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Abstract

While the oscillatory release of calcium from intracellular stores is comprised of fun-
damentally stochastic events, most models of calcium oscillations are deterministic. As
a result, the transition to calcium oscillations as parameters, such as IP3 concentration,
are changed, is not described correctly. The fundamental difficulty is that whole cell
models of calcium dynamics are based on the assumptions that the calcium concentra-
tion is spatially homogeneous, and that there are a sufficiently large number of release
sites per unit volume so that the law of large numbers is applicable. For situations
where these underlying assumptions are not applicable, a new modeling approach is
needed.

In this paper we present a model and its analysis of calcium dynamics that incor-
porates the fundamental stochasticity of release events. The model is based on the
assumptions that release events are rapid, while reactivation is slow.

The model presented here is comprised of two parts. In the first, a stochastic
version of the fire-diffuse-fire model is studied in order to understand the spark-to-
wave transition and the probability of sparks resulting in abortive waves vs. whole cell
calcium release. In the second, this information about the spark-to-wave transition is
incorporated into a stochastic model (a Chapman-Kolmogorov equation) that tracks
the number of activated and inactivated calcium release sites as a function of time.
By solving this model numerically, information about the timing of whole cell calcium
release is obtained. The results of this analysis show a transition to oscillations that
agrees well with data and with Monte Carlo simulations.
Acknowledgment: This research was supported in part by NSF Grant DMS-

0211366.

1 Introduction

It is now well established that release of calcium from internal calcium stores into the cellular
cytoplasm is via events that are fundamentally stochastic in nature [3, 22, 32]. In fact, all ion
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channels have the feature that they are either open or closed, conducting or non-conducting,
with opening and closing describable as Markov processes. Mathematical models of the
dynamics of cellular events such as calcium release or action potentials have not utilized fully
stochastic descriptions because of the implicit assumption that the law of large numbers is
applicable, and that the ensemble of stochastic channels can be described by their average
behavior. However, it is now understood that for calcium, at least, this assumption may not
be valid in many physiological conditions.

Calcium channels such as IP3 receptors (IPR) and ryanodine receptors (RYR) have the
added feature that they are regulated by the local concentration of calcium [32]. Since the
concentration of calcium in the vicinity of the release channel can be substantially different
than the whole cell average calcium concentration [27, 29], i.e., since the calcium that is
released by the receptor does not immediately diffuse into the whole cell, a model that uses
only whole cell calcium is limited in its ability to faithfully describe calcium dynamics [30].

The need for an understanding of the stochastic nature of calcium release is illustrated by
the observed onset of whole cell calcium oscillations as [IP3] is increased in Xenopus oocytes
[21]. At low [IP3] only puffs are observed; there is not enough Ca2+ released from a cluster
to stimulate Ca2+release from neighboring sites, so the calcium transient is purely local.
However, as [IP3] is increased, both the sensitivity of and the amount of Ca2+ released from
each IPR increases. This allows for the development of waves that emerge from a nucleation
site. However, at moderate levels of [IP3], global events are rare and in many cases there
are waves that progress only a short distance before dying out. In this situation, both the
average time between whole cell release events and its standard deviation are large, and are
decreasing as [IP3] increases. Finally, at high [IP3], global waves are seen to occur regularly
with a well-defined period.

Whole cell models for calcium dynamics typically are of the form [11, 28]

dc

dt
= Jrel − Juptake, (1)

where c is the cytoplasmic concentration of calcium, Jrel is the flux (in units of concentration
per unit time) of calcium into the cytoplasm through release from calcium stores, and Juptake

is the flux of calcium via uptake into the calcium stores. The release flux Jrel typically takes
the form

Jrel = gPo(ce − c), (2)

where g is the maximal conductance, Po is the open probability, and ce − c is the channel
driving force, which is governed by the difference between ER (endoplasmic reticulum) cal-
cium ce, and cytoplasmic calcium c. In light of our introductory comments, a more accurate
model would take into account the stochastic and spatial nature of the receptors and use

∂c

∂t
= D∇2c +

∑

k

δ(x − xk)J
k
rel − Juptake, (3)

where xk represents the spatial location of single channels or small clusters of channels, and
Jk

rel represents the release of calcium from the kth release unit. Furthermore,

Jk
rel = gkpk(ce − c), (4)
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where pk is a random variable with values zero or one to indicate whether the release unit
is closed or open. One obtains the whole cell model (1) in the limit that diffusion is large
compared to the total size of the cell and that there are a sufficiently large number of
release sites so that the random variables pk can be replaced by the ensemble average open
probability Po. As mentioned above, there is growing evidence that these assumptions are
not valid in many physiological situations, such as oocytes. (A similar challenge exists for
the emergence of synchronized bursting in pancreatic beta cells [24, 25].)

So far, the only way around these difficulties has been to use Monte Carlo simulations
[2, 9, 10]. While these capture the essential random behavior of release events, and give
results that correspond to the data, they suffer from the fact that they are computationally
expensive, and there is no realistic possibility of extending them to multicellular settings.

The goal of this paper is to develop a model of calcium dynamics that takes into account
the stochastic nature of release without relying solely on large scale Monte Carlo simulations,
thereby keeping the computational cost much more manageable, and at the same time pro-
viding some analytical understanding of this stochastic process. Of course, to do so requires
that some approximations be made.

The fundamental assumption to be made in this analysis is that calcium release and
recovery occur on two different time scales. To see the basis for this assumption, consider a
typical example of whole cell models,

dc

dt
= (kfPo + Jer)(ce − c) − Juptake, (5)

where

Juptake =
c − α1ce

α2 + α3c + α4ce + α5cce

, (6)

Po =

(

pch

(p + K1)(c + K5)

)3

, (7)

dh

dt
= φ2(1 − h) − φ1h, (8)

ce =
1

γ
(cT − c), (9)

and

φ1 =
(k−4K2K1 + k−2 + pK4)c

K4K2(p + K1)
, (10)

φ2 =
k−4p + k−2K3

p + K3

, (11)

Kj =
K−j

kj
, j = 1, · · · , 5. Parameter values are given in Table 1.

Here, c represents the whole cell calcium concentration, h is the IPR inactivation variable,
and p represents the IP3 concentration. The parameters used here for the dynamics of the
inactivation variable h and the open probability Po are based on the Keizer-DeYoung 8-state
receptor model [17, 33] found using a quasi-steady state approximation [16, 20], while the
parameters for Juptake are based on the work of [12].

3



k1 = 400 µM−1s−1 k−1 = 52 s−1

k2 = 0.2 µM−1s−1 k−2 = 0.21 s−1

k3 = 400 µM−1s−1 k−3 = 377.2 s−1

k4 = 0.2 µM−1s−1 k−4 = 0.029 s−1

k5 = 20 µM−1s−1 k−5 = 1.64 s−1

α1 = 10−4 α2 = 0.007 s

α3 = 0.06 µM−1s α4 = 0.0014 µM−1s

α5 = 0.007 µM−2s Jer = 0.002 s−1

kf = 0.96 s−1 γ = 5.5

Table 1: Parameter values of the model of calcium dynamics (5)-(8).

The numerical solution of this model with p = 2 and cT = 10µM is shown in the upper
panel of Figure 1. The phase portrait for this same trajectory is shown in the lower panel,
with calcium plotted on a logarithmic scale on the horizontal axis, and h plotted on the
vertical axis. The nullcline for h is monotone decreasing as a function of c, while the nullcline
for c is n-shaped; both are shown dashed. The trajectory in the lower panel is shown with
circular dots plotted at equal time steps of 0.1 s.

These simulations illustrate the time scale separation. The time constant for h is a
function of c and varies from below 1s when calcium is high to greater than 10s when calcium
is low. Calcium release occurs when h reaches a threshold, calcium is rapidly released, and
h quickly inactivates. In the subsequent slower phase, h gradually increases until another
release event is initiated.

The behavior of this model as a function of [IP3] is also stereotypical of whole cell calcium
models. At small [IP3] levels, there is a globally stable steady state solution with little
calcium. As [IP3] is increased, there is a subcritical Hopf bifurcation which is connected
through a saddle-node bifurcation to a large amplitude stable periodic solution, an example
of which is depicted in Fig. 1. Unfortunately, this description of the onset of oscillations is
not consistent with the experimental data described above.

In what follows, we study the dynamics of calcium oscillations by examining first the fast
release event, and then the slow recovery phase, which, pieced together gives a stochastic
interpretation of the onset of calcium oscillations. First, a stochastic version of the fire-
diffuse-fire model is used to develop a renewal equation whose solutions describe the spark-
to-wave transition. From this, analytical formulas for the probability that sparks result
in abortive waves or whole cell calcium release are developed. Second, this information
about the spark-to-wave transition is incorporated into a stochastic model (a Chapman-
Kolmogorov equation) that tracks the number of activated and inactivated calcium release
sites as a function of time. By solving this model numerically, information about the timing
of whole cell calcium release is obtained.
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2 Calcium Release - The Spark to Wave Transition

Experiments [21] clearly show that whole cell calcium release is initiated by the rapid release
of calcium from a small localized cluster of channels, which then propagates to the entire
cell. In fact, there are three types of response to a single release event: the neighboring
release sites may remain quiescent, the neighboring sites may also release calcium but the
attempt to engage the entire cell is abortive, or the neighboring sites may release calcium
which in turn stimulates their neighbors, and so on, until calcium sites throughout the entire
cell have released calcium [15, 18].

The fact that release sites are discrete in space makes it reasonable to examine the popular
fire-diffuse-fire model, [8, 19, 23]

∂c

∂t
= D

∂2c

∂x2
− ksc + σ

∑

n

δ(x − xn)δ(t − tn). (12)

Here we assume that the cell is one-dimensional, with release sites separated by the fixed
distance L, so that xn = nL. (The distance between sites could also be taken to be randomly
distributed, as in [2].) The parameter σ represents the total amount of calcium released in a
single release event from a single cluster. We represent the release site geometry using a delta
function in space since clusters have a diameter of 60-100 nm, while the distance between
clusters is 3-7 µm [21]. The term ksc, which is not included in many early discussions of
the fire-diffuse-fire model, is included here to model spatially continuous uptake via SERCA
exchange pumps. Linear uptake was included in the treatment of the fire-diffuse-fire model
given in [4].

The assumption that the cell is one-dimensional is perhaps more appropriate for cardiac
cells than for cell with IPR’s. However, the fundamental discreteness of release events is
well-captured by a one-dimensional model. The primary difference between one and two-
dimensional arrays of release sites is that it is relatively easy for a wave to terminate in
one-dimension, whereas in two dimensions it is possible for a calcium wave to move around
and bypass inactive release sites. In this way, it is possible for a calcium wave to propagate
throughout an entire cell without participation from all release sites. A one-dimensional
model does not have this capability.

The advantage of using equation (12) to model the release and spread of calcium is that
the local calcium concentration can be calculated analytically if the release times are known.
For example, the calcium that is released at site xj and time tj is distributed throughout
space according to

cj(x, t) = σ
H(t − tj)

√

4πD(t − tj)
exp

(

− (x − xj)
2

4D(t − tj)
− ks(t − tj)

)

, (13)

where H is the usual Heaviside function. (Here we assume that the cell is large enough so
that boundary conditions can be safely ignored.) Because the equation for c is linear, the
full solution is the linear superposition of released calcium,

c(x, t) =
∑

k

ck(x, t). (14)
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The only place where c(x, t) needs to be evaluated is at a release site. At the kth release site
the calcium from site j is

cj(xk, t) =
σ

L
Cj,k(t), (15)

with

Cj,k(t) =
H(t − tj)

√

4πδks(t − tj)
exp

(

− (k − j)2

4δks(t − tj)
− ks(t − tj)

)

, (16)

where δ = D
ksL2 is a dimensionless diffusion parameter.

It is easy to modify the fire-diffuse-fire model so that release is not instantaneous but
occurs over some specified time interval, as was assumed in [6]. The main effect of this
modification is to change the details of the fundamental solution Cj,k(t). However, once
the fundamental solution is tabulated, it can be used in the subsequent analysis with no
further modification. Further, in principle, this same analysis could be applied in a two
dimensional medium, since all that is needed is the radially symmetric fundamental solution
of the diffusion equation, which is also easily tabulated.

With D = 20µm2/s [1], L = 2µm, and ks = 1
α2

= 0.007s (see Table 1), we estimate that
δ = 0.035 (the length constant is 0.4 µm). (In Xenopus oocytes, IPR clusters have a density
of about 1 per 30µm2, for an average separation of about 5.5 µm.) As we will see, with δ

this small, the analysis of the spark-to-wave transition is simplified substantially. However,
to cover all the bases, we will examine solutions for larger values of δ as well.

Plots of the function C0,k(t) are shown in Fig. 2, plotted in units of dimensionless time kst

with δ = 2.0 for k = 1, 2, 3, and 4. These plots depict the transient calcium concentration at
the four nearest neighbors to a release site following release at time t = 0. It is noteworthy
that the maximal amount of calcium at each of the sites is decreasing as a function of distance
from the initial release site. This decrease is more substantial for smaller values of δ, and
for δ = 0.035, the maximal level of calcium at site 2 is 0.0033 times the maximal level of
calcium at site 1.

In the deterministic version of the fire-diffuse-fire model, tn is determined as the first
time at which the local calcium level reaches a specified threshold, say θ. Here we assume
that the release is not a deterministic function of local calcium concentration but rather is a
stochastic process. Thus, we assume that tn is a random variable with cumulative probability
Pn(t), so that Pn(t) is the probability that release from site xn at time tn occured before
time t,

Pn(t) = P (t > tn). (17)

It follows that
dPn

dt
= kopen(c(xn, t))(1 − Pn), Pn(0) = 0, (18)

where kopen(c) represents the rate constant of channel opening as a function of the local
calcium concentration. Notice that the probability that release occurs is limt→∞ Pn(t) ≡ P∞

n ,
and it may be less than one. Note also that Pn(t) is different than the open probability
that is often used in whole cell deterministic models, as there is no accounting for closing
or inactivation in (18). In this model, the release from a single site is assumed to occur
instantaneously, so no accounting of inactivation is neccessary. By definition, the probability
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distribution function for the random variable tn is

pn(t) =
dPn

dt
, (19)

so that

pn(t) = kopen(c(xn, t)) exp

(

−
∫ t

0

kopen(c(xn, η))dη

)

. (20)

Notice that pn(t) is not necessarily a true probability distribution function since
∫

∞

0
pn(t)dt =

P∞

n may be less than one. However, if we define pn(t|n) to be the distribution of release
times for the nth site given that a release event occurred at the nth site, then

pn(t|n) =
pn(t)

P∞

n

, (21)

and the expected time of firing is

E(tn) =
1

P∞

n

∫

∞

0

tpn(t)dt. (22)

The structure of kopen is important. We expect that kopen is small when calcium concen-
tration is small, and that it increases to become quite large if calcium concentration is high.
In the deterministic limit,

kopen =

{

0 c < θ

∞ c > θ

}

, (23)

so that Pn(t) = 0 when c(t) < θ, while Pn(t) = 1 after c has first reached and passed the
threshold θ. Equivalently, in the deterministic limit, pn(t) = δ(t − tn).

A simple continuous extension of this is to take kopen to be the Hill function

kopen(c) = kmax

cN

θN + cN
, (24)

for some fixed value of N . This form for kopen was also used in [15] for cardiac cells. In the
limit of large N , kopen approaches the Heaviside function kmaxH(c − θ).

Now suppose that there is a calcium release event at site 0 at time t = 0. We want
to determine the probability that this single release event leads to a whole cell response.
However, whole cell release requires the sequential calcium release from a large number of
individual sites. So, first, we must determine the response of neighboring sites to the initial
release event.

The probability of release at a neighboring site is related to the calcium transient at
that site, depicted in Fig. 2. If there has been only one release event (at site 0), then the
cumulative probability function for time of release from another site is given by (18), where
c(xn, t) = σ

L
C0,n(t).

Fig. 3 shows examples of the function p1(t) for several values of release amount σ
θL

. Fig. 4
shows the probability of firing at site 1 (P∞

1 ) as a function of the parameter σ
θL

. For both of
these plots, kopen is specified by (24) with kmax = 200ks, N = 4. Plots of the moments m0,
m1 and m2 where

mk =

∫

∞

0

tkp1(t)dt, (25)
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are shown plotted as a function of σ
θL

in Fig. 5, and the mean and variance of the distribution
p1(t)
P∞

n
are shown plotted in Fig. 6, here for δ = 0.1.

It should come as no surprise that the expected time of firing (the mean) at site one is
a decreasing function of σ

θL
. It is also noteworthy that as σ

θL
increases the variance of the

release time decreases to zero, indicating that release becomes more deterministic in this
limit.

To calculate the probability of release at site n we must know the time evolution of
calcium concentration at site n, and this requires knowing the previous times of release at
other sites. It simplifies the situation substantially if release is always sequential, proceeding
from site 1 to site 2 to site 3, and so on. To check if this is the case, we examine the
probability that site n > 1 releases before site 1. We calculate that if there is release from
site 1, the (conditional) probability that site 1 releases before site n (even if site n does not
release) is

P (t1 < tn|site 1 release occurs) = P∞

n

∫

∞

0

∫ tn

0

p1(t1)

P∞

1

pn(tn)

P∞

n

dt1dtn + 1 − P∞

n (26)

=
1

P∞

1

∫

∞

0

P1(tn)pn(tn)dtn + 1 − P∞

n , (27)

and the probability that there is release from site n and not from site 1 is P∞

n (1 − P∞

1 ).
These quantities are easy to compute numerically. These computations show that if kopen

has a transition near c = θ that is sufficiently sharp, then the probability of sequential release
is close to one. In Fig. 4, the upper unlabeled curve (shown dashed) is the probability that
firing at site 1 precedes firing at site 2, given that firing occurs at site 1. Thus, when there
is sufficient cooperativity for release, the probability that release is out of sequence is quite
small. Furthermore, the probability that release is out of sequence decreases as δ decreases.

Now we calculate the probability of release at site n. If the release time from all previous
sites is known, then the time course of the calcium concentration at site n is known,

c(xn, t) =
σ

L

n−1
∑

j=0

Cj,n(t − tj), (28)

where t0 = 0, and the conditional cumulative probability function Pn(tn|tn−1, · · · , t0) is the
solution of (18) with c(xn, t) given by (28).

In spite of the fact that Pn shows dependence on all previous firing times, this dependence
is exponentially decreasing in its importance, and so significant simplifications are possible,
depending on the size of the diffusion parameter δ. To see the relative importance of the
previous firing times, we examine the relative amplitudes of the individual terms comprising
the sum (28)

aj

a1

, where
aj = max

t
C0,j(t). (29)

In Fig. 7, the ratios a2

a1

and a3

a1

are plotted as functions of δ on a log-log plot. Observe that for
small δ, these ratios are quite small, suggesting that we can ignore all but the most recent
firing time.
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In this case, it follows that

pn(t) =

∫ t

0

pn(t|tn−1)pn−1(tn−1)dtn−1. (30)

However, because it depends only on the time of firing of its immediate neighbor, pn(t|tn−1) =
p1(t − tn−1) and (30) can be rewritten as

pn(t) =

∫ t

0

p1(t − s)pn−1(s)ds. (31)

Equation (31) is a standard renewal equation about which much can be determined [7].
For example, the zeroth moment of pn(t) is

P∞

n =

∫

∞

0

pn(t)dt =

∫

∞

0

∫ t

0

p1(t − s)pn−1(s)dsdt,

=

∫

∞

0

∫

∞

s

p1(t − s)pn−1(s)dtds,

=

∫

∞

0

∫

∞

0

p1(t)pn−1(s)dtds,

=

(
∫

∞

0

p1(t)dt

) (
∫

∞

0

pn−1(t)dt

)

,

= mn
0 , (32)

where m0 = P∞

1 is the zeroth moment of p1(t). Similarly, the first moment of pn(t) is

∫

∞

0

tpn(t)dt =

∫

∞

0

∫ t

0

tp1(t − s)pn−1(s)dsdt,

=

∫

∞

0

∫

∞

s

tp1(t − s)pn−1(s)dtds,

=

∫

∞

0

∫

∞

0

(t + s)p1(t)pn−1(s)dtds,

=

∫

∞

0

tp1(t)dt

∫

∞

0

pn−1(s)ds +

∫

∞

0

p1(t)dt

∫

∞

0

spn−1(s)ds,

= m1m
n−1
0 + m0

∫

∞

0

spn−1(s)ds, (33)

where m1 =
∫

∞

0
tp1(t)dt is the first moment of p1(t). It follows that

∫

∞

0
tpn(t)dt = nm1m

n−1
0 .

By a similar calculation, it can be shown that
∫

∞

0

t2pn(t)dt = nm2m
n−1
0 + n(n − 1)m2

1m
n−2
0 , (34)

where m2 =
∫

∞

0
t2p1(t)dt is the second moment of p1(t).

From these calculations it follows that the mean of the probability distribution function
pn(t)
P∞

n
is nm1

m0

and its variance is n
(

m2

m0

− (m1

m0

)2
)

. As a result, the ratio m1

m0

is the expected
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site-to-site delay, the inverse of the wave speed. Not surprising, the site-to-site delay is a
decreasing function of σ

θL
. Notice also that the variance is also a decreasing function of σ

θL
,

indicating that for larger σ
θL

, propagation becomes “more deterministic”.
Figs. 8 and 9 show the sequence of functions pn(t) for δ = 0.1 and σ

θL
= 3.5 (Fig. 8) and

σ
θL

= 6.5 (Fig. 9). In the first of these two cases, σ
θL

is too small to allow propagation. Since
m0 = 0.36, there is but a 36% chance of release from the first site, and mn

0 approaches zero
quickly, so that the probability of subsequent release events is quite small. On the other
hand, in the second case, a steadily propagating wave is quickly established.

The probability of release from the nth site P∞

n is the same as the probability that the
extent of propagation (denoted Ne) is greater than or equal to n,

P (Ne ≥ n) = P∞

n . (35)

It follows that
P (Ne = n) = P∞

n − P∞

n+1, (36)

and the expected extent of propagation is

E(Ne) =
∑

n

n(P∞

n − P∞

n+1) =
∞

∑

n=1

P∞

n . (37)

In the case calculated above where P∞

n = mn
0 , we find that

P (Ne = n) = mn
0 (1 − m0), (38)

and
E(Ne) =

m0

1 − m0

. (39)

Fig. 10 shows the expected number of release events as a function of σ
θL

. This curve char-
acterizes the spark-to wave-transition. While there is no true threshold for this transition,
it is seen that for σ

θL
small, the expected number or release events is less than one, a spark,

while for σ
θL

sufficiently large, a wave is essentially certain.
The shape of the functions pn(t) seen in Figs. 8 and 9 suggests that there are some

easy solutions of the recurrence equation (31). Indeed, it is easy to show that if p1(t) =
A1t

α exp(−λt), then pn(t) = Antnα+n−1 exp(−λt), for appropriately chosen coefficients An.
For example, if α = 0, then p1(t) is an exponential distribution, and (31) generates the Pois-
son distribution. The general solution of (31) can also be found using Laplace Transforms.

All of the previous calculations of pn(t) relied on the assumption that release at a given
site is influenced only by the calcium released from its nearest neighbor, an assumption that
is valid only if δ is sufficiently small (δ ≤∼ 0.1). For larger values of δ it may be necessary
to include the effect of more sites. For example, if the nearest two sites are significant

pn(t) =

∫ t

0

∫ t

0

pn(t|tn−1, tn−2)pn−1(tn−1)pn−2(tn−2)dtn−1dtn−2

+(1 − Pn−2(t))

∫ t

0

pn(t|tn−1,∼ tn−2)pn−1(tn−1)dtn−1
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+(1 − Pn−1(t))

∫ t

0

pn(t| ∼ tn−1, tn−2)pn−2(tn−2)dtn−2

=

∫ t

0

∫ t

0

p2(t|t1, t0)pn−1(t1)pn−2(t0)dt1dt0

+(1 − Pn−2(t))

∫ t

0

p2(t|t1,∼ t0)pn−1(t1)dt1

+(1 − Pn−1(t))

∫ t

0

p2(t| ∼ t1, t0)pn−2(t0)dt0, (40)

where p2(t|t1, t0) is the firing time distribution for site 2 with release from site 1 at time t1
and release at site 0 at time t0, and p2(t|t1,∼ t0) is the firing time distribution for site 2 with
release from site 1 at time t1 and no release at site 0. Notice that if p2(t|t1, t0) is independent
of t0, then p2(t|t1, t0) = p1(t|t1). Then, if p2(t| ∼ t1, t0) is also neglected, (40) reduces to (31).
Notice that in this equation, we have not assumed that release is strictly sequential. The
only assumption used here is that C0,3(t) << C0,1(t)+C0,2(t), i.e., that only the two nearest
neighbors have a significant effect on release.

Fig. 11 shows a plot of p2(t|t1, t0 = 0) for 24 different values of t1 ranging from 0 to 4.6ks,
with t1 increasing from left to right, with δ = 1.0. Noticeable is the effect of release from
site zero when t1 is small (the leftmost profiles) while when t1 is large, the release at site 2
is independent of release at site 0. It is useful for computational purposes to note that

p2(t|t1, t0) = p2(t − t0|t1 − t0, 0). (41)

Equation (40) does not have such easily computed solutions as does (31). However, the
qualitative behavior of solutions of the two equations is the same.

Fig. 12 shows a sequence of solutions of (40) in the case that δ = 1.0. The sequence of
dashed curves are the solutions of the recurrence equation (31). Clearly, for this value of δ,
release at a given site is determined by the amount of calcium that is released from more
than its nearest neighbor. In fact, while release from site one is identical for the two models,
release from site two is enhanced markedly by release from site zero.

Fig. 13 shows the expected value of Ne, the extent of propagation, as defined in (37),
plotted as a function of σ

θL
for δ = 1, calculated using solutions of (40). The dashed curve

shows the expected value of Ne calculated using solutions of (31), which relies on the assump-
tion that only nearest neighbor interactions are significant. Although these two curves are
quantitatively different, they are qualitatively similar, showing the spark to wave transition
as a function of σ

θL
. All plots of E(Ne) show the same qualitative behavior, namely that for

small σ
θL

, sparks do not propagate; for sufficiently large σ
θL

, propagation extends throughout
the entire medium; for intermediate parameter ranges, propagation is abortive.

3 Whole Cell Oscillations

The model of calcium oscillations developed here relies on the assumption that the primary
events occur on two different time scales. On the fastest time scale is the release of calcium
from a release site (or cluster of release sites), which then leads to a rapidly propagating
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wave of release. Following this rapid release, recovery and return of excitability occurs on a
slower time scale.

To model the slower events, we use an adaptation of the Keizer-DeYoung 8-state receptor
model [17, 33]. According to this model, an IPR can be in any one of 8 states, denoted Sijk

with i, j, k = 0, 1. A subscript 1 indicates that a binding site is bound by its ligand and a
zero subscript that it is unbound. The first subscript indicates binding with IP3, the second
with activating calcium, and the third with inactivating calcium. The conducting state is
assumed to be S110, and those sites in state S100 are activated, but not conducting. We also
assume that the IP3 concentration is fixed, so that the fraction of release sites that have IP3

bound is some monotone increasing function of [IP3], for example F ([IP3]) = [IP3]
Kp+[IP3]

. Now

we focus our attention on those release sites in states S100, S110, S101, and S111 (i.e., with
[IP3] bound).

The effect of calcium release is to rapidly move a site from state S100 (the activated state)
into S110 (the conducting state), then to S111 and thence to S101 (the inactivated state). The
return of a site from the inactivated state S101 to the activated state S100 is assumed to be
a slow (Markovian) process, with transition rate kh. Since the transition from state S100 to
state S101 mediated by calcium release is fast, we assume that sites are in either of the two
states S100 or S101.

Now we let h be the fraction of sites that are in state S100, and 1−h to be the fraction of
sites in state S101. Since the transition from S101 to S100 is assumed to be a Markov process,
the sites in each of these states are uniformly distributed throughout the cell - there can be
no spatial correlation since an individual site can have no memory of how long it has been
since it last had a release event.

We define p(h, t) to be the probability distribution that the fraction of sites in state S100

is h at time t. The Chapman-Kolmogorov equation for the evolution of this probability is
[14]

∂p(h, t)

∂t
= −kh

∂

∂h
((1 − h)p(h, t)) − βMhp(h, t) +

∫ 1

h

W (η, h)p(η, t)dη. (42)

Here β represents the rate at which a single activated site can have a spark, M is the
total number of sites in states S100 and S101, and W (η, h) is the rate at which sites can
(instantateously) jump from fraction η to fraction h. Thus, W (η, h) represents the rate at
which a spark causes the release of M(η − h) sites, via an abortive wave. The function
W (η, 0) is the rate at which a spark causes release from all activated sites, i.e., whole cell
release. For consistency, it must be that

βMh =

∫ h

0

W (h, η)dη + W (h, 0), (43)

indicating that the rate at which sites are inactivated is the same as the rate at which sparks
are produced.

We can use (42) to determine when whole cell release occurs. Suppose that at time t = 0
there is a whole cell release event. Accordingly, at time t = 0, all sites are in state S100, i.e.
h = 0. Thus, we take p(h, 0) = δ(h).

Now suppose Tw is the random variable for the next time of whole cell calcium release.
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N = 105 βN

kh
= 50

D
ksL2 = 0.1 σ∗

θL
= 20

Table 2: Parameter values used for the stochastic whole cell model.

It follows that

P (Tw < t) = 1 −
∫ 1

0

p(h, t)dh, (44)

so that

q(t) = −
∫ 1

0

pt(h, t)dh (45)

is the probability distribution function for the random variable Tw.
All that remains to do is to specify the transition rate W (η, h) and then to find the

corresponding solution of (42). We use the information gained from the previous section on
the spark to wave transition to specify W (η, h). From that discussion (see Eqn. (38)) we
determined that a reasonable model for the extent of propagation is

P (Ne = n) = (1 − m0) exp(n ln m0), (46)

which suggests that a reasonable model for W (η, h) is the exponential distribution

W (η, h) = −βηM 2 ln(m0) exp (M(η − h) ln(m0)) , 0 < h < η (47)

and
W (η, 0) = βMη exp(Mη ln m0), (48)

where m0 is a function of η.
To specify m0, we recall from the previous section that m0 depends on the two parameters

δ = D
ksL2 , the dimensionless diffusion constant, and σ

θL
, the dimensionless release amplitude.

Release sites are organized into clusters of IPR’s, and at any given time some fraction of
these receptors are bound by [IP3]. The amount of calcium released through the cluster is
proportional to the number of receptors that participate in the release event. One expects
the number of bound receptors to be binomially distributed so that the amount of released
calcium is also variable [26]. However, for this model we assume that the number of receptors
that participate in each release event is the same, so that the release amount is

σ = σ∗hF, (49)

where σ∗ is the release amount if the entire cluster is activated, and F represents the fraction
of receptors that are bound by [IP3]. Finally, we take M = NF , where N is the total number
of release sites in the cell.

More detailed models of [IP3] dependence, for example allowing θ, β, and/or kh to depend
on [IP3], are possible, but have no substantial effect on the results. Similarly, no particular
quantitative relationship with [IP3] is assigned to F .

The model shows three different types of behavior associated with the shape of the
function W (η, 0). If F is small, W (η, 0) is essentially zero, so that there is no realistic chance
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of a whole cell calcium release event. On the other hand, if F is sufficiently large, then with
enough sites activated, whole cell release is certain. Finally, there is an intermediate range
where whole cell release is possible but not very likely, even if all the available sites are
activated.

The function W (η, 0) is shown in Fig. 14 for two of these three situations. With F = 1 it
is seen that for η sufficiently large, W (η, 0) = η, indicating that whole cell release is certain
for these values of η. In the intermediate case, with F = 0.51, whole cell release is possible,
but only if most of the sites are in the activated state. The case where F is small is not
shown because W (η, 0) is for all practical purposes zero.

Similar differences in behavior can be understood from a plot of the function W (η, h),
shown in Fig. 15 with F = 1 and N = 100. For small values of η, W (η, h) is essentially zero
except near η = h, indicating that sparks fail to initiate waves. For intermediate values of η,
W (η, h) is exponential in h, indicating that sparks initiate abortive waves. Finally, for large
η, W (η, h) = 0, indicating that all sparks initiate whole cell release.

Fig. 16 shows examples of the probability distribution function q(t) for three different
values of the [IP3] saturation F (F = 1.0, 0.85, 0.7), determined by numerical simulation of
equation (42) starting with initial data p(h, 0) = δ(h). With F = 0.7, whole cell release
is infrequent and occurs with high variability. At these intermediate values of saturation,
whole cell release is possible only if a majority of the sites are activated, but this is prevented
from happening by sparks and abortive waves. As F increases, whole cell release becomes
more likely and less variable. To illustrate this, the expected release time (solid curve) and
its standard deviation (dashed curve) are shown plotted as functions of F in Fig.17. Clearly,
both the median time of release and the width of the distribution are decreasing functions of
the parameter F . This is exactly the behavior found in [10] using Monte Carlo simulations.

4 Discussion

Whole cell calcium models are based on two assumptions that in many physiological situa-
tions are not valid. First, in large cells, whole cell calcium release occurs because of a wave
that propagates from release site to site, and when this occurs, calcium is not uniformly
distributed throughout the cell, so that the concept of whole cell calcium concentration is
essentially meaningless. Second, the whole cell release transient is initiated by a random
event, and is therefore not deterministic.

The model for calcium oscillations presented here relies on the assumption that release
from a release site is stochastic, depending on the local calcium concentration, and is very
rapid, allowing the use of the fire-diffuse-fire model. Other assumptions, such as assuming
that there is no calcium exchange with the extracellular environment, or that the calcium
release amount is fixed, are not essential to this discussion, and can easily be modified. How-
ever, because of the assumption that all waves are initiated by sparks and propagate rapidly
compared to the timescale of reactivation, this model does not have self-sustained spatio-
temporal patterns such as spirals and target patterns, nor does it have patterns resulting
from simultaneous release and coherence resonance described in [31].

In [5, 6], a different way of randomizing the fire-diffuse-fire model was used. There, release
occurred when the calcium concentration hit the threshold level θ, which was assumed to
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be noisy rather than fixed. In that work, stochastic simulations were used to study the
spark-to-wave transition.

One way to relate the approach in [6] to that taken here is to introduce a random variable
η = c(xn, t) − θ(t) and to write a Langevin equation for η,

dη = ct(xn, t)dt +
√

2∆dtξ(t), (50)

where ξ(t) is a Gaussian process with mean zero and variance one, and ∆ specifies the
variance of the noisy threshold θ. For this Langevin equation, there is the corresponding
Fokker-Planck equation describing the evolution of the probability distribution of η,

∂ρ

∂t
= −ct(xn, t)

∂ρ

∂η
+ ∆

∂2ρ

∂η2
. (51)

If we assume that at time t = 0, ρ(η, 0) = δ(η + θ0), where θ0 is the mean of the threshold
θ, and we use the absorbing boundary condition, ρ(0, t) = 0, then it follows that

Pn(t) = 1 −
∫ 0

−∞

ρ(η, t)dη. (52)

This definition of Pn(t) should give results quite similar to those with Pn(t) defined
by (18), although a detailed comparison has not been done. It is the case, however, that
numerical determination of Pn(t) using the definition (52) is an order of magnitude more
difficult than using (18), since (52) requires the numerical solution of the partial differential
equation (51), rather than the ordinary differential equation (18).

An interesting question is why Hodgkin-Huxley-type models for electrical activity of
excitable cells do not suffer from the same flaws as calcium models. (One might argue that
they do suffer from the same difficulties. In fact, there is a lot of noisiness in neural networks
that is not accounted for by deterministic models. See, for example, [13].) After all, the
structure and concepts behind the models are identical. Both are conservation laws of the
form

∂u

∂t
= D∇2u + source terms, (53)

and for both, the sources are spatially discrete fluxes of ions through channels that are
stochastic, being either open or closed. Furthermore, for both, the probability of being open
or closed is influenced by the local value of the variable u.

The essential mathematical questions are when can one replace the sum of discrete ran-
dom variables with their average behavior (the law of large numbers), and when can one
homogenize a spatially inhomogeneous equation.

The answer is one of quantities and not qualities. First, the electrical forces generated
by inhomogeneities of charge are much larger than the chemical forces generated by inhomo-
geneities of chemical concentrations. Thus, transmembrane potential tends to be much less
spatially inhomogeneous than chemical concentrations, and inhomogenieties are smoothed
much more rapidly. Indeed the space constant for electrical potential is several orders of
magnitude larger than for chemical concentrations, being typically 0.5 cm for axons com-
pared with 0.5 µm for calcium [34]. Second, calcium channels tend to occur in clusters and
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so the amount of calcium released per release site is relatively large, compared to the amount
of sodium (say), through a voltage controlled sodium channel. The law of large numbers
works much better for a large number of small amplitude events than for a small number
of large amplitude events. Thus, equations governing electrical behavior of membranes are
much better candidates for homogenization and the application of the law of large numbers
than are equations governing the dynamics of calcium.

The broader implication of this work is that there are significant cellular events for which
deterministic models are not appropriate. For these, there is a need for a new modeling
paradigm, assessing the probability of the event under different parametric conditions. Here
we examined only single cell events, however, this approach could be of significant interest
at the multicellular/organ level when applied to life threatening transitions.
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Figure 1: Calcium oscillations in the whole cell model (5-11) using parameter values from
Table 1; upper panel: time course, lower panel: phase portrait, with nullclines shown as
dashed curves and h-c trajectory shown as circular dots.
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Figure 2: Fundamental solution of (12), C0,k(t), plotted as a function of kst for δ = 2.0 and
for k = 1, 2, 3, 4.
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Figure 3: Probability distribution function p1(t) for the firing time at site 1, plotted for
σ
θL

= 2, 3, 4, 5, 6, with δ = 2.0.
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2 ) as a result of a single release
event at site 0 only, plotted as functions of σ
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, with δ = 2. The upper unlabeled curve is the

probability that release at site 1 precedes release at site 2, P (t1 < t2|site 1 release occurs),
and is quite close to 1.
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Figure 5: The moments m0, m1 and m2 of p1(t) as functions of σ
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with δ = 0.1.
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Figure 8: Solutions pn(t) of the recurrence equation (31) for n = 1, · · · , 5 with δ = 0.1 and
σ
θL

= 7. For this plot, m0 = 0.36, corresponding to an abortive wave.
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Figure 9: Solutions pn(t) of the recurrence equation (31) for n = 1, · · · , 20 with δ = 0.1 and
σ
θL

= 12. For this plot, m0 = 0.9775, for which propagation is sustained for a long distance.
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Figure 10: Expected number of release events E(Ne) plotted as a function of σ
θL

with δ = 0.1.
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Figure 11: The conditional release function p2(t|t1, t0 = 0) for 24 different values of t1 ranging
from 0 to 4.6ks, with δ = 1.0 and σ

θL
= 2.0.
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Figure 12: The sequence of functions pn(t) for n = 1, · · · , 14 with δ = 1.0 and σ
θL

= 2.0 found
as solutions of the two-step recurrence equation (40). The dashed curves are the solutions
of renewal equation (31) for the same parameter values.
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Figure 13: Expected number of release events E(Ne) plotted as a function of σ
θL

with δ = 1.0.
The dashed curve shows the result using the formula (39) which assumes that release depends
on nearest neighbor interactions only.
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Figure 14: The function W (η, 0) plotted as a function of η for two different values of F .
Other parameter values are given in Table 2.
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Figure 15: The function W (η, h) plotted as a function of η and h for F = 1 and N = 100,
with other parameter values given in Table 2.
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Figure 16: Probability distribution function for the time of whole cell calcium release, shown
for 3 different values of [IP3] saturation F = 0.7, 0.85, 1.0. Other parameter values are given
in Table 2.
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[IP3] saturation F .
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