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 P
ROOFAbstract

We present a mathematical model for the growth and length regulation of the hook component of the flagellar motor of

Salmonella typhimurium. Under the assumption that the molecular constituents are translocated into the nascent filament by an

ATP-ase and then move by molecular diffusion to the growing end, where they polymerize into the growing tube, we find that there

is a detectable transition from secretion limited growth to diffusion limited growth. We propose that this transition can be detected

by the secretant FliK, allowing FliK to interact with FlhB thereby changing the secretion target of the type III secretion machinery

and terminating the growth of the hook.

r 2005 Elsevier Ltd. All rights reserved.
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UNCORRECT1. Introduction

The flagellar motor of Salmonella typhimurium is
morphologically divided into three primary parts: the
basal body, the hook, and the filament (see Fig. 1). The
filament and hook are external to the cell, while the
basal body is anchored in the inner and outer
membranes. The filament is the largest portion of a
flagellum, stretching to more than 10mm; and when
rotated by the motor at the base, serves as a propellor.
The hook lies between the filament and the basal
structure and works as a universal joint. The hook is
flexible, but torsionally rigid, whereas the filament is a
rigid helical structure.

The synthesis of the flagellar motor requires the
expression of 50 genes, arranged in clusters of 17
operons, in a carefully controlled temporal order. These
operons are divided into three classes according to their
order of expression Kutsukake et al. (1990). The master
operon in the highest class governs the expression of the
77
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Erest by activating operons in the second class. A
flagellum-specific sigma factor in the second class
regulates the expression of other operons in the same
or lower classes. Significantly, the basal structure and
hook must be complete before the genes for the filament
are expressed.

Assembly of the flagellum begins with the insertion of
a ring structure within the cytoplasmic membrane.
When this ring structure is completed, a secretion
apparatus is constructed and inserted. The secretion
apparatus is needed for export of flagellar structural
subunits beyond the inner cytoplasmic membrane.
Beyond the cytoplasm, secreted subunits self-assemble
into the growing structure.

The basic mechanism of construction of the flagellum
is as follows. The nascent flagellum, a hollow cylindrical
structure (outer diameter 20 nm, inner diameter 2 nm
(Yonekura et al., 2003)), is formed when partially
unfolded monomeric constituents reach the growing
tip and polymerize. The monomeric subunits are
secreted from the cellular cytoplasm following hydro-
lysis of ATP by the ATP-ase protein FliI. Secretion of
the hook constituent protein, FlgE, proceeds until the
81

www.elsevier.com/locate/yjtbi


1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

ARTICLE IN PRESS

YJTBI : 3835

Table 1

Some proteins used in hook/filament construction and their function

Protein Function

FliC Filament constituent protein

FlgE Hook constituent protein

FlgD Hook cap protein

FlgKL Hook-filament junction

FliK Hook length protein

FliI Secretion ATP-ase

FlhB Secretion target protein

Export Apparatus

Filament

Hook

Outer Membrane

Cytoplasmic Membrane

Motor/Switch

Hook filament

junction

Basal Body

MS Ring

Distal Rod

Proximal Rod

Fig. 1. Schematic diagram of flagellar motor construction.
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hook is 55ð�9Þnm long. At that point, secretion switches
to proteins FlgK and FlgL which form the hook-
filament junction (Table 1) and then secretion of FliC,
the filament constituent protein (flagellin), begins.

The mechanism for the control of hook length is not
known. However, hook length is believed to be
controlled by the protein FliK. It is believed that FliK
functions together with a membrane associated protein
of the export apparatus, FlhB, to mediate switching of
export substrate specificity, from hook protein to
flagellin, upon completion of hook assembly (Minamino
et al., 1999). In wild-type cells, hooks are tightly
regulated to be 55� 9 nm; whereas in FliK mutants,
hooks are extraordinarily long (polyhooks), and there is
no filament extension from the hook. Conversely, when
FliK is overexpressed, hooks are somewhat shorter
ð46� 7 nmÞ; while when FliK is underproduced, hooks
are longer with substantially more variation ð75�
46 nmÞ (Muramoto et al., 1998) (see Fig. 2). FliK is
known to be secreted during the hook-growth phase. In
FliK mutants (polyhook phenotype), no FliK is found
in the extracellular medium, indicating that secretion of
FliK is a crucial part of the hook-length regulation.
FliK is secreted most efficiently before hook completion
and a decrease in the secretion efficiency of FliK results
in polyhooks (Minamino et al., 1999).
ED P
ROOF

A verbal model for the control of hook length has
been proposed (Muramoto et al., 1998). Their idea is
that the export of FlgE occurs in three distinct stages. In
stage 1, secretion by the ATP-ase is rate limiting so that
there is no more than one monomeric subunit in the
forming channel at any given time. In stage 2, the
increased hook length has caused diffusion to slow so
that it is rate limiting and there are several hook
subunits in the channel causing interference in the
diffusion process. In stage 3, the channel is completely
congested and secretion export is coupled to assembly at
the distal end. This coupling causes a delay in the ATP-
ase transport cycle, allowing the length control protein
FliK to bind a special binding site on the export
apparatus, leading to a change of the specificity of the
transporter.

The main purpose of this paper is to explore this
verbal explanation using mathematical models.
Although this verbal model cannot be correct in its
details, we find support for the idea that there is a switch
between secretion-limited growth (stage 1) and diffusion
limited growth (stage 2) which may be detected by the
secretant FliK.

In what follows we describe three models for the
interaction between secretion and diffusion. The first
treats diffusion and secretion in a simplistic but
suggestive way. The second examines the movement of
monomer in a probabilistic way using a Langevin
formulation. The third examines the stochastic process
using a Fokker–Planck formulation. All three of these
show transitions in which there is a qualitative and
quantitative change in the way in which translocation of
the secretant molecule takes place. This, we propose,
could be the length-detection signal. We know of no
data directly supporting or contradicting this hypoth-
esis.
2. Diffusion through a hollow tube

Our first step is to develop a simple model that
contains the essential ideas. Later models will focus on
some of the details that are ignored here.
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Fig. 2. Hook length distribution for (a) wild type, (b) when FliK is

overproduced, and (c) when FliK is underproduced. Redrawn from

Muramoto et al. (1998).

Fig. 3. Schematic diagram of hook and filament growth process.

Monomeric subunits are secreted into the cytoplasmic end of the

nascent filament, they move by diffusion to the capped end where they

are folded into the growing end.

J.P. Keener / Journal of Theoretical Biology ] (]]]]) ]]]–]]] 3
The growth process involves three molecular pro-
cesses (Fig. 3). The monomeric subunit is first secreted
into the cytoplasmic end of the filament, it moves
ED 
diffusively along the tube and is then enfolded into the
growing end.

An important fact is that the nascent tube has an
inner diameter of about 2 nm, which for steric reasons,
means that movement of molecules must be in single file,
with no passing permitted (Macnab, 2003). Thus, the
concept of a molecular concentration is not useful here.
Rather, we let pðx; tÞ be the probability that at time t

there is a molecular subunit between position x and xþ

l; where l is the length of the monomeric unit, along the
forming tube with length LðtÞ: Standard conservation
implies that

qp
qt

¼ �
qJ
qx

; (1)

where J is the flux of probability.
For a standard diffusion process, J ¼ �D dr

dx : There is
no difference between a one-dimensional diffusion
process and a single-file diffusion process, unless
individual molecules are marked and their motion
followed. It is useful to note that if l represents the
length of a monomeric subunit, then J

l
is the flux of

numbers of molecules per unit time.
At the polymerizing end of the hook, there is a cap

constructed of the protein FlgD. This protein is thought
to prevent the escape of FlgE and to facilitate
polymerization (Hughes and Aldridge, 2001). It follows
that at the growing tip the flux of molecules must exactly
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match the rate of polymerization. Thus, at x ¼ L

J

l
¼ kpp; (2)

where kp is the rate constant for polymerization.
The secretion process is energized by an ATP-ase

(FliI). It is not known exactly how this ATP-ase works,
although there are hypothetical verbal models. One
proposal (Minamino and Macnab, 2000) is that soluble
FliI (complexed with FliJ) receives the export substrate
from cytoplasmic chaperones, and delivers them to a
membrane associated structure, which then translocates
them to the channel in the nascent structure.

To model this process, we assume that the membrane
associated structure can be in one of two states, either
empty awaiting binding with its cognate substrate, or
bound and involved in translocation. It follows that the
probability of going from the unbound to the bound
state in time dt is Kondt ¼ kon

½S�
KSþ½S�

dt; where ½S� is the
concentration of the substrate. Usually, we would
assume that the probability of going from the bound
to unbound state is koff dt; however, because of the steric
no-passing condition, translocation and unloading
cannot take place unless there is open space for the
subunit to move into. Thus, we assume that the
probability of going from the bound to the unbound
state is koff ð1� pð0ÞÞdt: If P is the probability that the
membrane associated ATP-ase is bound by its cognate
substrate S; then

dP

dt
¼ Konð1� PÞ � koff ð1� pð0ÞÞP; (3)

where pð0Þ is the probability that the x ¼ 0 end of the
nascent hook is occupied at time t: The primary
consequence of this statement is that translocation can
be delayed if the forming hook is crowded with
monomer. With these as the binding and unbinding
rates, the flux of monomer must be the same as the
unbinding rate,

J

l
¼ koff ð1� pð0ÞÞP: (4)

The length LðtÞ of the growing hook or filament is
governed by the differential equation

dL

dt
¼

J

bl
; (5)

at x ¼ L; where b is the number of monomers per unit
length of hook ðb ¼ 2:1=nmÞ:

The full time dependent solution of this problem
requires that we solve the diffusion equation

qp
qt

¼ �
qJ
qx

; (6)

subject to boundary conditions (2) at the moving
boundary x ¼ L; and (3), (4) at x ¼ 0: This is a free
boundary problem whose solution requires numerical
ED P
ROOF

simulation. However, simulations show that an extre-
mely good approximate solution can be found by taking
the diffusion equation to be in steady state. (A more
precise mathematical justification of this approximation
can also be given, but is not particularly relevant to this
discussion.) For this, solutions satisfy

J ¼ �Dpx (7)

with J independent of x (but slowly varying in time). It
follows that

J ¼
D

L
ðpð0Þ � pðLÞÞ: (8)

Furthermore, we take P to be in steady state, so that

P ¼
Kon

Kon þ koff ð1� pð0ÞÞ
: (9)

With this simplification, (4) becomes

J

l
¼ koff Kon

1� pð0Þ

Kon þ koff ð1� pð0ÞÞ
: (10)

Finally, boundary condition (2) becomes

pðLÞ ¼
1

kp

J

l
: (11)

The analytical solution of these equations is readily
obtained. From Eq. (10), we find that

pð0Þ ¼ 1�
Kon

koff

J
l

ðKon �
J
l
Þ

(12)

and pðLÞ is determined from Eq. (11), so that from Eq.
(8),

Ll

D
¼

l

J
�

Kon

koff

1

ðKon �
J
l
Þ
�

1

kp
; (13)

yielding a relationship between length L as a function of
flux J: In dimensionless variables this is

l ¼
1

j
�

Ka

1� j
� Kb; (14)

where l ¼ LlKon

D
is the dimensionless length, and j ¼ J

lKon

is the dimensionless flux. The solution is controlled by
the two non-dimensional parameters Ka ¼

Kon

koff
and Kb ¼

Kon

kp
: Recall that the velocity of growth dL

dt
¼ V satisfies

bV ¼ J
l
:

While it is possible to solve for J as a function of L
(using the quadratic formula), this is not especially
illuminating. Instead, it is easier to plot this relationship
for several different parameter values.

In Fig. 4 are shown plots of dimensionless flux j as a
function of dimensionless length l for several values of
the parameter Ka and Kb ¼ 0: Notice that increasing Kb

merely shifts the j-l curve to the left.
These flux-length curves exhibit reasonable qualitative

behavior. Iino (1974) found velocity–length curves for
filaments to be well fit by exponentials for filaments in
the range of 4212mm; and (Koroyasu et al., 2003) found
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Fig. 4. Dimensionless flux j as a function of dimensionless length l for

Ka ¼ 1; 0:1; 0:01; 0:001 (bottom to top) from Eq. (14).
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that hook growth velocity could be approximated by a
decaying exponential leading to a constant rate of
growth for polyhooks in the range of 60–900 nm. While
the relationship (14) is not exponentially decreasing, it
shows monotonic decay as a function of length. More
important, for small values of Ka; the curves are
‘‘biphasic’’ with a plateau for small lengths preceding
rapid decay. The biphasic nature of these curves for
small Ka reflects two phases of growth. When the length
is small, the rate limiting step is substrate binding since
diffusion out of the nascent tube is rapid and
uninhibited. When the length is large, diffusion is rate
limiting and secretion is restricted by the need for space
into which the secreted molecule can be released.

The consequences of this plateau is made more
explicit by examining the translocation time for each
monomer,

T ¼
l

J
�

1

Kon

; (15)

or in dimensionless units

t ¼
1

j
� 1; (16)

where t ¼ KonT is the dimensionless translocation time.
In Fig. 5 are shown several plots of the dimensionless

translocation time as a function of dimensionless length.
Here the translocation time decreases as Ka decreases,
indicating that less time is spent in translocation than in
docking as Ka ¼

Kon

koff
decreases. In the limit that Ka ! 0;

there is a sharp transition between zero time spent in
translocation and a linear increasing translocation time
as a function of length. This transition occurs at l ¼

1� Kb:
ED P
ROO

3. Stochastic models of translocation

3.1. Langevin formulation

While the previous model is interesting in that it gives
credence to the idea that there could be a length-
dependent transition in translocation time, leading to a
length-dependent switching signal, the model is seriously
flawed in its details. The difficulty is that in the model,
monomers are described mathematically as diffusing
points, when in fact they are quite long. FliK is 405 and
FlgE is 402 residues long. It is uncertain how long they
are in their partially unfolded state in the growing
hollow tube, but if they are temporarily alpha-helical,
they would be on the order of 75 nm long. This is
obviously as long or longer than the hook structure that
is being built.

To include this important feature in the model, we
assume that the location of monomers can be described
by their endpoints, xj and yj ; where xj is the leading edge
and yj is the trailing edge, respectively, of the jth
monomer. These endpoints are coupled by a massless,
linear spring with neutral length l; and the monomers
move diffusively through the one dimensional channel.
This model is depicted in Fig. 6.

As long as they are within the tube (i.e. 0oxj ; yjol),
their positions can be described by the stochastic
differential equations (Bird et al., 1987)

n
2
dxj ¼ kðyj � xj þ lÞdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkBT dt

p
xj ;

n
2
dyj ¼ kðxj � yj � lÞdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkBT dt

p
Zj ; ð17Þ

where xj and Zj are independent Nð0; 1Þ random
variables, and it is required that yj4xjþ1: It follows
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Fig. 6. Depiction of 1-D spring model for monomer diffusion through

the hollow tube.
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Fig. 7. Depiction of Langevin simulation of secretion and diffusion of

monomer.

Table 2

Parameter values for Fig. 7

D 10�10 cm2=s
l 10/s
Fs

nl
25/s

Ff

nl
20/s

k

n
250/s

l 75nm
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UNCORRECTthat the diffusion coefficient for each monomer is D ¼
kBT
n :
The boundary conditions for this model must also be

specified. We assume that at the growing end ðx ¼ LÞ;
the folding of the monomer provides a force which
opposes its motion back into the tube. That is, if xj4L;

n
2
dxj ¼ ðkðyj � xj þ lÞdtþ Ff dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkBT dt

p
xjÞ; (18)

where Ff is the force on the monomer due to folding.
Once yj4L; the jth monomer has completely exited the
tube and so can no longer interact with the next
molecule xjþ1:

A similar restriction is appropriate at the secretion
end ðx ¼ 0Þ: Here the threading of the monomer into the
tube is enhanced by the ATP-ase, although the exact
mechanism is not known. For modeling purposes, we
assume that the secretion is by a brownian ratchet
mechanism, in which there is a positive secretion force
Fs pushing the monomer into the tube. That is, for
�loyjo0 the stochastic differential equation for yj is
given by

n
2
dy ¼ kðxj � yj � lÞdtþ Fs dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkBT dt

p
Zj ; (19)
OOF

where Fsl ¼ NDG with DG the free energy of ATP
hydrolysis, and N the (unknown) number of ATP
molecules that are hydrolized for each secreted mono-
mer.

It is important to note that L is the length of the
hollow tube, from the cytoplasm to the end of the hook,
and this includes the basal body. The width of the basal
body is not known precisely, but it is probably in the
range of 25–35 nm.

Finally, there is the question of how to initiate
secretion. Here we assume that the j þ 1st molecule
binds (and secretion begins) via a Poisson process with
binding rate l; as long as the secretion site is available,
yj40:

In Fig. 7 is shown an example of particle paths for this
stochastic process. The distance along the tube is in
units of l; the monomer length, and the tube length for
this simulation is L ¼ 1:5l: Other parameter values are
listed in Table 2.

In this simulation, secretion was initiated at times 0,
0.3220, 0.3580, 0.5340, 0.9540, and 0.9910 s. The
secretion of monomers 2 and 5 (at t ¼ 0:3220 and
t ¼ 0:9540 s) was unhindered by other monomers in the
tube, but the secretion of monomers 1, 3, and 4 was
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Table 3

Parameter values for Fig. 8

D 10�11 cm2=s
l 5/s
Fs

nl
25/s

Ff

nl
20/s

k

n
50/s

l 75 nm
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Fig. 9. Translocation delay due to interference with secretion plotted

as a function of L
l
:
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CT

significantly hindered by monomers that had been
previously secreted and were still in the tube, and
complete secretion of these monomers is noticeably
delayed.

The secretion/translocation time for a monomer is
governed by the interplay of three forces, the force of
secretion Fs; the force of folding Ff ; and the force from
interference with other monomers in the tube. If the tube
is short, translocation is rapid since a monomer can be
simultaneously pushed by secretion and pulled by
folding. However, if the tube is longer than the length
of the unfolded monomer, it cannot be simultaneously
pushed and pulled, and there can also be monomers
contained completely in the tube that hinder its
secretion.

The average translocation time is an increasing
function of tube length. In Fig. 8 is shown the
translocation time as a function of length with
parameter values as shown in Table 3. The dashed
curve in this figure shows the translocation time for
unhindered translocation. It is clear from this figure that
when L

l
is small (less than 1), translocation is unhin-

dered, while when L
l
(greater than 1), translocation is

hindered by the presence of other monomers in the tube.
In the first phase, with L

l
o1; the monomer is both

‘‘pushed’’ by the ATP-ase and ‘‘pulled’’ by folding at the
polymerizing end. The amount of pulling during
secretion decreases as the length of the tube increases.
When L

l
41; there is the possibility of a second monomer

being in the tube that hinders free secretion. This
hindrance leads to a noticeable increase in translocation
time as a function of L; as seen in Fig. 8. The sharpness
of this transition depends on parameter values and
becomes less sharp if diffusion is increased or if the
spring constant is increased.
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Fig. 8. Translocation time from Langevin simulation plotted as a

function of L
l
:

The feature of this curve that is most significant is the
translocation delay as a function of length, determined
as the difference between the hindered translocation
time and the unhindered translocation time. This
translocation delay is shown plotted in Fig. 9.

3.2. The mean translocation time

One of the disadvantages of the model used in the last
section is that, being a Langevin model, simulations to
find mean behavior are time consuming, making it
difficult to explore the behavior of the model for ranges
of parameter values. To explore this stochastic process
further, we examine more closely a simplified model for
which a Fokker–Planck formulation is possible. In
particular, we examine the situation in which there is an
unfolded molecule being secreted and there may be
another molecule inside the tubullar flagellum that can
hinder secretion. We let y be the trailing position of a
molecule in the tube, and we let x be the leading edge of
the molecule that is being secreted.

We suppose that both particles diffuse, but that they
are not permitted to pass, so that xoy: We also assume
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l
x

y

p=0

Jx=0

Jx= Jy

L

Fig. 11. Domain R and boundary conditions for the Fokker–Planck

Eq. (22).
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that x is not allowed to exit the tube at x ¼ 0; and there
is a Brownian ratchet ‘‘pushing’’ the secreted molecule.
To model the exit of y from the end of the tube, we
assume that there is standard brownian diffusion, as
well as a brownian ratchet associated with folding
pulling the molecule from the tube. This model is a
simplification of the previous model in that here the
unfolded molecules are rigid rods of fixed length l: The
model is depicted by Fig. 10.

The Langevin equations for these two ‘‘particles’’ are

ndx ¼ Fs dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nkbT dt

p
x;

ndy ¼ FfHðy� Lþ lÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nkbT dt

p
Z; ð20Þ

where HðyÞ is the usual Heaviside function, used here to
indicate that the force of folding is applied to the
particle at y only if y4L� l:

Now we suppose that pðx; y; tÞ is the probability
distribution function for the location of the particles x

and y at time t: Associated with the velocities (20) there
is the flux of probability J where

nJ ¼ n
Jx

Jy

 !
¼

Fs

FfHðy� Lþ lÞ

 !
p� kbTrp: (21)

The Fokker–Planck equation for the probability
distribution pðx; y; tÞ is

n
qp
qt

¼ �r � J

¼ �r �

Fsp

FfHðy� Lþ lÞp

 !
þ kbTr2p; ð22Þ

defined on the domain R ¼ fðx; yÞjxoyoL; 0oxolg:
The boundaries x ¼ 0 and x ¼ y are reflecting so that
Jx ¼ 0 at x ¼ 0; Jx ¼ Jy on the line y ¼ x: We are
interested in determining the amount of time spent in
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Fig. 10. Depiction of the two particle model for monomer diffusion

through the hollow tube.
ED Ptranslocation (Fig 11). Thus, the boundary x ¼ l is
absorbing so that p ¼ 0 at x ¼ l: The boundary
condition at y ¼ l is non-standard. If y ¼ L; the leading
molecule has left the tube and the motion of x is
unimpeded, so that

n
qp
qt

¼ �ðFspþ FfHðx� LÞpÞx þ kBTpxx; (23)

for y ¼ L: Notice that if Lol; the molecule with leading
end at x can simultaneously feel the effects of secretion
and folding. Notice, also, that if Lol the domain R is
the triangular region fðx; yÞjxoyoL; 0oxolg together
with the line y ¼ L; 0oxol; part of which is not on the
boundary of the triangular domain.

We wish to determine the mean exit time for x across
the boundary x ¼ l: From standard arguments (Gardi-
ner, 1985) (see Appendix), the mean exit time for this
process starting from position x and y is given by Sðx; yÞ
where

�n ¼
Fs

FfHðy� Lþ lÞ

 !
� rS þ kbTr2S; (24)

subject to the boundary conditions S ¼ 0 if x ¼ l and
n � rS ¼ 0 if x ¼ 0; or x ¼ y; where n is the outward unit
normal vector. To specify the remaining boundary
condition, observe that if y ¼ L; the blocking molecule
is completely folded and no longer hinders the diffusion
process, so that S is exactly the same as for unhindered



D P
ROOF

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

ARTICLE IN PRESS

YJTBI : 3835

Table 4

Parameter values for Fig. 12

D 10�10 cm2=s
l 10/s
Fs

nl
25/s

Ff

nl
20/s

l 75 nm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008
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0.012
Translocation Delay vs. Tube Length
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D
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c)

Fig. 13. Mean translocation delay for the two particle Fokker–Planck

model.
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diffusion of x; namely

�n ¼ ðFs þ FfHðx� LÞÞ
qS
qx

þ kBT
q2S
qx2

; (25)

subject to the boundary condition S ¼ 0 at x ¼ 0 and
S ¼ 0 at x ¼ l:

Notice that Sð0; yÞ is the mean exit time starting from
x ¼ 0 and y: However, to find the mean translocation
time for secretion we must know something about the
position of the previously secreted molecule when the
secretion begins.

Suppose that immediately after the previous secretion,
the trailing end y moves diffusively with probability
distribution function pðy; tÞ where

npt ¼ �ðFfHðy� Lþ lÞpÞy þ kBTpyy (26)

with py ¼ 0 at y ¼ 0 and p ¼ 0 at y ¼ L: Suppose
further that binding of the next secretant molecule is via
a Poisson process with rate l: Then, the distribution of
locations ŷ at the beginning of the next secretion event is

PðŷÞ ¼

Z 1

0

pðŷ; tÞle�lt dt: (27)

If t is the mean translocation time for x; then the
expected value of t is

EðtÞ ¼
Z 1

0

PðŷÞSð0; ŷÞdŷ; (28)

where S is the solution of the Eq. (24). A derivation of
this equation is given in the Appendix.

The results (found by numerical determination of EðtÞ
in Eq. (28)) are shown in Fig. 12 for parameter values
given in Table 4. In this plot, the lower curve shows the
mean unhindered translocation time (found by solving
Eq. (25)), and the upper curve shows the hindered
translocation time. Once again we see that there is a
transition between unimpeded translocation and hin-
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Fig. 12. Mean exit time for the two particle Fokker–Planck model.
Edered translocation, that occurs at tube length L � l:
The mean translocation delay, defined as the difference
between the hindered and unhindered translocation
times is shown in Fig. 13.

There are two differences between the Langevin
model and the Fokker–Planck model that deserve
explanation. First, notice that the delay for Lol is
much smaller in Fig. 9 than in Fig. 13. This difference is
due to the difference in the amplitude of diffusion in the
two computations. In the deterministic limit D ! 0;
there is no possibility that secretion is hindered if Lol:
Second, in the Langevin model there is a noticeable
plateau in the translocation time as a function of L;
whereas in the Fokker–Planck model the translocation
time is nearly linear in L for Lol: This difference in
behavior is due entirely to the fact that molecules are
modeled as springs in the Langevin model and as rigid
rods in the Fokker–Planck model. In the limit that the
spring constant becomes infinite, the translocation time
for the Langevin model approaches a linear curve for
Lol: The plateau behavior seen in Fig. 9 is due entirely
to compression of the spring. In reality, this compres-
sion is probably quite small, so the plateau in Fig. 9 is
probably an exaggeration compared to what occurs in
the physical system.
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4. Hook length control

The proposed mechanism of hook length control is
that FliK interacts with FlhB to change the secretion
target of the secretion machinery. This interaction is
thought to be by proteolytic activity of FliK that cleaves
a portion of the FlhB molecule, thereby changing the
secretion target. Once this cleavage takes place, FliK
and FlgE can no longer be secreted, and secretion is
restricted to a new class of molecules (including FliC,
the constituent molecule for filaments). Our suggestion
is that this interaction cannot occur if translocation is
rapid, but it is promoted when translocation is delayed.
In particular, we propose that if FliK secretion is
accomplished by the normal ATP-ase and possibly some
pulling from polymerization folding, then interaction
with FlhB is prevented, while if secretion is delayed, then
interaction with FlhB is possible. It could be that this
interaction occurs simply because there is sufficient time,
or it could be that FliK is able to sense a difference in
mechanical forces between hindered and unhindered
secretion. It is not known which, if any, of these is
correct.

The simplest assumption is that the FliK–FlhB
interaction is a Poisson process with rate kKB: If Td ;
the delay time, is the amount of time available for
interaction, then the probability of interaction is taken
to be

PðFliK2FlhB interactionÞ ¼ 1� expð�kKBTdÞ: (29)

Since this delay time is a function of the length of the
hook Td ¼ TdðLÞ; we can express this more succinctly as

PðFliK2FlhB interactionÞ ¼ 1� expð�kKBTdðLÞÞ

¼ F ðLÞ: ð30Þ

The hook grows by discrete steps each time a FlgE
molecule is secreted. However, at each growth step there
UNCORR
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is the possibility that a molecule of FliK is secreted as
well. (Here we ignore the possibility that more than one
FliK molecule might be secreted after a growth step.)
We suppose that the probability of secreting a FliK
molecule is pK ; and depends on the relative availability
of FlgE and FliK. Thus, the probability of secretion of
FliK and its and interaction with FlhB at length L is

PðFliK2FlhB secretion=interactionÞ ¼ pKF ðLÞ; (31)

and the probability that there is no interaction at length
L is

Pðno interactionÞ ¼ pK ð1� F ðLÞÞ þ ð1� pK Þ

¼ 1� pkF ðLÞ: ð32Þ

The probability that the first (and therefore the only)
interaction occurs at length Lk is

Pðfirst interactionÞ ¼ pKF ðLkÞ
Yk�1

j¼1

ð1� pkF ðLjÞÞ; (33)

where Lk ¼
k
b :

To be specific, we suppose that the time available for
interaction is the translocation delay time and is
depicted in Fig. 14. For this we used the functional
representation

kKBTd ðLÞ ¼
A

2
Lþ

1

a
ln

coshðaðL� L0ÞÞ

coshðaL0Þ

� �� �
; (34)

with L0 ¼ 46; a ¼ 0:16; A ¼ 0:26:
For this function there is a transition at approxi-

mately L ¼ 45 nm: This was chosen based on the guess
that unfolded monomer is 75–85 nm long and the width
of the basal body is � 35 nm: With this as our assumed
probability of success, the resulting probability distribu-
tion function for hooks lengths varies depending on the
FliK secretion probability pK : Several examples are
shown in Fig. 15 (the cumulative distribution function)
and Fig. 16 (the probability density function). In (a) is
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Fig. 15. Cumulative distribution function for hook length as a

function of (continuous) L for (a) wild type ðp ¼ 0:06Þ; (b) when FliK

is overproduced ðp ¼ 0:284Þ; and (c) when FliK is underproduced ðp ¼

0:028Þ:
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shown the distribution when pK ¼ 0:06: This distribu-
tion has mean 54� 9 nm; and is in reasonable agreement
with the data shown in Fig. 2(a) (represented by
asterisks). pK ¼ 0:06 corresponds to about 7 molecules
of secreted FliK per hook, which is apparently in the
right ballpark. (In Muramoto et al. (1998), it was
estimated that 40–80 molecules of FliK are used per cell
to make about 8 flagellar motors.) In (b) is shown the
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distribution when FliK is overproduced with pK ¼

0:284: This distribution has mean 44� 5 nm; which also
agrees reasonably well with the data shown in Fig. 2(b).
Finally, with pK ¼ 0:028; the distribution is as shown in
(c), again giving reasonable agreement with the data
shown in Fig. 2(c).
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5. Discussion

Here we have presented models of monomer secretion
and diffusion showing that there is a switch between
secretion-limited growth and diffusion-limited growth
that may be detected by the secretant FliK. This switch
may be the signal that terminates the growth of hooks
and initiates the secretion of other proteins required for
filaments.

From these models it is possible to give a more
detailed explanation of how the translocation time
switch works. Every monomer is exposed to three
forces, the force of the ATP-ase during secretion, the
force of folding during polymerization and the random
force of diffusion. When the tube is short, a monomer
can begin to fold even before secretion is complete.
When the tube is longer than the length of a monomer,
there is a period of time during which the only force on a
monomer in the tube is random diffusion. Once the
monomer diffuses to the polymerizing end it is quickly
pulled out of the tube by folding. However, while it is in
the tube, it will hinder the free translocation of a
subsequently secreted monomer. As a result the length
at which this switch occurs is related to the length of the
monomer in the tube, not the length of the monomer
that is being secreted. This suggests that the wild type
length of hooks is related to the unfolded length of FlgE,
rather than the unfolded length of FliK.

While these results are encouraging, we are a long way
from verifying that this is the mechanism by which hook
length is determined. This model is able to reproduce the
data shown in Fig. 2, but it does not provide an
explanation for the data presented in Makishima et al.
(2001). In that paper the authors reported finding a
number of mutant strains of Salmonella with two classes
of short hooks, a group with � 25 nm hooks and a
group with � 45 nm hooks. All of the mutations were to
proteins involved in the construction of a structure
beneath the flagellar basal body called the C ring (C for
cytoplasmic). The C ring is known to be important to
the motor function of the flagellar motor, but it also
interacts (in unknown ways) with the export apparatus.
It is possible that changes to the C ring structure could
interfere with export apparatus in such a way as to alter
the transport of FliK, leading to changes in the length
detection mechanism. However, there is as yet no
mechanistic proposal for how this might work.
ED P
ROOF

In Koroyasu et al. (2003) it was found that in a large
population of FliK mutants there was a peak in the
population of polyhooks at 55 nm, leading these authors
to conclude that the length of hooks is determined by
some mechanism independent of FliK. We contend that
their conclusion is not justified, but results from a
misinterpretation of their data.

To understand this, suppose that UðL; tÞ is the hook
length density in a growing cell population. We suppose
that individual hooks grow at a rate vðLÞ; a function of
hook length L: The conservation law for U is (Koroyasu
et al., 2003)

qU
qt

þ
q
qL

ðvðLÞUÞ ¼ 0: (35)

Suppose further that the total cell population NðtÞ is
growing exponentially according to the growth law

dN

dt
¼ GN : (36)

We set U ¼ uN (so that u is the per capita hook
density), and determine that

qu
qt

þ Guþ
q
qL

ðvðLÞuÞ ¼ 0: (37)

If this process has been going on for some time and if
new hooks (i.e. hooks of length L ¼ 0) are initiated at a
rate proportional to the population growth rate, then u

should approach a steady distribution uðLÞ; which
satisfies the ordinary differential equation

d

dL
ðvðLÞuÞ ¼ �Gu: (38)

This relationship can be used to determine vðLÞ from u:
However, rewriting Eq. (38) as

u0

u
¼ �

v0

v
�

G

v
; (39)

we see that if v0ðLÞo0; it is possible for the distribution u

to have a local maximum. This local maximum occurs at
that value of L at which v0 ¼ �G: In other words, the
location of the maximum of the distribution of hook
lengths u is determined by the growth rate of the cell
population and the fact that vðLÞ is a decreasing
function of L; not by any length selection mechanism.
Thus, if it were possible to independently vary the
population growth rate G without changing vðLÞ; the
growth rate of hooks, one could freely adjust the
location of the maximal population of hook lengths.
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Appendix

The purpose of this appendix is to provide a
derivation of Eq. (28).

As was stated above, we suppose that immediately
after a secretion event, the trailing end of the secreted
molecule y moves diffusively with probability distribu-
tion function pðy; tÞ where

npt ¼ �ðFfHðy� Lþ lÞpÞy þ kBTpyy (40)

with py ¼ 0 at y ¼ 0 and p ¼ 0 at y ¼ L: Suppose
further that binding of the next secretant molecule is via
a Poisson process with binding rate l: Then, the
distribution of locations ŷ at which the next secretion
begins is

PðŷÞ ¼

Z 1

0

pðŷ; tÞle�lt dt: (41)

Now suppose that pðx0; y0; tjx; y; 0Þ is the probability
density of the two-component ‘‘particle’’ being at
position x0; y0 at time t having started at time t ¼ 0 at
position x; y: The probability that the particle is some-
where in R at time t is

Gðx; y; tÞ ¼

Z
R

pðx0; y0; tjx; y; 0Þdx0 dy0; (42)

where Gðx; y; 0Þ ¼ 1: If T is the time at which the particle
leaves R; then

ProbðTXtÞ ¼ Gðx; y; tÞ ¼ �

Z 1

t

Gtðx; y; sÞds; (43)

a function of x and y: It follows that �Gtðx; y; tÞ is the
probability density function for the random variable T :
Therefore, the expected value of T is

S � hTi ¼ �

Z 1

0

tGtðx; y; tÞdt

¼

Z 1

0

Gðx; y; tÞdt: ð44Þ

It also follows from Eq. (42) that

Gtðx; y; tÞ ¼

Z
R

ptðx
0; y0; tjx; y; 0Þdx0 dy0: (45)

Since this is a time autonomous process,
pðx0; y0; tjx; y; 0Þ ¼ pðx0; y0; 0jx; y;�tÞ: Thus, Gðx; y; tÞ sa-
tisfies the partial differential equation

nGt ¼ n
Z
R

�ptðx
0; y0; 0jx; y;�tÞdx0 dy0

¼

Fs

FfHðy� Lþ lÞ

 !
� rG þ kbTr2G; ð46Þ

(the backward Kolmogorov equation). Integrating Eq.
(46) with respect to time, we find the (24) for Sðx; yÞ:
F

Now, we let t be the translocation time. Thus, we start
the process at x ¼ 0 with the distribution of y locations
PðyÞ: Since Gð0; ŷ; tÞ is the probability that tXt given
that the process is started at x ¼ 0 and y ¼ ŷ; it follows
that

PðtXtÞ ¼

Z 1

0

PðŷÞGð0; ŷ; tÞdŷ

¼ �

Z 1

0

PðŷÞ

Z 1

t

Gtð0; ŷ; tÞdtdŷ: ð47Þ

Thus, the expected value of t is

EðtÞ ¼ �

Z 1

0

Z 1

0

PðŷÞtGtð0; ŷ; tÞdtdŷ

¼

Z 1

0

PðŷÞ

Z 1

0

Gð0; ŷ; tÞdtdŷ

¼

Z 1

0

PðŷÞSð0; ŷÞdŷ; ð48Þ

where S is the solution of Eq. (24).
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