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Abstract

We show that many Markov models of ion channel kinetics have globally attracting stable
invariant manifolds, even when the Markov process is time dependent. The primary implication
of this is that, since the dimension of the invariant manifold is often substantially smaller
than the full master equation system, simulations of ion channel kinetics can be substantially
simplified, with no approximation. We show that this applies to certain models of potassium
channels, sodium channels, ryanodine receptors and IP3 receptors. We also use this to show
that the original Hodgkin-Huxley formulations of potassium channel conductance and sodium
channel conductance are the exact solutions of full Markov models for these channels.
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1 Introduction

Ion channels are multiconformational proteins that open or close in a stochastic fashion, reflecting
stochastic transitions between conformations. One popular way to model the dynamics of these
transitions is as Markov jump processes. These Markov models are then used in conductance based
models to study the dynamics of (for example) electrical activity in nerve cells, cardiac cells, muscle
cells, etc.

As Markovian models have become more detailed and complicated, the need for ways to reduce
this complexity has also become apparent. One often used technique to reduce model complexity
is fast equilibrium or quasi-steady state analysis, in which the fastest transitions are taken to be in
quasi-equilibrium. The reduced model then follows the dynamics on a slow manifold, which is of
lower dimension than the full system.

A different reduction is possible if the Markovian process has a stable invariant manifold. If there
is such a stable invariant manifold then after transients have decayed (which, we argue below, is
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always the case), the dynamics of the system are restricted to the stable invariant manifold, which
being of lower dimension than the full system, is therefore simpler to simulate.

Several years ago (Chapter 3, [5]), it was noted that the Hodgkin-Huxley models for potassium and
sodium conductances were actually the invariant manifolds of higher dimensional Markov channel
models. At that time, no general explanation of why this is the case or when this might be applicable
for other channel models or other Markov processes was provided. Furthermore, the global stability
of this manifold was asserted, but no rigorous proof was provided.

The purpose of this paper is to provide that general explanation and in doing so, show that there
are large classes of time-dependent Markovian jump processes that possess stable invariant man-
ifolds. We then use this to reduce several well-known ion channels models. Specifically, we show
reductions of models for potassium channels, sodium channels, and ryanodine receptors (RYR)
and IP3 receptors. In addition, we show how the Hodgkin-Huxley formulations of potassium and
sodium channel kinetics fit into this general framework, and in so doing reiterate that they are, in
fact, exact solutions of full Markov models.

2 Invariant Manifolds for Markovian Jump Processes

We suppose that X is a discrete random variable that can take a finite number of integer values
j = 0, 1, · · · , N . We also suppose that the probability of jumping from state i to state j in the
time interval between t and t + dt is kij(t)dt, in the limit that dt is small. Notice that this process
need not be time independent. In particular, for ion channels, which is the application we have in
mind, transition rates are often dependent on other time-varying variables such as voltage or ion
concentrations. Finally, we suppose that the reaction kinetics are irreducible, meaning that there
is no random variable Y which takes on a subset of the values of X, which also forms a closed set.

The master equations for this stochastic process are well known to be given by [2]

dpj

dt
=

∑

i6=j

kij(t)pi −
∑

i6=j

kji(t)pj , j = 0, 1, 2, · · · (1)

where pj(t) is the probability of being in state j at time t. Of necessity, pj(t) ≥ 0 and
∑

j pj(t) = 1.
We can write the system (1) in matrix form

dP

dt
= A(t)P, (2)

recognizing that A = (aij) where

aij = kji(t), i 6= j, aii = −
∑

j 6=i

kij(t). (3)

We also write the conservation condition
∑

j pj(t) = 1 as 1̂T P = 1, where 1̂T = (1, 1, · · · , 1).

Any two solutions of the master equations have the same ultimate fate. That is, if P1(t) and
P2(t) are two solutions of the master equations, then Y = P1(t) − P2(t) → 0 as t → ∞. More
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specifically, the l1 norm of Y , ||Y ||1 =
∑

j |yj| is a monotone decreasing function of time [1]. This is
not particularly interesting for time-independent processes, since all solutions approach the unique
steady state, however, it is a much more substantial statement for time-dependent processes.

An invariant manifold for this equation is a vector, say Q = (Qi),
∑

Qi = 1, parameterized by the
variable q, having the feature that P = Q(q) is a solution of the differential equation (2) provided
that q satisfies a differential equation of lower dimension

dq

dt
= F (q, t). (4)

It is easy to see that a sufficient condition for there to be an invariant manifold is that

A(t)Q(q) =
∑

j

∂Q

∂qj

Fj(q, t). (5)

It follows immediately, that if the master equation has an invariant manifold it is globally stable.
It also follows that the invariant manifold of lowest dimension is unique.

3 Examples of Markov Processes with Invariant Manifolds

The search for stable invariant manifolds is equivalent to the search for exact solutions of lower
dimension. However, since the stable attractor is unique, we seek exact solutions that are of smallest
possible dimension, rather than fully general solutions (for arbitrary initial data) as found in [4].

Several exact solutions of master equations are well known. In [2], it was shown that the master
equation corresponding to the simple chemical reaction

A
α

−→
←−

β

X, (6)

with the concentration of species A held fixed, has an exact solution which is Poisson distributed
with parameter q, where q is governed by the differential equation

qt = α − βq. (7)

The proof of this given in [2] uses a generating function, and is therefore only valid if α and β are
constant. However, a straightforward calculation (by direct substitution) shows that the Poisson
distribution is an exact solution even if α and β are time dependent. Thus, the minimal stable
attractor for the process (6) is the Poisson distribution parameterized by the parameter q.

Recently several more exact solutions have been found [4]. These include the multinomial distri-
bution, the generalized Poisson distribution and the negative binomial distribution. Of these, the
only one that is relevant for ion channel kinetics is the multinomial distribution.

Suppose the concentrations Ck(t) of the chemical substances Sk are governed by first order reaction
kinetics, modeled by the deterministic differential equation

dC

dt
= A(t)C(t), (8)
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where C(t) = (C1(t), C2(t), · · · , Cn(t))T . Because this is a closed chemical reaction system, the
off-diagonal entries ai,j are the first order reaction rates at which species j is converted to species
i. The diagonal entries ai,i are the rates at which species i is converted to some other species,
ai,i = −

∑

j aj,i. Thus, the form of this system is exactly the same as a master equation (2).

For a stochastic interpretation of this deterministic system, we let X = (X1(t),X2(t), · · · ,Xn(t))T

be a discrete random variable where Xk(t) is the number of molecules in state k at time t, and use
the kinetic rates ai,j to generate a master equation for the probability that there are ik molecules
of species k at time t. In particular, the rate at which one molecule of species k is converted to one
molecule of species j is ikaj,k.

A direct calculation (see [4]) verifies that the multinomial distribution

pi1,i2,··· ,in =
N !

i1!i2! · · · , in!
pi1
1 pi2

2 · · · pin
n , (9)

is an exact solution of this master equation, provided the parameters of the distribution P (t) =
(p1(t), p2(t), · · · , pn(t)) satisfy the differential equation (8).

The second useful feature of invariant manifolds is a multiplicative structure. That is, if Q(q) is an
invariant manifold for the stochastic process for the random variable X, and R(r) is an invariant
manifold for the stochastic process for the random variable Y , then the product P = QT R is an
invariant manifold for the random variable Z = X × Y .

We can see how this works as follows. Suppose the random variable Z has states that are denoted
by two indices. Assume also that transitions are possible only between states for which one index,
not two, differ. Thus, transitions between Si,k and Sj,k or between Si,k and Si,j are permitted
but no others. Further, we assume that the transition rates between Si,k and Sj,k are independent
of k, while the transition rates between states Si,k and Si,j are independent of i. We denote the
transition rates between Si,k and Sj,k by βi,j(t) and between Si,k and Si,j by γk,j(t).

The master equation for this process is

dpi,k

dt
= −

∑

j

βi,jpi,k +
∑

j

βj,ipj,k −
∑

j

γk,jpi,k +
∑

j

γj,kpi,j, (10)

Now we let Q be a solution of the lower dimensional master equation

dQi

dt
= −

∑

j

βi,jQi +
∑

j

βj,iQj, (11)

and similarly let S be the solution of the master equation

dSk

dt
= −

∑

j

γk,jSk +
∑

j

γj,kSj. (12)

It is an easy calculation to verify that pi,k = QiSk is a solution of the master equation (10).
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4 Ion channel kinetics with Invariant Manifolds

We now use the above results to show that several well-known ion channels models have invariant
manifolds of reduced dimension.

To do so we first note that while the above invariant manifolds were stated as applying to chemical
reactions with chemical species C, the vector C in (8) can equally well be viewed as a probability
distribution function for any Markov process. Then, if there are multiple independent copies of
this process, the random variable Xk represents the number of elements that are in state k.

4.1 Potassium Channels

A simple model for the potassium channel found in the squid axon is that it is comprised of four
independent subunits, each of which can be either open or closed, with voltage dependent transitions

C
α(V )

−→
←−
β(V )

O. (13)

The conducting state of the channel is that in which all subunits are open. If k denotes the number
of open subunits, then the state diagram is represented by

Sk

α(N−k)

−→
←−

β(k+1)

Sk+1. (14)

This is a simple reaction network to which the above results apply. Specifically, since there are four
independent copies of a two-state Markov process, the probability that k of the subunits are in the
open state is governed by the master equation

dpk

dt
= (N − k − 1)αpk−1 + (k + 1)βpk+1 − (N − k)pk − kpk, (15)

with N = 4. Furthermore, it follows from above (or a direct calculation) that the binomial distri-
bution

pk(t) =

(

4
k

)

qk(1 − q)4−k (16)

is an invariant manifold for this master equation, provided the parameter q satisfies the differential
equation

dq

dt
= α(V )(1 − q) − β(V )q. (17)

Furthermore the probability of being in the conducting state is PO = q4. This is exactly the open
probability originally used by Hodgkin and Huxley [3], to model potassium channel conductance.

More recent data on IKs potassium channels have suggested that the independent subunits may
have multiple closed states. For example, in the model of Silva and Rudy [7] the subunit has three
states,

C2

α(V )

−→
←−
β(V )

C1

γ(V )

−→
←−
δ(V )

O, (18)
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where C1 and C2 are closed states and O is the open state. The conducting state of the channel is
when all subunits are in the open state, and there are four independent subunits.

If iC1 , iC2 , and iO are the number of subunits in states C1, C2, and O, respectively, then there
are a total of fifteen different configurations for the four subunits. Thus, the master equations
consist of fifteen differential equations. However, because the subunits are independent, there is a
two-dimensional invariant manifold, given by the multinomial distribution

piC1
iC2

iO =
4!

iC1iC2 !iO!
p

iC1
C1

p
iC2
C2

p
iO
O , (19)

where the parameters pC1 ,pC2 , and pO, are governed by the differential equations

dpC2

dt
= βpC1 − αpC2 , (20)

dpC1

dt
= αpC2 + δpO − (β + γ)pC1 , (21)

and pC2 + pC1 + pO = 1 for all time. Since the open state has iO = 4, the open probability is

PO = p4
O, (22)

but now the dynamics of pO are governed by two differential equations, rather than one, as in the
Hodgkin-Huxley potassium channel model.

4.2 Sodium Channels

A simple model for the sodium channel of the squid axon is that it has three identical subunits
that are activating (denoted by m) and one, also independent, that is inactivating (denoted by h).
The transition probabilities are again voltage dependent, with

Cj

αj(V )

−→
←−

βj(V )

Oj, j = m,h. (23)

It follows that both of these processes have invariant manifolds that are binomial distributions,
with N = 3 for m and with N = 1 for h. If we denote by pj,k the probability of j open m units and
k open h units, (a total of eight possible states) then there is an invariant manifold for the master
equations that is the product of these two binomial distributions,

pj,k = p3
j(m)p1

k(h), (24)

where by pN
j (a) is meant a binomial distribution for N states with parameter a. The parameters

m and h are governed by differential equations of the form

dq

dt
= αq(1 − q) − βqq, q = m,h. (25)

Furthermore, the probability of being in the conducting state is p3,1 = m3h, which is also exactly
the form originally used by Hodgkin and Huxley [3] to model sodium channel conductance.
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Figure 1: Model of the RyR due to Stern et al. (1999). R and RI are closed states, O is the open
state, and I is the inactivated state.

4.3 Ryanodine Receptors

One of the earliest models of the ryanodine receptor, due to Stern et al.[8], is shown in Fig. 1.
This is a four state model with closed states R and RI, inactivated state I, and open state O.
Transitions between these states are calcium dependent, reflecting binding of calcium to binding
sites. A modification of the Stern et al. model in which the rate constants k1 and k2 were assumed
to be dependent on the concentration of calcium in the sarcoplasmic reticulum was used in [6].

The important observation here is that in these models the transition rates between R and O are
identical to those between RI and I, and transition rates between R and RI are identical to those
between O and I. This can be viewed as the cross product of two two-state random variables. As
discussed above, the master equations have a multiplicative stable invariant manifold of the form

pR = pq, pRI = q(1 − p), pO = q(1 − p), pI = (1 − p)(1 − q), (26)

and the parameters p and q satisfy the differential equations

dp

dt
= k−1(1 − p) − k1c

2p,
dq

dt
= k−2(1 − q) − k2cq. (27)

4.4 IP3 Receptors

The Keizer-DeYoung model for IP3 receptors [9] is shown in Fig. 2. This is an eight state model
with states Sijk where i, j, and k can take on values 0 or 1. The index i represents binding (i = 1)
or unbinding (i = 0) of IP3, and the indices j and k represent binding or unbinding of calcium. In
this model, the binding of calcium with index j is activating, and the binding of calcium with index
k is inactivating, so that the only conducting state is S110. In general, the concentration dependent
transition rates are time dependent.

The observation that is relevant for this discussion is that there is a multiplicative structure, and
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Figure 2: The binding diagram for the Keizer-DeYoung IP3 receptor model. Here, c denotes Ca++,
and p denotes IP3.

hence an invariant manifold here. In particular, we let

X =









000
100
101
001









, Y =









010
110
111
011









, (28)

(that is, we let X represent the states Si0k, and let Y represent the states Si1k). Then the transitions
within states X and within states Y are identical, and transitions between X and Y are the same
for all the states. It follows that PX = qPZ , PY = (1 − q)PZ , is an invariant manifold for this
process provided

dPZ

dt
= APZ ,

dq

dt
= k−5(1 − q) − k5cq, (29)

where A is the matrix for the master equation for the states X or Y . Thus, without approximation,
the master equations can be reduced from a 7-dimensional to a 4-dimensional system.

4.5 Multiple Channels

Now suppose we wish to determine the number of open channels in a collection of N independent
channels. If the individual channel has n states, then the distribution for the number of channels
in each of the states is governed by the multinomial distribution (9). However, if only one of
the states, say j = 1 is a conducting state, then the probability distribution for the number of
conducting states is the binomial distribution

pi1(t) =
N !

i1!(N − i1)!
pi1
1 (1 − p1)

N−i1 , (30)

where p1(t) is the probability that a single channel is in the conducting state. It also follows that
the expected value and variance of the number of conducting channels is

E(i1) = Np1(t), Var = Np1(t)(1 − p1(t)). (31)

These formulas may appear to be rather unremarkable, since these are what one might expect from
standard probability theory for independent, stationary Bernoulli trials. What makes this much
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more interesting, however, is that it is also correct for time dependent (non-stationary) Markov
processes, once initial transients have decayed.

As a specific example, consider the sodium channels in the Hodgkin-Huxley model. This is an eight
state model, however, as we saw above, the probability of being in the open state is p1(t) = m3h.
The probability of having i1 open sodium channels is given by (30) with p1(t) = m3h, where m and
h satisfy the differential equations (25). Thus, the solution of the master equation for N 8-state
ion channels is fully described by a two dimensional manifold.

5 Discussion

We have shown that the master equations for ion channel models can have stable invariant manifolds
that are of much lower dimension than the full system. The two features of these invariant manifolds
that are most significant is that they are globally stable and that they are exact, even when the
reaction kinetics are time dependent. These features are of somewhat limited value for typical
chemical reaction networks since it is unusual for the rates of reaction to be time dependent,
and initial data are often an important part of the problem specification. For time-independent
processes, the smallest dimensioned invariant manifold is a point.

However, for ion channel kinetics these two features are quite useful. In contrast to chemical
kinetics, for ion channels, the transition rates are typically time dependent and the initial data are
not relevant. This is because for any realistic experimental procedure or physiological process, the
initial data correspond to those channel states when the channel proteins were originally formed
or when the cell was originally cultured, etc. By the time the experimental procedure is begun,
(say, for example, a voltage clamp procedure on a neuron), the memory of the initial states is long
gone. As a result, simulations intended to replicate experimental results need only use the invariant
manifold description of channel kinetics. Of course, one must determine the initial position on the
invariant manifold, but this is also easily (and correctly) done if the channels are held in a constant
environment before the experiment is begun. This works because the time independent Markov
process converges to a unique distribution and this becomes the appropriate initial distribution for
the experiment.

Estimates of how long it take for initial transients to decay are possible. For example, for the potas-
sium channel model (13), the smallest eigenvalue (in magnitude) of the matrix A(t) is α(V ) + β(V ).
For potassium channels, this is on the order of 1/several milliseconds. Thus, transient effects decay
less than a tenth of a second after the channel is inserted into the cellular membrane. More gen-
erally, if the process has been running for longer than the largest time constant of the underlying
reaction network, transient effects have decayed.

We have also shown that the classical Hodgkin-Huxley formulations of potassium and sodium
channel conductance are exact solutions of Markov models. This means that the solutions of the
Hodgkin-Huxley equations and the solutions of a full Markov model with an 8-state sodium channel
and a 4-state potassium channel model (after several milliseconds during which initial transients
decay) are exactly the same, even though the first is a system of four differential equations and
the latter is a system of 13 differential equations. Similar reductions are possible for simulations of
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calcium dynamics using ryanodine receptors or IP3 receptors.
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