o�-rateis the reciprocal of the mean �rst exit time, that is, the mean time for a particle to reach theabsorbing boundary y = 1 having started at the minimum of the potential at y = 0. This is theappropriate o�-rate to use in a Markov model of this process provided that statistical equilibriumis reached quickly. To explore how rapidly equilibrium is achieved for (10), we added a source termlocalized at y = 0 to balance any 
ux of p past y = 1. With f constant, the problem quicklyreached equilibrium. We stepped f to a new value and observed that the system reequilibrated intimes much shorter than the scale on which the external forcing in (5) varied.Turning to the determination of the mean �rst exit time for (10), we recall that for an au-tonomous process, that is, one in which the applied force and potential are independent of time,the mean �rst exit time M(y) for a particle starting at y is given by the solution of the ordinarydi�erential equation M 00 � (2ay � f)M 0 = �1 (11)subject to the boundary conditions M 0(�1) = 0 and M(y) = 0 [6]. (An e�cient way to solve thisproblem is described in Appendix 4.) In Fig.5 we plot this o�-rate as a function of well depthfor the case that the applied force f is zero. We also plot the o�-rate predicted by the Arrheniusformula, and it is evident that unless a � �G=(kBT ) >> 1, the two results di�er substantially.9



For a less than 5, the Arrhenius formula predicts a value at least an order of magnitude too large,and, in fact, as a! 0, the Arrhenius value is more than two orders of magnitude too large.
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Figure 5: Plot of ko� (solid curve) and �0 exp (��G=(kBT )) (dashed curve), on a logarithmic scale,plotted as functions of a = �G=(kBT ).The fact that the Arrhenius formula gives a poor approximation for small a makes it notsurprising that under a constant force, the o�-rate does not have the exponential dependence onforce given in (9). This is illustrated in Fig.6 in which the actual o�-rate determined by solving(11) is plotted as a function of f � (FL)=(kBT ) for several values of the well depth a. For small fthe curves are nearly linear (at least for a su�ciently large), which indicates that for large enough aand small enough f , the e�ect of force on the o�-rate is approximately exponential. But this is onlyvalid for f signi�cantly less than a, and in these portions of the curves, the o�-rate is minuscule.The o�-rate becomes signi�cant when f approaches a and then the exponential-dependence formulasubstantially over-estimates the rate of unbinding, sometimes by many orders of magnitude.The Markov model can give a good approximation to the rupture forces calculated from theF-P equation but only if the appropriate o�-rate is used. One way to do this is to tabulatethe o�-rates obtained by solving (11) for a range of well-depths and forces, and to use these(interpolated appropriately) in a numerical solution of the Markov model. That is, in any timestepof the numerical solution of (6), use the tabulated o�-rate appropriate for the well-depth and theinstantaneous value of the force F = V t.Fig.7 shows results of this process along with rupture forces predicted using the exponentialo�-rate formula (7) in a Markov model, and the rupture forces predicted by the F-P model (5).Two things are evident: From the left panel we see that the Markov model with the correct o� rate10
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Figure 6: Solid curves show ko� , on a logarithmic scale, as a function of f = FL=(kBT ), for welldepths a = �G=(kBT ) = 1, 11, 21, 31, 41, and 51 (top to bottom). Dashed lines show the o�-ratepredicted by the exponential expression (7) with k0 and F0 chosen so each dashed line has the samevalue and slope as the corresponding solid curve at F = 0.predicts rupture forces in good agreement with the F-P model. From the right panel, we see thatwith the exponential o�-rate the Markov model predicts rupture forces that are quantitatively andqualitatively di�erent than those computed from the F-P equation.ConclusionBy comparison with solutions to Fokker-Planck and Langevin models for molecular unbindingunder dynamic forcing, we show that a Markov model with an appropriate unbinding rate ko�can give accurate predictions of how the mean rupture force varies with the loading rate. Theappropriate unbinding rate can be obtained by solving boundary value problems for the meanbreaking time for a bond subject to constant force. On the other hand, a Markov model, such asthe one proposed in [3, 5], that assumes the unbinding rate grows exponentially with the appliedforce, substantially overestimates the unbinding rate at each force and substantially underestimatesthe mean rupture force, especially for bonds characterized by deep potential wells. The use of suchMarkov models for interpreting experimental unbinding data, which has become fairly standard,needs to be re-thought in view of these observations.Markov models based on the exponential o�-rate predict an (approximately) logarithmic de-pendence of mean rupture force on loading rate for a single-well binding potential. In practice,experimental data for rupture force versus the logarithm of loading rate usually do not lie along asingle line, but often seem to lie on di�erent lines for di�erent portions of the loading rate range11
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Figure 7: Rupture force vs. Loading rate. Left: Comparison of rupture forces predicted bythe Fokker-Planck equation (*) and the Markov model (solid curve) with the correct o�-ratesdetermined by interpolating tabulated o�-rate values from the solution of solving (11). Right:Comparison of rupture forces predicted by Markov model with the correct o� rate (solid curve)and with the exponential o�-rate (dashed curve). In both panels, curves from bottom to topcorrespond to well-depths a =1, 11, 21, 31, 41, and 51. The solution for the exponential o�-ratewas computed from the analytic formula for the mean �rst-exit time [8, 15].investigated. For such multi-phasic cases, two or more di�erent logarithmic functions are �t to thedata, with each function used for a subset of loading rates. Each of the logarithmic functions isinterpreted as corresponding to a distinct well through which the system must pass on the wayto unbinding. In some cases, this interpretation has been corroborated by further experiments inwhich the addition of an inhibitor eliminates one of the phases in the data (e.g., [4]. Our resultssuggest that this approach should be used with caution. Look, for example, at the top curve inFig.(7), imagine that a half dozen or so data points were taken in the loading rate range 10�1 to104. It would be tempting to �t them using two straight line segments, that is, by two di�erentlogarithmic functions of loading rate and to infer that these correspond to two energy wells. Yetthis data comes from a binding potential with a single well, so such an inference would be incorrect.The problem is that the appearance of multi-phasic data does not necessarily imply a multi-wellbinding potential.
12



Appendix 1: Numerical Solution of Langevin EquationSolutions of the Langevin equations are approximated numerically using the simple Euler scheme[10]. Letting Xn denote an approximation to X(�) at time � = n�� , and using similar notationfor the other variables, the scheme is:Xn+1 = Xn + kl�X (Zn �Xn)�� � ks�X (Xn � Y n � r0)�� (12)Y n+1 = Y n � F nb�Y �� + ks�Y (Xn � Y n � r0)�� +�2kBT���Y �1=2G(0; 1) (13)Zn+1 = Zn + vkl�� (14)with F nb = Fmax(Y n=2L)(1�tanh(
(Y n�L)). In (13), G(0; 1) denotes a Gaussian random variablewith mean 0 and variance 1. For each simulation, N sample paths are followed and used to derivestatistics. N is chosen to be su�ciently large that statistics are meaningful, and the timestep �� ischosen to be su�ciently small that further reductions in it cause negligible changes. The parameter
 is chosen so that the cuto� occurs over a distance small compared with the well-width L.Appendix 2: Numerical Solution of Fokker-Planck EquationConsider the Fokker-Planck equation (10) on �1 � y � 1 with no-
ux boundary condition aty = �1 and absorbing boundary condition p = 0 at y = 1. Let yi = i�y for i = �I;�I + 1; : : : ; Iwhere I�y = 1, and denote by pnj an approximation to the average of p(y; t) over the ith cellyi��y=2 � y < yi+�y=2 at time tn = n�t. (pn�I is the average over the half-cell [�1;�1+�y=2]).The 
ux has an advective part A = (V t � 2ay)p and a di�usive part �py. We use a conservativedi�erence approximation to (10) in which the di�usive 
ux across the right end yi+1=2 of the ithcell is approximated by the centered-di�erence quotient �py � �(pi+1 � pi)=�y and the advective
ux is approximated by the upwind formula:Ani+1=2 = 8<:(V tn � 2ayj+1=2)pni (V tn � 2ayi+1=2) > 0(V tn � 2ayj+1=2)pni+1 (V tn � 2ayi+1=2) < 0:For the di�usive terms we use Crank-Nicolson time discretization while for the advective terms weuse an explicit formulation. The resulting formula for pn+1i for i = �I + 1; : : : ; I � 1 ispn+1i � pni�t = 1�y �Ani�1=2 �Ani+1=2�+ 1�y2 �pn+1i�1 � 2pn+1i + pn+1i+1 + pni�1 � 2pni + pni+1� : (15)13



The equation for i = �I is somewhat di�erent because of the boundary condition J = 0 at y = �1,and because the pn�I is the average over a cell of width �y=2. For i = I, we set pnI = 0 for all n toenforce the absorbing boundary condition there.Appendix 3: Mean First Exit Time with a Time-dependent PotentialThe mean �rst exit time for a Fokker-Planck system with a time-independent potential is usuallycalculated by solving a boundary value problem derived from the associated backward Fokker-Planck equation [6]. This approach does not extend to time-dependent potentials, so here we showhow to determine the mean �rst exit time from the solution of the forward Fokker-Planck equationfor a problem with a time-dependent potential.For the domain 
 = fy : �1 < y < 1g, consider the Fokker-Planck equation pt = �Jy, wherep = p(y; tjy0; t0) is the probability of �nding a particle at location y at time t given that it was atposition y0 at time t0. The boundary conditions are J = 0 at y = �1 and p(1; tjy0; t0) = 0. De�neG(y; t) = R 1�1 p(x; tjy; 0)dx and observe that if T (y) is the random variable for the time at which aparticle that starts at y leaves the domain 
, then Pr(T (y) > t) = G(y; t). Set g(y; t) = �Gt(y; t),and note that Pr(T (y) > t) = R1t g(y; s)ds and Pr(T (y) < t) = R t0 g(y; s)ds, so that g(y; t) is theprobability distribution function for the random variable T (y). Hence one expression for the mean�rst exit time M(y) is M(y) = Z 10 tg(y; t)dt = Z 10 tZ 1�1 p(x; tjy; 0)dxdt: (16)Here, p(x; tjy; 0) can be found by solving pt = �Jy with initial condition p(x; 0jy; 0) = �(x � y).By noting that g(y; t) = � R 1�1 pt(x; tjy; 0)dx = R 1�1 Jx(p(x; tjy; 0))dx = J(p(1; tjy; 0)), we obtain asecond expression for M(y): M(y) = Z 10 sJ(p(1; sjy; 0))ds: (17)In computations, we use discrete analogues of both (16) and (17) and continue our simulationsuntil such time that the maximum of p(y; tj0; 0) for y 2 
 is less than a small tolerance. At thattime, the two expressions for M(0) give values that are essentially equal, as is expected with theconservative scheme we use to solve the Fokker-Planck equation.Appendix 4: Solution of Equation (11).An analytic solution of Eq(11) with the boundary conditions M 0(�1) = 0 and M(1) = 0can be derived easily but it complicated to evaluate and is therefore not particularly useful. Astraightforward way to solve the problem is to write (11) as a system of �rst-order di�erentialequations 14



M 0(y) = N(y); (18)N 0(y) = (2ay � f)N(y)� 1: (19)Solving this system with conditions M(�1) = 0 and N(�1) = 0 gives a function, call it M0(y),which satis�es (11) and the boundary condition M 0(�1) = 0, but not the boundary conditionM(1) = 0. The functionM(y) =M0(y)�M0(1) satis�es (11) and the boundary conditions at bothy = �1 and y = 1. Numerical solutions to the system (18-19) for �1 � y � 1 with the 'initialconditions' M(�1) = N(�1) = 0 are easily computed using any standard method for sti� ordinarydi�erential equations [7].Acknowledgments: This work was supported in part by NSF FRG DMS-0139926. NH wassupported in part by an REU award from NSF VIGRE grant DMS-0091675.
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