
The Effect of Spatial Scale of Resistive Inhomogeneity
on Defibrillation of Cardiac Tissue

James P. Keener
Department of Mathematics

University of Utah
Salt Lake City, UT 84112

Eric Cytrynbaum
Institute of Theoretical Dynamics

University of California
Davis, CA 95616

June 11, 2003

Abstract

Defibrillation of cardiac tissue can be viewed in the context of dynamical systems
theory as the attempt to move a dynamical system from the basin of attraction of
one attractor (fibrillation) to another (the uniform rest state) by applying a stimulus
whose form is physically constrained. Here we give an introduction to the physical
mechanism of cardiac defibrillation from this dynamical perspective and examine the
role of resistive inhomogeneity on defibrillation efficacy. Using numerical simulations
with rotating waves on a one-dimensional periodic ring, we study the role of the spatial
scale of resistive inhomogeneity on defibrillation.

For a rotating wave on a periodic ring there are three stable attractors, namely the
uniform rest state, a wave traveling clockwise and a wave traveling counterclockwise.
As a result, the application of a stimulus has the potential for three different outcomes,
namely elimination of the wave, phase resetting of the wave, and reversal of the wave.

The results presented here show that with resistive inhomogeneities of large spatial
scale, all three of these transitions are possible with large amplitude shocks, so that
the probability of defibrillation is bounded well below one, independent of stimulus
amplitude. On the other hand, resistive inhomogeneities of small spatial scale produce
a defibrillation threshold that is qualitatively consistent with that found experimentally,
namely the probability of defibrillation success is an increasing function that approaches
one for large enough stimulus amplitude.

Extending these results to higher dimensions, we describe conditions for successful
defibrillation of functional reentry with large scale spatial inhomogeneity, but find that
elimination of anatomical reentry is quite difficult. With small spatial scale inhomo-
geneity, there are no similar restrictions.
Acknowledgment: This research was supported in part by NSF Grant DMS-
99700876 and DMS-0211366. We acknowledge N. Trayanova for clarifying
several misconceptions we had concerning her work, and S. Folias for valu-
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1 Introduction

Fibrillation is generally thought to be a highly disorganized pattern of electrical activation
of the heart consisting of many small reentrant “spirals” that are continually created and
destroyed (Gray et al. 1995; Panfilov 1998; Panfilov 1999; Choi et al. 2002). Ventricular
fibrillation is usually self-sustained and unless there is a successful intervention, death is
certain. Atrial fibrillation is a similar condition that occurs on the atria but which is not
fatal. In both situations, however, it is highly desirable to eliminate the reentrant behavior
and restore the normal pattern of activation.

Defibrillation with a large current shock is the process by which fibrillation is usually
eliminated. In the typical situation, two conducting pads are placed on the chest (or in the
case of open heart surgery or with implantable defibrillators, directly to the surface of the
heart) and a short (10 ms) discharge of current is triggered. When applied to the body
surface, the energy is of the order of 150 Joules, which explains why this is called a shock.
For implantable defibrillators, the required energy is on the order of 15-20 Joules, which is
still considerable.

When it works, a defibrillating shock eliminates the reentrant activity and the heart
approaches its rest state, awaiting normal activation. When it fails, the reentrant activity is
temporarily disturbed, but spontaneously returns (Ideker et al. 1991).

While the defibrillation threshold (DFT) is described as a threshold, this is not precisely
correct. Rather, the DFT is defined as the shock strength at which 50% of the attempts
are successful at eliminating fibrillation. At higher shock strengths, however, the probability
of success increases. For example, the enhanced DFT (DFT++) is 90% effective and for
implantable defibrillators the probability of success rises to approximately 99% with an
additional increase of 4 to 6 Joules (Gold et al. 2002).

The theory to explain the mechanism of defibrillation is not completely resolved. Accord-
ing to the “critical mass hypothesis”, a sufficiently large portion of the tissue must receive
a stimulus of sufficient strength for defibrillation to succeed. For example, an oft-mentioned
criterion is that 90% of the tissue must have an extracellular field strength of at least 5 V/cm.
This criterion does not explain the mechanism of defibrillation since it is not extracellular
current, but the distribution of transmembrane current, that is responsible for stimulating
cell membrane.

As we discuss below, inhomogeneities of resistance are necessary to drive transmembrane
current, and homogeneous ventricles could not be defibrillated. Fortunately for us, there is
no such thing as a resistively homogeneous heart, as there are numerous sources of inhomo-
geneities of resistance. For example, at the cellular level, cells are connected by gap junctions
and surrounded by extracellular space that contains capillaries, collagen fiber, connective tis-
sue, etc. all of which contribute inhomogeneity of conductance. In addition, myocytes are
assembled in distinct layers, with extensive clefts between these layers (Caulfield and Borg
1979; Robinson et al. 1983). At a larger space scale, cells are organized into fibers, there is
fiber branching and tapering, and the fiber orientation changes both in the longitudinal and
in the transverse directions.

The question that arises is which, if any, of these inhomogeneities is primarily responsible
for the success of defibrillation. The answer that we have favored is small scale spatial
inhomogeneities, and this hypothesis has been explored in several previous papers (Fishler
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1998; Fishler and Vepa 1998; Keener 1996; Keener 1998; Keener and Lewis 1999; Keener
and Panfilov 1996; Krinsky and Pumir 1998). Because the largest contribution to small scale
inhomogeneities was thought to be gap junctional resistance, and because gap junctional
resistance should lead to “sawtooth” profiles of transmembrane potential, this hypothesis
is sometimes referred to as the sawtooth hypothesis (Krassowska et al. 1987; Krassowska
et al. 1990). At present, the sawtooth hypothesis is not accepted by many workers in the
field, largely because of experimental data suggesting that the amplitude of the sawtooth
is too small to be the source of defibrillating stimuli (Gillis et al. 1996; Zhou et al. 1998).
However, a new proposal that deserves consideration is that interlaminal clefts provide an
adequate small scale resistive inhomogeneity (Hooks et al. 2002).

The alternate hypothesis is that large spatial scale inhomogeneities are primarily respon-
sible for defibrillation success. There is no difficulty whatever to see the effects of large scale
inhomogeneities of resistance in experiments (Fast et al. 1998; White et al. 1998). In fact,
regions of membrane depolarization and hyperpolarization are easily seen and are referred
to as virtual anodes and cathodes, virtual because they may occur at large distances from
the stimulating electrode (Wikswo, Lin, and Abbas 1994; Wikswo, Lin, and Abbas 1995;
Efimov, Aguel, Cheng, Wollenzier, and Trayanova 2000; Knisely, Hill, and Ideker 1994).

The purpose of this paper is to describe the mechanism by which each of these sources
of inhomogeneity lead to successful defibrillation and to describe the conditions for their
success. We find that with large scale spatial inhomogeneity, defibrillation succeeds for func-
tional reentry only if the virtual electrodes nearly cover the domain, and rarely succeeds
in eliminating anatomical reentry. There are no similar restrictions for small scale inhomo-
geneities.

The outline of this paper is as follows. In the next section we describe a model that
can be used to study the effect of externally applied stimuli. In the following section, we
describe the different dynamical responses that result from stimuli of different amplitude
and phase, and different scale inhomogeneity on a one dimensional ring. Then, we discuss
the implications of these observations for higher dimensional tissue, concluding that small
spatial scale inhomogeneity can account for much of the experimental data.

2 Modeling Defibrillation

Models of cardiac activity typically combine two ingredients, a model of cellular behavior
with a model of spatial coupling. For this paper we use simple models of cellular behavior,
and couple them with the bidomain model for cardiac tissue. For an understanding of how
externally applied currents affect cardiac tissue, we begin with the bidomain description of
cardiac tissue (Henriquez 1993; Keener and Sneyd 1998; Neu and Krassowska 1993). For the
usual bidomain model, cardiac tissue is assumed to be a two-phase medium, with comingled
intracellular and extracellular domains. At each point of the cardiac domain, denoted Γ,
there are potentials φe and φi, the extracellular and intracellular potentials, respectively,
and the transmembrane potential, v = φi − φe. These potentials drive currents,

ie = −σe∇φe, ii = −σi∇φi, (1)
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and a transmembrane current across the cell membrane dividing the two (comingled) regions.
The conductivities of the two media are represented by the conductivity tensors, σi and σe.
Kirchhoff’s laws imply that

χ(Cm
∂v

∂t
+ Iion) = ∇ · (σi∇φi), (2)

∇ · (σi∇φi + σe∇φe) = 0. (3)

The first of these equations implies that current can leave the intracellular space only as a
transmembrane current, and that the transmembrane current has two components, namely
the capacitive current and the ionic current Iion. The second equation states that the intra-
cellular and extracellular currents can be redistributed but charge is conserved (there are no
intracardiac current sources). In equation (2), Cm is the membrane capacitance, and χ is
the ratio of cell surface to total volume.

The boundary conditions for the bidomain model are that current flows only across the
boundary of the extracellular space, while there is no current across the boundary of the
intracellular space,

n · (σe∇φe) = I(t)fI(x), n · (σi∇φi) = 0, on ∂Γ, (4)

where n is the outward normal unit vector to the boundary ∂Γ. It is also required that the
total injected current be zero, ∫

∂Γ

fI(x)dx = 0. (5)

It should be noted that while the bidomain model is adequate for the case of large scale inho-
mogeneities, it is not appropriate for small scale inhomogeneities, since the bidomain model
is derived using a homogenization argument in which small scale spatial inhomogeneities are
smoothed or averaged out. Thus, inclusion of small scale inhomogeneity requires a different
model (Keener and Panfilov 1996).

We can get some idea of the behavior of this model by examining the case of a one
dimensional cable. In this case, the current conservation equation (3) can be integrated once
to obtain (with |fI | = 1)

σi
∂φi
∂x

+ σe
∂φe
∂x

= I(t), (6)

and we learn that

σi
∂φi
∂x

=
σi

σi + σe

(
σe
∂v

∂x
+ I(t)

)
, (7)

so that the equation (2) for the transmembrane potential becomes

χ(Cm
∂v

∂t
+ Iion) =

∂

∂x

(
σ
∂v

∂x
+

σi
σi + σe

I(t)

)
, (8)

where
σ =

σiσe
σi + σe

, (9)

with boundary condition
∂v

∂x
= − I

σe
at x = 0, L, (10)
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where L is the length of the cable.
It is easy to see that the response of the transmembrane potential to current stimuli is

different for a homogeneous or inhomogeneous cable. For a homogeneous cable, the current
source has influence only at the boundary, and the interior source term

∂

∂x

(
σi

σi + σe
I(t)

)
(11)

is identically zero. In a simple (unphysiological) situation in which the ionic current is linear
Iion = v

Rm
and there is a steady applied current I, the steady solution is

v(x) = − I

σe

sinh(
x−L

2

Λ
)

cosh( L
2Λ

)
, (12)

where Λ2 = Rmσ
χ

. For a domain that is large compared to the space constant Λ, this solution
exhibits exponential decay away from each boundary, and is essentially zero in the interior
of the domain. This corresponds to the well known fact that the response to a stimulus is
depolarization close to one boundary and hyperpolarization close to the opposite boundary,
with little effect in the interior of the domain. Thus, without resistive inhomogeneity, there
is effectively no transmembrane current generated by the stimulus in the interior of the tissue
(several space constants from the stimulus source).

On the other hand, if σi
σi+σe

is not constant (there is resistive inhomogeneity), the inhomo-
geneity provides additional sources and sinks of transmembrane current at points throughout
the interior of the medium. It is the distribution of these sources and sinks that is responsible
for defibrillation.

To get some insight into how this works in higher dimensions we calculate that

∇ · (σi∇φi)−∇ · (σi(σi + σe)
−1σe∇v) = ∇ · (σi∇v + σi∇φe)−∇ · (σi(σi + σe)

−1σe∇v)

= ∇ · (σi(σi + σe)
−1σi∇v + σi∇φe)

= ∇ · σi(σi + σe)
−1(σi∇v + (σi + σe)∇φe)

= ∇ · (σi(σi + σe)
−1It),

where It is the total current, It = σi∇v + (σi + σe)∇φe. The equation (2) becomes

χ(Cm
∂v

∂t
+ Iion) = ∇ · (σi(σi + σe)

−1σe∇φ) +∇ · (σi(σi + σe)
−1It). (13)

From this we see that if σi(σi+σe)
−1 is inhomogeneous in space, then when It is non-zero,

there are sources and sinks of transmembrane current in the interior of the tissue. It should
be noted that if σi(σi + σe)

−1 is proportional to the identity matrix, there are no virtual
anodes and cathodes, and defibrillation is impossible. However, this occurs only if σi = cσe
(equal anisotropy ratios), and it is well known that this does not hold for cardiac tissue.

There is no question that these source terms exist. In fact, virtual electrodes have been
found to be induced by unequal anisotropy of intracellular and extracellular spaces (Sepul-
veda and Wikswo 1987), myofiber curvature(Trayanova and Skouibine 1998), fiber narrow-
ing(Sobie et al. 1997), spatial inhomogeneity of intracellular volume fraction(Trayanova
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Figure 1: Periodic traveling wave, traveling from right to left, with v shown as the solid
curve, and w shown as dashed, in the upper panel. In the lower panel is the v − w phase
plane trajectory of this same solution, with the v and w nullclines shown as dashed curves.
Arrows in the phase plane indicate the direction of increasing x.

1999), discontinuity associated with gap junctions, and intercellular clefts(Fast et al. 1998).
The primary issue of concern in this paper is how different spatial distributions of sources
and sinks affects the outcome of a defibrillatory shock.

For much of the discussion that follows, to describe the ionic dynamics, we will use a
two variable model of FitzHugh-Nagumo type (Keener and Sneyd 1998). A useful (but not
physiological) specific example of these takes the form

Iion = −f(v) + αw,
∂w

∂t
= ε(v − γw), (14)

where f(v) = Av(1−v)(v−a), with α = a = 0.1, ε = 0.01, A = 1, and γ = 1
3
. In this model,

the rest potential v = 0 corresponds to the polarized membrane state. A positive stimulus,
leading to an increase of v is a depolarizing stimulus, and a negative stimulus, leading to a
decrease of v is a hyperpolarizing stimulus.

From time to time we will refer to more detailed ionic models such as the Beeler-Reuter
model (Beeler and Reuter 1977). However, since the phenomena we wish to explore are
more readily described using two variable caricatures, much of our discussion will focus on
FitzHugh-Nagumo kinetics.

Two variable models have the advantage that they can be viewed in the phase plane. For
example, in Fig. 1 is shown a typical periodic traveling wave solution on a ring, moving from
right to left. The upper panel shows the variables v and w plotted as functions of x for fixed
t, while the lower panel shows the phase plane projection of these same trajectories. In the
lower panel, the dashed curves are the v and w nullclines, found by setting Iion = 0 (the v
nullcline, cubic shaped) and dw

dt
= 0 (the w nullcline, a monotone increasing function of v).

In the phase plane, sharp transitions are seen as curve segments that connect the left and
right branches of the cubic nullcline while keeping w relatively unchanged. These transitions
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are identified as fronts or backs if their wavespeed is positive (for fronts) or negative (for
backs)(Keener and Sneyd 1998). The wavespeed is defined as that number c for which there
is a monotone increasing, heteroclinic trajectory of the equation

d2v

dξ2
− cdv

dξ
− Iion = 0 (15)

connecting the smallest zero of Iion, say v−, with its largest zero v+, with w fixed. It is easy
to show that the sign of c is the opposite of the sign of∫ v+

v−

Iiondv. (16)

As a result, there is a value of w, called the zero speed level, at which c = 0. For the cubic
FHN dynamics, the zero speed level is w0 = 2

27
(α2−α+ 1)3/2. A transition with w below w0

has positive speed and is therefore a front, while a transition above this level has negative
speed and is a back.

3 Defibrillation of a Ring

Since fibrillation is a state in which there are one or many reentrant waves, the goal of
defibrillation is to eliminate all of these reentrant waves, regardless of their structure or
location, allowing the tissue to return to rest, awaiting the next normal action potential.
From a dynamical systems point of view, the goal of a defibrillatory shock is to change the
state of the system by moving it to the attracting basin of the rest state. We need, therefore,
to understand something about basins of attraction for the variety of possible behaviors, and
how to move the system from one basin to another.

Since most of the fundamental ideas can be understood for a one-dimensional ring, in this
section we focus on this simplified geometry. For a one dimensional ring, reentrant activity
corresponds to a wave (or waves) rotating around the ring. For a ring, there is a limit on the
number of stable attractors, and the number of such attractors is always odd. This includes
waves with one or more action potentials moving in the clockwise direction, an equal number
moving in the counterclockwise, as well as the uniform rest state.

For two-variable models, these different states can be distinguished by a topological
criterion, as follows. At any point in time, plot the solution as a curve in phase space,
parameterized by space (as in Fig. 1). Because the spatial domain is a ring, hence periodic,
the solution curve in phase space is always a closed curve.

The zero speed level, described above, can be used to define a winding number for tra-
jectories. Consider a thin ellipse, with major axis along the zero speed level and centered
at the middle zero of f(v) (see Fig. 2). For this discussion, the precise size of the ellipose is
not significant, so long as typical periodic traveling waves surround it. Points that lie inside
this ellipse correspond to the core of spirals in two spatial dimensions, and are regarded
as ”phaseless points” (Winfree 1983; Winfree 1997). For curves that do not intersect this
ellipse, the winding number is defined as the integer number of times the curve wraps around
this ellipse, positive if moving in space from left to right gives clockwise rotation about the
ellipse, and negative if counterclockwise. If the number of windings around the ellipse is
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Figure 2: A trajectory in the phase portrait with winding number ±1.

zero, the winding number is zero. For example, in Fig. 1 where there is a single periodic
wave moving from right to left, the rotation in the phase portrait is counterclockwise, hence
the winding number is -1.

In the limit that ε is small, the winding number is an invariant of the flow for dynamics
(14) for all trajectories with an appropriate restriction on the size of |∂w

∂x
|. A restriction on

|∂w
∂x
| is necessary in order to make sure that each wrap around the ellipse takes up a sufficient

amount of space x (Cytrynbaum 2001).
It would be nice if this winding number were an invariant of the flow for all dynamics

of FHN type, but it is not. It is easy to find dynamics where a wave on a periodic ring
(with winding number ±1) is unstable but persists for quite some time before collapsing into
the rest state. However, the collapse can be identified as a transition in which the winding
number changes from ±1 to zero.

Even though the winding number is not an invariant, it gives a useful characterization of
the behavior of waves because it gives criteria for transitions between different states. For
example, it is easily understood that it is impossible to create a single rotating wave using
an S1-S2 stimulus protocol with the two stimuli applied at the same point on the ring, since
the winding number can never thereby (because of symmetry) be anything other than zero.

Similarly, to create a single traveling wave with an S1-S2 stimulus with the stimuli applied
at different places requires the correct timing to turn a double cover of a single curve (the
result of the S1) into a single loop with winding number ±1. In Figs. 3-4 are shown snapshots
of this sequence of events. In Fig. 3 are shown two action potentials propagating outward
that were initiated following a stimulus that was applied at the center of the spatial domain
at time t = 0. The phase portrait for this trajectory is a double cover of a single curve.
In Fig. 4 is shown the result at the end of the S2 stimulus that was applied slightly left of
center. The phase portrait for this trajectory shows that what was before a double cover of
a single curve has now been split into a loop with winding number 1. After the S2 stimulus
is ended this profile quickly evolves into a periodic traveling wave moving from left to right.

(A similar winding number can be defined for general ionic models by plotting v(x, t)
against v(x, t − τ) for some fixed delay τ along some closed curve in space.) We use the
winding number to assess the long term behavior of trajectories following a brief shock.
That is, trajectories with winding numbers ±1 converge to a traveling wave profile, while
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Figure 3: The profile (two waves traveling outward from the center), having winding number
0, created following application of an S1 stimulus at the center of a ring.
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Figure 5: A depolarizing stimulus applied in the partially refractory tail may produce winding
number zero by creating a new wavefront and new waveback.

those with winding number zero converge to the uniform rest state.
Suppose the ring size is such that it allows only winding numbers of -1, 0 and 1. That

is, the only stable attractors are the rest state and left or right moving periodic traveling
waves. A time dependent perturbation to one of these can have one of three outcomes. It
could change the winding number or keep it the same. Specifically, if we start with a left
moving travelling wave, a time dependent perturbation could change it so that it returns to
rest, or that the wave reverses direction, or the wave could remain the same, with only a
phase shift. These are the only possibilities.

It is clear how each of these transitions can be effected. To turn a winding number ±1
trajectory into a winding number 0 trajectory it is sufficient to apply a depolarizing stimulus
at a place where the dynamics are partially recovered in such a way that a portion of the
phase plane curve is moved from left to right so that it no longer surrounds the defining
ellipse (see Fig. 5). Similarly, it is sufficient to apply a hyperpolarizing stimulus at a place
where the dynamics are excited in such a way that a portion of the phase plane curve is
moved from right to left so that it also fails to surround the ellipse (see Fig. 6). Of course, if
both of these events occur at the same time then the winding number changes sign, leading
to a reversal of the direction of travel of the wave.

Each of these has three subcases which have slightly different physical descriptions. For
example, with a depolarizing stimulus applied to the partially refractory tail, the stimulus
might create a new front and a new back (Fig. 5), it might convert a front into a back
(Fig. 7), or it might convert a back into a front (Fig. 8).

To demonstrate that each of these transitions is possible, and to explore the effect of
inhomogeneities of resistance of different spatial scale, we simulated equation (8) on a one
dimensional periodic ring, using FitzHugh-Nagumo kinetics (14). The conductivities were
taken to be

σi = 0.01

(
1 +

1

2
sin

2π(Ωx+ φ)

L

)
, σe = 0.01. (17)

The length of the ring was L = 10, which was large enough to support a single stable periodic
traveling wave. The spatial grid size was ∆x = 0.05, and the time step was ∆t = 3, using
the Crank-Nicholson method. Initially, at time t = 0, there was a periodic traveling wave
(winding number -1), as shown in Fig. 1. At some time during the evolution of this wave,
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Figure 6: A hyperpolarizing stimulus applied in the excited region may produce winding
number zero by creating a new wavefront and new waveback.
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Figure 7: A depolarizing stimulus applied in the the recovered region may produce winding
number zero by converting a wavefront into a waveback.
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Figure 8: A depolarizing stimulus applied in the refractory region may produce winding
number zero by converting a waveback into a wavefront.
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Figure 9: Solution (with Ω = 1) midway through the stimulus of amplitude I = 0.17 at
t = 15. Large arrows indicate the location of maximal depolarizing and hyperpolarizing
input.

a brief stimulus was applied, simulated by setting I(t) to be some nonzero constant for the
short duration of 10 time steps (30 time units). (This is short compared to the time constant
of the variable w, τw = (γε)−1 = 300 time units.) Notice that the effect of I(t) at various
points on the ring is determined by the inhomogeneity of σi and σe in the source term (11).

By large scale we mean an inhomogeneity whose characteristic length scale is larger
than the size of the critical domain, which for this model is about 1 space unit. For this
simulation, we chose Ω = 1 to represent a large scale inhomogeneity. With large spatial scale
inhomogeneity, the results are essentially as described above, with the important restriction
that depolarizing current and hyperpolarizing current must always be in balance.

Beginning in Fig. 9 is shown the sequence of events leading to successful defibrillation.
At time t = 15, the effects of the stimulus are depolarizing ahead of the wavefront, and
hyperpolarizing at the waveback.

The trajectory is on its way to becoming like Fig. 7 with winding number zero. After
the stimulus is removed, when the wave is reestablished, there are two wavebacks moving
toward each other, which eventually collide causing the wave to collapse, leaving the medium
at rest. This is shown in Fig. 10 for time t = 105.

This stimulus was successful because the depolarizing stimulus was of sufficient amplitude
and was properly located so that the wavefront was converted to a waveback. The opposite
also occurs (but is not shown), namely a properly located hyperpolarizing stimulus of suf-
ficient amplitude can convert a waveback into a wavefront. Thus, successful defibrillation
with Ω = 1 occurs if the depolarizing stimulus is properly timed and of sufficient amplitude
or if the hyperpolarizing stimulus is properly timed and of sufficient amplitude.

If neither of these occur, the traveling wave is reestablished with a phase shift. However,
if both of these occur, the wave is not only reestablished, but its direction of propagation is
reversed, traveling in the opposite direction from the original.

That this last possibility occurs for FHN dynamics is demonstrated by the following
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Figure 10: Solution (with Ω = 1) at t = 105 following a superthreshold stimulus.

figures. In Fig. 11 is shown the solution during the stimulus (at t = 6) that will eventually
rotate in the opposite direction. Notice that the depolarization is ahead of the wavefront
and the hyperpolarization is slightly ahead of the waveback. It is apparent from the phase
portrait that this stimulus has the potential of changing the sign of the winding number
(from -1 to +1), and indeed this is the case.

After the stimulus is removed, the wave that is reestablished, shown in Fig. 12 is rotating
in the opposite direction.

These simulations demonstrate that with a low spatial frequency inhomogeneity, defib-
rillation in one spatial dimension is not a true threshold phenomenon, because it depends
crucially on the timing of the stimulus. Increasing the amplitude of a poorly timed stimulus
cannot increase the likelihood of defibrillation. Only if it is properly timed is the amplitude
of the stimulus significant.

This phase-amplitude dependence for large scale inhomogeneities is depicted in Fig. 13.
Shown here are the three regions in which there is defibrillation success, phase resetting and
propagation reversal, in the case that Ω = 1. The region with defibrillation success has two
components, one in which fronts are converted to backs via hyperpolarization and one in
which backs are converted to fronts via depolarization. The region with defibrillation success
is quite small, with the probability of success less than 20%.

Similar results to these were found using the Beeler-Reuter ionic model. With this full
ionic model it is possible to eliminate a rotating wave by application of a depolarizing stimulus
behind the tail of the action potential or by applying a hyperpolarizing stimulus near the
front of the action potential. The effect of the depolarizing stimulus is to effectively turn a
back into a front, as depicted by Fig. 8, even though these are not two-variable dynamics
to which this concept of winding number can be applied. The effect of the hyperpolarizing
stimulus is to turn a front into a back. In our simulations, however, the hyperpolarizing
current required to reverse a front was significantly larger than the depolarizing current
required to activate a back. This is readily explained by the fact that to hyperpolarize a
cell during its upstroke requires sufficient hyperpolarizing current to overhelm the inward
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Figure 11: Solution (with Ω = 1) during a stimulus of amplitude I = 0.17 (at t = 18) that
eventually causes the wave to rotate in the opposite direction. Large arrows indicate the
location of largest depolarizing and hyperpolarizing inputs.
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Figure 12: Solution (with Ω = 1) at t = 285 after the stimulus is removed that is rotating
in the opposite direction (from left to right).
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Figure 13: Amplitude-phase diagram in which three possible outcomes occur, for Ω = 1.
Phase resetting occurs in the solid black region; direction reversal occurs in the gray region,
and defibrillation occurs in the white region.

sodium current. This current requirement is far larger than the amount of depolarizing
current required to excite a partially recovered cell.

With small scale spatial inhomogeneities the results are substantially different. With
small scale inhomogeneity, the locations of hyperpolarization and depolarization are closely
spaced, and it is not as easy to predict the result of the stimulus, as it is with large scale
inhomogeneities.

To illustrate the differences, numerical simulations were performed, this time with Ω = 10,
so that the period of the inhomogeneity was 1

10
th that of the ring.

In Fig. 14, the solution is shown midway through the stimulus. The effects of the inhomo-
geneity are clearly seen as sites of depolarization and hyperpolarization, however, from this
figure it is not possible to predict the outcome of the stimulus. One noticeable feature is that
even though the amplitude of the depolarizing and hyperpolarizing currents is everywhere
the same, the effect of these on the potential depends strongly upon where in the phase of
the action potential the stimulus is applied.

After the stimulus is removed, the wavelike behavior is reestablished, although it is
some time before the final outcome is evident. In Fig. 15, the solution is shown some time
after the stimulus has terminated (at t = 165). By this time it is evident from the phase
portrait that the winding number is zero, and the wave consists of two wavebacks which are
traveling in opposite directions and, because the ring is periodic, will shortly coalesce and
collapse, allowing the medium to return to rest. In other words, the shock was successful at
terminating the rotating wave.

The most significant observation is that this result is practically independent of timing.
If the stimulus amplitude is reduced slightly (I = 0.0030) the outcome is dramatically

different. In this case, the early evolution is indistinguishable from that shown in Fig. 14,
however, the later evolution diverges from the previous case. In Fig. 16 is shown the wave
at t = 165. Here it is evident from the phase portrait that there is a wave front and a wave
back with winding number -1, so that a rotating wave is reestablished. The phase of the
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Figure 14: Solution (with Ω = 10, a small scale inhomogeneity) midway through the stimulus
with amplitude I = 0.0031, at t = 15.
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Figure 15: Solution (with Ω = 10) at t = 165 after the superthreshold stimulus (I = 0.0031)
was removed and slightly before the wave collapses and the medium returns to rest.
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Figure 16: Solution (with Ω = 10) at t = 165 after the subthreshold stimulus (I = 0.0030)
was removed and the rotating wave has been reestablished.

wave has merely been reset.
From numerical simulations we conclude that while the mechanism of defibrillation is

the same, namely the stimulus had the effect of turning a winding number ±1 wave into a
winding number zero wave, there is a significant difference in that the result is independent
of timing, and some of the conversions seen with large scale inhomogeneity are not possible
with small scale inhomogeneity.

The natural question is to ask why these are different.
A clue to understanding this difference is provided by recent experimental studies of

single cells stimulated by an applied electric field (Sharma and Tung 2002). In this study
the transmembrane potential was measured (using voltage sensitive fluorescent dyes) at five
sites along the length of a single cell before, during, and after the application of two successive
stimuli applied to the extracellular bath. The first stimulus was adequate to excite the resting
cell, and the second stimulus was applied 20 ms after the first, during the excited phase of
the action potential.

The results of these experiments are simulated in Fig. 17. The upper panel in this
figure is remarkably similar to those in Sharma and Tung 2002 even though this figure was
produced from a numerical simulation with the FHN model. For this simulation, a current
was applied to the extracellular medium, and the length of the cell was taken to be 1

6
th

the space constant of the intact cellular medium. We used the FHN dynamics (14) with
parameter values ε = 0.1, a = 0.05, γ = 2.7, and A = 50, and numerical integration
used the Crank-Nicholson method. The S1 stimulus was 0.3 time units duration and the
S2 had 0.5 time units duration, and were both of amplitude I = 4. The upper panel in
Fig. 17 shows five traces of voltage potential from five evenly spaced locations along the
cell (at x = 0, 0.25, 0.5, 0.75, 1.0). When there is an applied current, one end of the cell is
depolarized relative to the opposite end which is hyperpolarized, but when the current is
removed, the membrane potential quickly becomes homogeneous throughout the cell. The
lower panel shows the phase plane trajectory for the two ends of the cell.
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Figure 17: Upper panel: Plots of the potential as a function of time for five different locations
along a single cell during an S1-S2 stimulus protocol applied to an FHN cell; Lower panel:
Phase portrait plots of v and w at the opposite ends of a cell during an S1-S2 stimulus
protocol.

The noticeable feature of this figure is that the effect of the stimulus is different depending
on when during the action potential it is applied. If applied when the cell is recovering or at
rest, the net effect is strong depolarization, while if the cell is excited, the net effect is slight
hyperpolarization. For these dynamics, the net depolarization increased as the cell is more
recovered, and the net hyperpolarization increased as the stimulus was applied later during
the excited phase.

The analysis to understand what determines the net effect has been given previously
in several places, for example, (Krassowska and Neu 1994; Pumir and Krinsky 1997). The
conclusion of that analysis is that if the applied stimulus is short compared to the time
constants of all slow gating variables, then the potential is well approximated by

v(y, t) =
I(t)

σe
(y − L

2
) + φ(t) + O(ε), (18)

on the interval 0 < y < L, where φ(t) is the cell-averaged membrane potential, whose
dynamics satisfy

Cm
dφ

dt
= −

∫ 1

0

Iion

(
LI(t)

σe
(x− 1

2
) + φ

)
dx, (19)

holding all slow gating variables fixed. Here, ε = (L
Λ

)2, where L is the length of the cell, and
Λ is the length constant.

It follows from (19) that the effect of the stimulus is strongest for those potentials where
Iion is most strongly nonlinear, and if Iion is linear in v, then the stimulus has no effect. This
explains why the effect of the stimulus is so strong and depolarizing on a resting cell, but is
much smaller on a cell that is excited. For a resting cell, the sodium current is available and
the result of depolarizing one end of the cell far outweighs the effect of hyperpolarizing the
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opposite end, so that the net effect is overall depolarization. In contrast, during the excited
phase the primary current is an outward potassium current, which on this time scale is linear
in v, so that depolarization at one end of the cell and hyperpolarization at the opposite have
nearly cancelling effects. Observations of this nature form the basis of the paper Pumir et al.
1998.

Of course, (19) is only a first order approximation, ignoring slower time scale events.
These effects can be seen in the lower panel of Fig. 17, where the recovery variable changes
more rapidly at the depolarized end of the cell than at the hyperpolarized end of the cell, so
that when the stimulus is removed, the recovery variable is not uniform throughout the cell.
The primary observation, however, is that the response to small spatial scale inhomogeneity
is a nonlinear average of depolarizing and hyperpolarizing currents with the consequence
that for cardiac tissue the response is strongly depolarizing if the tissue is partially or fully
recovered, and the response is weak otherwise. This difference in response is because the
inward sodium current is strongly nonlinear in v while other currents are far less so. This
argues that the most significant current responsible for defibrillation is the sodium current.

This analysis applies regardless of the source of resistive inhomogeneity, as long as the
spatial scale of that inhomogeneity is small compared to the length constant of the medium.
Thus, even though this analysis was initially done with gap junctions and sawtooth potentials
in mind, it applies equally well if the primary resistive inhomogeneity is in the extracellular
space or results from other small scale structures.

4 Defibrillation in Higher Dimensions

The mechanism for defibrillation that we proposed in the previous section is that a stimulus,
however it is provided, must result in a winding number zero trajectory after it has ended. In
2 or 3 spatial dimensions, an analogous winding number cannot be defined, so we retain the
definition of winding number used on a one dimensional ring. That is, for any specific non-
intersecting closed curve in physical space whose image in the phase plane does not intersect
the prescribed ellipse, the winding number is nonzero if the total number of wraps around
the ellipse is nonzero as one traverses the simple closed curve, and zero otherwise. (There
is additional subtlety as to how to correctly orient the curve in three dimensions, so for
the sake of simplicity, for the remainder of this discussion we consider only two dimensional
regions of space.) In two or three dimensional space, this winding number may change as
the defining curve is moved around. However, we can determine when there is a reentrant
pattern as follows. Let Wc be the winding number associated with a particular closed curve
c, and let

W = max
c
|Wc| (20)

over all closed curves for which Wc is defined. If W 6= 0 there is a reentrant pattern of
activity. Thus, defibrillation is successful if a short time after the stimulus is terminated,
W = 0, while defibrillation is unsuccessful if not.

Notice that this definition of W is non-local. If the spatial domain contains no holes,
we could use a local property determined by the number and nature of phaseless regions.
However, defibrillation is not equivalent to the elimination of all phaseless regions if the
domain contains one or more holes (eg., a ring or annulus).
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Figure 18: An example of the arrangement of critical domains for FHN dynamics in a
fibrillatory state. Critical domains end at phaseless regions or at a boundary.

The main lesson we learned in the previous section is that to use depolarization to obtain
winding number zero, a depolarizing current of sufficient amplitude must be applied to a
particular region on the trajectory in the recovery phase, illustrated by Fig. 5. Depolarization
of other parts of the action potential are of no consequence to changing the winding number.
The domain on the phase portrait that requires depolarization to produce winding number
zero we identify as the critical domain. (The critical domain is closely related to, but not
exactly the same as, the excitable gap.) There are analogous hyperpolarization critical
domains whose significance will be described below.

If W is not zero, there are a number of regions in space which map to the ellipse in phase
space. These are analogous to Winfree’s phaseless points (Winfree 1983; Winfree 1997), and
are identified as the core region of reentrant activity. Any simple curve surrounding one
of these regions must necessarily intersect the critical domain. In fact, critical domains are
continuous in space and can begin or end only at the preimage of phaseless ellipses or at the
domain boundary. If there is but a single spiral, then there would be a single phaseless region
with a spiral shaped critical domain emanating outward from it. A typical arrangement of
critical domains is shown in Fig. 18. In this figure the contours are those of the potential v
and the darkened regions are the critical domains, numerically computed from a simulation
of the FHN model in a fibrillatory state. (The axes are in non-dimensional space units and
the length constant is one space unit.)

A criterion for defibrillation is that all of the critical domains be depolarized with sufficient
amplitude, and if defibrillation fails, it is because some portion of a critical domain was not
adequately depolarized. If a new reentrant pattern is created, it is because some preexisting
critical domain was differentially depolarized. In fact, if some portion of a critical regions
fails to be depolarized it is the ends of that region that become the new centers of reentrant
activity after the stimulus has terminated (Efimov, Gray, and Roth 2000; Winfree 1983).

The next issue to face is how the stimulus is generated. If the stimulus is generated by a
large scale spatial inhomogeneity, then because charge is conserved, the net transmembrane
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Figure 19: An example of the depolarization tiling due to virtual electrodes. The shaded
regions denote superthreshold depolarization.

current from the stimulus is zero; total depolarizing and hyperpolarizing currents must be
in exact balance. This means that the size of the region that receives depolarizing current is
roughly the same as the size of the region that receives hyperpolarizing current. Of course,
the regions with sufficiently large depolarizing current are smaller. Thus, the distribution of
virtual anodes and cathodes creates a tiling pattern of depolarization and hyperpolarization.
An example of such a tiling is shown in Fig. 19.

Now, according to the criterion developed above, defibrillation will be successful if the
superthreshold depolarization tiling completely covers the critical regions. An example of
this overlay is shown in Fig. 20.

For Fig. 20 defibrillation would not be successful. In fact, the probability that the
distribution of critical regions fits entirely within the superthreshold depolarization tiling is
zero. Thus, with a typical depolarization tiling and a typical distribution of critical domains
(such as shown in Fig. 18), the probability of successful defibrillation is zero.

However, the complete picture requires consideration of the complementary hyperpolar-
izing critical regions. The hyperpolarization critical regions are connected to depolarization
critical at the core of a spiral and their partial hyperpolarization leads to the creation of new
spiral cores. If defibrillation required the immediate elimination of all spirals, defibrillation
by this mechanism would be impossible. However, spirals formed by depolarization are typi-
cally paired with spirals formed by hyperpolarization. If the total parity of the spirals is zero,
and if all the spiral pairs are sufficiently close together, they will subsequently collapse (since
spiral pairs require a sufficient domain size to maintain themselves). If all such spiral pairs
collapse, defibrillation is achieved. We belive this is the mechanism by which defibrillation
is achieved by Eason and Trayanova (2002).

Since all the new spirals are formed on the boundaries of the superthreshold virtual
electrodes, this mechanism requires that all of space be closely packed with superthreshold
virtual electrodes. In this way, newly formed spiral pairs are not too far apart and will
collapse, and all preexisting cores receive superthreshold stimulus and are eliminated. It is
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Figure 20: An example of the overlay of the superthreshold depolarization tiling with the crit-
ical domains. Defibrillation is successful if the critical domains lie within the superthreshold
depolarization tiling.

also for this reason that reentry with a “virtual core” (rotation around an inexcitable hole)
cannot be readily eliminated, unless a superthreshold virtual electrode completely surrounds
the hole. If the virtual core is not surrounded by a virtual electrode, then as with a one
dimensional ring, elimination of the reentrant wave is dependent on timing.

The story is much different with small scale inhomogeneity. The physics of anodes and
cathodes is exactly the same, namely there is no net transmembrane current. Thus, the area
where there is depolarization is roughly the same as the area where there is hyperpolarization.
The difference, however, is that because the spatial scale of this pattern is small compared to
the length scale of the tissue, the effect of the stimulus is quickly smeared out, or averaged,
spatially. If there is no amplification of these currents, (if the tissue is effectively linear
i.e., passive) then this average effect is zero; the depolarizing and hyperpolarizing currents
cancel each other out for no net effect. On the other hand, if the tissue is locally active and
excitable, so that it amplifies depolarizing currents, and deamplifies hyperpolarizing currents,
then the net effect is always depolarization. Thus, with small scale inhomogeneity the critical
domain, because it is partially recovered, always receives depolarizing stimulus; there is no
need to align the depolarizing virtual electrode with the critical domain. The only concern
is whether the amplitude of the stimulus is sufficient to excite the critical domain. Thus,
spatial averaging has the effect of eliminating the need for critical domains to be precisely
aligned with the regions of depolarization. All critical domains are depolarized. The only
variable is the amplitude of the effective depolarization.

When a stimulus is applied to two or three dimensional tissue, the distribution of total
current is not uniform, as it is in one dimension. The consequence of this is that with a
fixed stimulus amplitude, in some regions of space the critical domain may receive adequate
stimulus, while in other regions of space the critical domain may not be sufficiently excited.
Thus, for a fixed stimulus protocol and electrode placement, there are regions of space that
are superthreshold and regions that are subthreshold. The probability of defibrillation is the
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probability that no part of the critical domain lies in the subthreshold region at the time
the stimulus is applied.

Notice one very important difference between small scale and large scale inhomogeneity.
With large scale inhomogeneity, the size of the superthreshold depolarizing region is highly
unlikely to exceed 50% and will generally be much smaller than that, whereas, with small
scale inhomogeneity, the size of the superthreshold region increases with the stimulus ampli-
tude and could cover the entire tissue region. In Keener and Panfilov 1996, homogenization
theory was used to derive an estimate for the effective amplitude of the stimulus from a more
detailed tissue model. From their analysis, it was shown that the amplitude of the effective
stimulus is related to several factors, written as

A = I(t)|Ki(x) · ψi(x) +Ke(x) · ψe(x)|. (21)

Here I(t) is the stimulus amplitude, Ki(x) and Ke(x) describe the spatial distribution of
intracellular and extracellular current as determined by the large scale tissue structure (the
mean field) and electrode placement, and ψi(x) and ψe(x) are vectors determined from local
features (the small scale structure) of the cellular medium. We define θ(x) to be a local
tissue property such that if

∫
Adt > θ, then the refractory tissue within a critical domain at

position x will receive adequate stimulus to effect defibrillation locally. Thus, a stimulus is
globally superthreshold if ∫

A(t, x)dt > χ(x)θ, (22)

for all x, where χ(x) is the characteristic function of the critical domain, zero outside the
critical domain and one inside. Since χ(x) is continually changing during fibrillation, the
probability of defibrillation is the probability that (22) holds on the entire tissue domain at
the time the stimulus is applied (i.e., for a randomly chosen spatial distribution of critical
domains).

This criterion is actually too demanding for two reasons. First, it is not necessary that
all critical domains be excited, but only that the size of any critical domains that receive
insufficient stimulus be small enough so that new reentrant patterns cannot emerge from
them. Second, critical domains in the vicinity of tissue boundaries need not be completely
stimulated for the same reason, since if they are close to a boundary they are not capable of
sustaining a reentrant pattern but will spontaneously disappear.

With these caveats, we see that there are five features that determine whether or not a
stimulus will successfully defibrillate a piece of tissue. These are:

• the amplitude (and/or duration) of the stimulus I(t);

• the distribution of current within the tissue specified by Ki(x) and Ke(x);

• the microstructure of the tissue specified by ψi(x) and ψe(x);

• the spatial distribution of the critical domain χ(x),and

• the threshold of the critical domain θ(x);
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It is presumably easiest to change the size of the subthreshold region. In fact, increasing
the stimulus amplitude I has exactly this effect. Since the function |Ki(x) · ψi(x) +Ke(x) ·
ψe(x)| is positive, increasing I has the effect of decreasing the size of the region that is
subthreshold, thereby increasing the probability of defibrillation success.

The functions Ke(x) and Ki(x) are modified by electrode design and electrode placement.
Clearly, satisfying (22) is more difficult if these have large spatial variations. Thus, one
criterion for the design and placement of electrodes is that the field produced be as uniform
as possible.

The functions ψi(x) and ψe(x) depend on the amplitude of local resistive inhomogene-
ity. Indeed, this theory predicts that if the amplitude of local resistive inhomogeneity is
increased, then the DFT will be decreased. One way to increase local intracellular resistive
inhomogeneity is with the application of heptanol, a gap junction decoupler, and this theory
therefore predicts that addition of heptanol should decrease the DFT. Indeed, this is known
to be true experimentally (Qi et al. 2001). It is also predicted by this theory that increased
extracellular resistive inhomogeneity, such as might be caused by cell swelling, should de-
crease the defibrillation threshold. According to this theory, the DFT is also affected by the
orientation of the mean field (a vector) relative to the resistive inhomogeneity (also a vector).
Since the vector dot product K · ψ is maximized when the vectors are parallel, this theory
predicts that the DFT is lowest if the mean field is oriented to be parallel to the direction
of greatest resistive inhomogeneity.

The most significant determinant of defibrillation success is the distribution of the critical
domain χ(x) compared to the location of the subthreshold regions. For example, in Fig. 20,
the critical domain consists of 8 narrow strips of varying lengths. To get some understanding
of the importance of this distribution, we suppose that the critical domain consists of several
disjoint striplike components. We can model this in a simple way with a one dimensional
example. Suppose the unit interval contains several (k) subintervals of total length B that
receive subthreshold stimulus. Suppose further that there are n critical regions with total
length A. For simplicity, we suppose that the n critical subregions are all intervals of identical
length A/n. The probability of defibrillation success is the same as the probability that when
the critical intervals are randomly distributed on the unit interval, there is no overlap with
the subthreshold regions of total length B.

We can calculate this probability for large enough n. Since there are k distinct sub-
threshold regions, the area of the region in which the midpoint of a critical interval may fall
without jeopardizing successful defibrillation is 1−B− kA

n
, at least if n is large enough. This

means that the probability of defibrillation success is

P (success) = (1−B − kA

n
)n, (23)

a decreasing function of n. In other words, as the critical domains become smaller and less
organized but more numerous, the probability of defibrillation success decreases.

This argument is readily generalized to two dimensional regions. Suppose that the sub-
threshold region has total area fraction B, and suppose that there are n critical domains that
require superthreshold stimulus. We suppose that the critical domains are chosen randomly
and are characterized by a single size parameter, say length l. The distribution of sizes is
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given by some probability distribution function, say pn(l), with mean value A
n

,∫ ∞
0

lpn(l)dl =
A

n
(24)

so that the total length of critical domains is A, on average. The probability that a critical
domain of size l can be placed entirely within the superthreshold region is some function,

P (success|l) = F (B, l) (25)

a monotone decreasing function of l with F (B, 0) = 1 − B < 1. The probability that
defibrillation of all n excitable components will be successful is

P (success) =

(∫ ∞
0

F (B, l)pn(l)dl

)n
. (26)

Clearly, ∫ ∞
0

F (B, l)pn(l)dl ≤
∫ ∞

0

F (B, 0)pn(l)dl = 1−B < 1, (27)

so that
lim
n→∞

P (success) = 0. (28)

In other words, as the critical regions become smaller and more disorganized, the probability
of defibrillation success decreases.

It is known that the defibrillation threshold is lower within the first few cycles of ven-
tricular fibrillation than after 10 seconds of fibrillation (Gradaus et al. 2002), and that
the defibrillation threshold for monomorphic tachycardia is lower than for fully developed
fibrillation (AMA Standards 1986).

If fibrillation corresponds to multiple unstable rotating wavelets, and if fibrillation is ini-
tiated by the degradation of one or two larger spirals, then this experimental observation is
consistent with the present theory. This is because for spirals, the critical regions are highly
organized, however, as breakup occurs and the spirals degrade into fully developed fibrilla-
tion, so also the organization of the critical regions degrades, although the total length of the
critical domain remains more or less the same. According to this theory, the defibrillation
threshold should be lower for monomorphic tachycardia or early fibrillation.

The final way that the success of defibrillation is determined is by the threshold θ. Recall
that θ is a measure of how large a stimulus is required to depolarize marginally recovered
tissue. One would expect that θ could be modified by the presence of drugs.

Sotolol is a potassium channel blocker, specifically blocking the delayed rectifier potas-
sium channel, and as a consequence is known to lengthen action potential duration. Accord-
ing to this theory, a potassium channel blocker should have little effect on the DFT since
potassium currents are effectively linear and not responsive to small spatial scale hyperpo-
larization/depolarization pairs. Indeed, it is known that sotolol has no significant effect on
the DFT (Ujhelyi et al. 1999).

The story for sodium channel blockers is more complicated. A sodium channel blocker has
two effects on the dynamics that are related to this theory. First, with fewer sodium channels
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available, the action potential upstroke and the speed of propagation are slowed. This means
that the critical domain, defined by the zero wave speed, is shifted. In addition, with fewer
available sodium channels it would seem likely that the threshold for depolarization of the
critical region is increased. This loose argument suggests that sodium channel blockers
should increase the DFT. Unfortunately, we do not yet have solid evidence from a detailed
ionic model that this line of reasoning is correct. Nonetheless, the experimental evidence is
that sodium channel blockers, such as lidocaine and mexiletine, increase the DFT (Crystal
et al. 2002; Ujhelyi et al. 1999).

5 Discussion

These results can be described in terms of dynamical systems theory. The system we exam-
ined has several stable attractors, including the rest state and the fibrillatory state in which
there are several or many reentrant patterns. Defibrillation can be viewed as the attempt to
move the system from one attractor, a fibrillatory state, to another, the uniform rest state,
by application of a time dependent perturbation. However, the form of the perturbation is
not arbitrary, but is constrained by the physics of cardiac tissue. Specifically, the stimulus
cannot be applied directly to interior points of the tissue, but can be applied only at the
tissue boundary. The way this stimulus is translated into transmembrane stimulus in the
interior of the tissue is related to its resistive inhomogeneity, among other things.

We have shown here that the effect of stimuli on reentrant patterns depends strongly
on the spatial scale of the inhomogeneity by which the stimulus is mediated. When the
inhomogeneity is of small spatial scale, and the applied field is uniform, the effect of a
stimulus is uniform. In the limit that the spatial scale is zero, this conclusion can be verified
using homogenization theory (Keener and Panfilov 1996), and in this situation, defibrillation
is a true threshold phenomenon; defibrillation succeeds or fails depending solely on the
amplitude of the stimulus. If the applied field and tissue properties are nonuniform (which
is the physically realistic case), then the probability of defibrillation success is an increasing
function of stimulus amplitude. Failure to defibrillate can be explained as a failure of some
critical domain to be adequately depolarized, leading to the reestablishment of reentrant
waves.

The small scale hypothesis produces a theory that agrees with the experimental data in
several ways. That the defibrillation threshold should decrease with the addition of heptanol,
remain unchanged with application of potassium channel blockers and increase with addition
of sodium channel blockers is consistent with this theory. This theory also can be used to
show that a biphasic shock is more efficient than a monophasic shock (Keener and Lewis
1999).

With large spatial scale inhomogeneities, the mechanism of defibrillation is quite differ-
ent. Here, many new spiral pairs are created and if they are close enough together, they
soon collapse, leaving the tissue free of reentrant waves. Since spirals are formed on the
boundaries of superthreshold virtual electrodes, spiral pairs will be close together if the su-
perthreshold virtual electrodes nearly cover all of space. It is also required that the cores of
preexisting spirals all lie inside a superthreshold virtual electrode. A large domain that is
not covered by superthreshold virtual electrodes cannot be defibrillated by this mechanism.
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Similarly, anatomical reentry is difficult to eliminate by this mechanism, because, as with
one-dimensional reentry, elimination of anatomical reentry requires proper alignment with
the virtual electrodes. It is experimentally well established that injection of a depolarizing
current at the right place at the right time can terminate a rotating wave on a ring, but if
the timing is not correct, the rotating wave is merely reset to a different phase (Frame and
Rhee 1988; Glass and Josephson 1995). In our numerical simulations of FHN dynamics, we
also found that reversal of direction was possible, with a properly timed stimulus.

As a consequence of this need for proper alignment, it is quite difficult to eliminate
anatomical reentry. Several numerical studies have shown success at eliminating functional
reentry with large scale virtual electrodes for a tissue size that was small enough to be covered
by a few virtual electrodes (Anderson et al., 2000; Efimov et al., 2000a, b; Trayanova et al.,
1998; Eason and Trayanova, 2002). It is the prediction of the large scale theory that if
a spiral were to drift and become pinned by an inexcitable anatomical obstacle, it would
become much more difficult to eliminate, unless the anatomical obstacle were completely
surrounded by a superthreshold virtual electrode.

The main uncertainty for the small scale theory remains the physical source of small
spatial scale inhomogeneity. The effect of small scale resistive inhomogeneity due to gap
junctions is clearly seen in single isolated cells, but less so in coupled pairs of cells (Sharma
and Tung 2001). In intact tissue, sawtooth potentials of the amplitude required of this theory
have not been seen (Zhou et al. 1998).

However, other sources of small scale resistive inhomogeneity exist and may be more
important than gap junctions. For example, recent simulations (Hooks et al. 2002) suggest
that the interlaminal clefts between tissue layers may be much more significant than previ-
ously thought. The spatial scale of these clefts is of the right order of magnitude for this
theory to apply, about 6 cell widths. Furthermore, most gap junction connections occur as
end-to-end couplers, so that lateral resistive inhomogeneity may be more significant than
transverse. Other inhomogeneities such as fiber splitting or tapering may play a role as well.

So we are left with an unexplained conundrum. The small scale hypothesis produces
a theory which agrees qualitatively with many of the experimental observations, but the
fundamental hypothesis of the nature of the tissue structure has not been verified. On the
other hand, the large scale sources of resistive inhomogeneity that are readily observed seems
to work only for a restricted class of reentrant patterns and domains.
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