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Abstract

We present a mathematical model for the growth and length regulation of the fil-

ament of the flagellar motor of Salmonella Typhimurium. Under the assumption that

the molecular constituents are translocated into the nascent filament by an ATP-ase

and then move by molecular diffusion to the growing end, we find a monotonically

decreasing relationship between speed and velocity of growth that is inversely propor-

tional to length for large length. This give qualitative but not quantitative agreement

with data of th evelocity of growth.

We also propose that the length of filaments is ”measured” by the rate of secretion

of the σ
28-antifactor FlgM, using negative feedback, and present a mathematical model

of this regulatory network.

Acknowledgment: This research was supported in part by NSF Grant DMS-

0211366.

1 Introduction

A central question in cell biology is how cells determine and regulate the size of their or-
ganelles. More generally, it is of interest to understand how physical and/or mechanical
properties of a cell and its environment are measured [9].

The flagellar motor of Salmonella Typhimurium is an example of an organelle that is
built to exacting standards. Morphologically, it is divided into three parts: the basal body,
the hook, and the filament. The filament and hook are external to the cell, while the basal
body is anchored in the inner and outer membranes. The filament is the largest portion of
a flagellum, stretching to more than 10 µm, and when rotated by the motor at the base,
serves as a propellor. The hook lies between the filament and the basal structure and works
as a universal joint. A diagram of the flagellar complex is shown in Fig. 1.

The synthesis of the flagellar motor requires the expression of 50 genes, arranged in
clusters of 17 operons, in a carefully controlled temporal order. These operons are divided
into three classes according to their order of expression [7]. The master operon in the highest
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Figure 1: Schematic diagram of flagellar motor construction.

class governs the expression of the rest by activating operons in the second class. A flagellum-
specific sigma factor in the second class regulates the expression of other operons in the same
or lower classes. The basal structure and hook must be complete before the proteins for the
filament are expressed, so that transcription of the filament components is ”just-in-time”
[11].

Assembly of the flagellum complex begins with the insertion of a ring structure within
the cytoplasmic membrane. When this ring structure is completed, a secretion apparatus is
constructed and inserted. The secretion apparatus is needed for export of flagellar structural
subunits beyond the inner cytoplasmic membrane. Beyond the cytoplasm, secreted subunits
self-assemble into the growing structure.

The nascent flagellum is a hollow cylindrical structure (outer diameter 20 nm, inner di-
ameter 2 nm) that is formed when partially folded monomeric constituents reach the growing
tip and polymerize. The monomeric subunits are secreted from the cellular cytoplasm fol-
lowing hydrolysis of ATP by the ATP-ase protein FliI. Secretion of the hook constituent
protein, FlgE, proceeds until the hook is 55(±6)nm long. At that point, secretion switches
to proteins FlgK and FlgL which form the hook-filament junction and then secretion of FliC,
the filament constituent protein (flagellin), begins. A model for a possible mechanism by
which the hook structure is measured and the secretion switch is made was presented in [6].

Filaments are typically 10 µm long although the filament continues to grow indefinitely,
while the velocity of growth decreases with length. Iino [5] measured the velocity of growth
to be an exponentially decreasing function of length, with a typical velocity of growth for
a filament in the range of 10-100 nm/min. Interestingly, if a filament is broken off, it will
regrow with the same length dependent velocity as at first [5], indicating that the cell has
some way of measuring the flagellar length and detecting the breakage.

The main questions that we wish to address in this paper are what determines the velocity
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Protein Function
FliC filament constituent protein
FliD filament cap protein
FlgKL hook-filament junction
FlgM secretant/anti-σ28factor
σ28 RNA regulator

Table 1: Some proteins used in filament construction and their function.

of growth and how the bacterium measures and regulates the length of its filament. The
short answer is that since movement of secretants through the tube is driven primarily by
diffusion, the flux through the tube is ohmic and is therefore inversely proportional to the
length of the tube. This length dependent flux is transduced into a chemical signal by means
of a negative feedback circuit involving the secretant FlgM. Together, these enable the cell to
measure filament length and respond to breakage. In the remainder of this paper we develop
and analyze mathematical models of these processes.

2 Length Dependent Growth Rate

The first step in this analysis is to develop a model of length dependent secretion rate. An
important fact is that the nascent tube has an inner diameter of about 2 nm, which for steric
reasons, means that movement of molecules must be in single file, with no passing permitted
[8]. We suppose that the unfolded monomers are of length l.

We suppose that the secretion machinery is located at x = 0 and that the growing tip is
at x = L(t). We let p(x, t)dx be the probability that at time t there is a molecular subunit
whose trailing end lies between x and x + dx along the forming tube. Since molecules in the
tube are of length l,

∫ L

0

p(x, t)dx = lN, (1)

where N is the number of monomers in the tube at time t. Standard conservation implies
that

∂p

∂t
= −∂J

∂x
, (2)

where J is the flux of probability.
If monomers move via a standard diffusion process, then J = −D ∂p

∂x
. It is worth noting

that this is correct for a single file diffusion processes as long as we track the average flux of
particles and not the movement of individual particles. It is useful to note that J

l
is the flux

in units of numbers of molecules per time.
Very little is known about the diffusional movement of unfolded linear molecules in the

forming tube. One thing that is clear is that the wall of the tube has a rapidly varying
charge distribution that influences the movement of the molecules on a local spatial scale.
This is similar to the effect that a charge distribution on the wall has on the movement of
ions through an ion channel. It is possible to include the effect of these inhomogeneities in
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the description of the diffusion process, but because the effect is spatially periodic on a much
smaller spatial scale than the length of the filament, it has little net effect on the average
motion of molecules.

At the polymerizing end of the filament, there is a cap constructed of FliD. These proteins
are thought to prevent the escape of FliC and to facilitate polymerization [4]. It follows that
at the growing tip the flux of molecules must exactly match the rate of polymerization. Thus,
at x = L,

J

l
= −D

l
px = kpp, (3)

where kp is the rate constant for polymerization. In the Appendix, we derive a formula for
kp from the folding energy of the monomer.

The secretion process is energized by an ATP-ase (FliI). It is not known exactly how this
ATP-ase works, although there are hypothetical verbal models. One proposal [10] is that
soluble FliI (complexed with FliJ) receives the export substrate from cytoplasmic chaperones,
and delivers the substrate to a membrane associated structure, which then translocates it to
the channel in the nascent structure.

To model this process, we assume that the membrane associated structure can be in
one of two states, either empty awaiting binding with its cognate substrate, or bound and
involved in translocation. It follows that the probability of going from the unbound to the
bound state in time δt is Konδt = kon

[S]
KS+[S]

δt, where [S] is the concentration of the substrate.
Usually, we would assume that the probability of going from the bound to unbound state
is koffδt, however, because of the steric no-passing condition, translocation and unloading
cannot take place unless there is open space in the filament for the subunit to move into.
Thus, we assume that the probability of going from the bound to the unbound state is
koff(1 − p(0, t))δt. Thus, if P is the probability that the membrane associated ATP-ase is
bound by its cognate substrate S, then

dP

dt
= Kon(1 − P ) − koff(1 − p(0, t))P, (4)

where p(0, t) is the probability that the x = 0 end of the nascent hook is occupied by a
monomer at time t. The primary consequence of this statement is that translocation can
be delayed if the forming hook is crowded with monomer. With these as the binding and
unbinding rates, the flux of monomer at x = 0 must be the same as the unbinding rate,

J

l
= koff (1 − p(0, t))P . (5)

We take P to be in quasi-steady state, so that

P =
Kon

koff(1 − p(0, t)) + Kon

, (6)

implying that

−D

l

∂p

∂x
=

koffKon(1 − p(0, t))

koff (1 − p(0, t)) + Kon

. (7)

at x = 0.
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Finally, the length L(t) of the growing filament is governed by the differential equation

dL

dt
=

J

βl
, (8)

at x = L, where β is the number of monomers per unit length of filament.
The equations (2)-(8) constitute a free boundary problem. To transform this into a

problem on a fixed domain, we set x = L(τ)y, t = l2

D
τ , s = L

l
, and from the chain rule learn

that
∂

∂τ
=

l2

D

∂

∂t
+ L′(τ)y

∂

∂x
,

∂

∂y
= L(τ)

∂

∂x
, (9)

so that
∂

∂x
=

1

L(τ)

∂

∂y
,

∂

∂t
=

D

l2
∂

∂τ
− DL′(τ)y

lL(τ)

∂

∂y
. (10)

In these new coordinates, the partial differential equation (2) becomes

∂p

∂τ
=

s′(τ)y

s(τ)

∂p

∂y
+

1

s2

∂2p

∂y2
, (11)

where s is the scaled filament length s = L
l
, and the growth of the filament is determined by

s′ = − 1

βls
py|y=1. (12)

Now, set u = s2 and find

u
∂p

∂τ
=

yu′

2

∂p

∂y
+

∂2p

∂y2
, u′ = −εpy|y=1, (13)

where ε = 2 1
βl

, with boundary conditions

py = −
√

u
l2

D

koffKon(1 − p(0, t))

koff(1 − p(0, t)) + Kon

. (14)

at y = 0 and

py = −
√

u
l2

D
kpp, (15)

at y = 1. Reasonable numbers for parameters are β = 2.4/nm and l = 75nm, so that
ε = 2

βl
= 0.0111.

Numerical simulations show that p quickly reaches quasi-steady state. This is because
u, which acts as a time constant for the diffusion process, is slowly varying, so that the
boundary conditions are slowly varying as well. This solution satisfies

0 =
yu′

2

∂p

∂y
+

∂2p

∂y2
, u′ = −εpy|y=1. (16)

Since u′ is a scalar (as yet unknown), it must be that

py = A exp(−y2u′

4
), (17)
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and

p(y) = A

∫ y

0

exp(−y2u′

4
)dy + B. (18)

It is useful to introduce the notation

E(u′) =

∫ 1

0

exp(−y2u′

4
)dy, (19)

so that

p(0) = B, p(1) = AE(u′) + B, p′(0) = A, p′(1) = A exp(−u′

4
), (20)

Then, the boundary conditions (14) and (15) become

A = −sKD

(1 − B)

Ka(1 − B) + 1
, (21)

and

KbA exp(−u′

4
) = −sKD(AE(u′) + B), (22)

where KD =
koff l2

D
, Ka =

koff

Kon
, and Kb =

koff

kp
. The consistency condition is

u′ = −εA exp(−u′

4
), (23)

and the flux is

j =
J

lkoff

=
1 − B

Ka(1 − B) + 1
. (24)

Eliminating A and B from these, we find

s =
1

KDjE(u′)

(

1 − j

1 − Kaj
− Kbj exp(−u′

4
)

)

, (25)

and

u′ = ε
exp(−u′

4
)

E(u′)

(

1 − j

1 − Kaj
− Kbj exp(−u′

4
)

)

. (26)

Since s =
√

u, the equations (25) and (26) can be viewed as an implicit differential equation
for u′ as a function of u, which is not easily interpreted. However, since ε is quite small, we
can find a meaningful approximate equation

ds

dτ
=

1

2
εKDj, s =

1

KDj

(

1 − j

1 − Kaj
− Kbj

)

, (27)

which is valid to leading order in ε. When Kaj << 1 this reduces further to (in dimensional
units)

dL

dt
=

1

β

koff

koff lL

D
+ 1 +

koff

kp

, (28)
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Figure 2: Flux j(dimensionless) of monomer as a function of filament length with Ka = 2
(solid curve), and with Ka = 0 (dashed curve).

or even simpler as
dL

dt
=

D

βl

1

L
, (29)

for L sufficiently large.
The main conclusion of this calculation is that there is a velocity-length relationship

dL
dt

= V (L) which is a monotone decreasing function of L, and which for sufficiently large
L is inversely proportional to L. This velocity-length relationship is plotted in Fig. 1, for
Ka = 2 (solid curve) and Ka = 0 (dashed curve), and Kb = 0. Increasing Kb merely shifts
these curves to the left.

These velocity-length curves exhibit the correct qualitative behavior. The only available
data [5] show velocity-length curves for filaments to be well fit by decaying exponentials for
filaments in the range of 4-12 µm. Possible explanations for why there is not quantitative
agreement with data is discussed below.

3 Filament Length Control

Filament length is not tightly regulated. However, if they are broken off, filaments regrow
at a rate that is similar to that of the original growth [5], indicating that the length of the
filament is somehow sensed by the bacterium.

The ability to sense the length of a filament is a consequence of the gene regulatory
network that produces filament protein FliC (flagellin). Two important components of the
filamental regulatory system are the transcription factor σ28and its inhibitor FlgM. σ28is a
class 2 factor while FlgM is both class 2 and class 3. Being class 2 factors, both σ28and FlgM
are produced during the second stage of construction, while the hook is being constructed.

σ28is an activator of RNA polymerase that is necessary for transcription of all class 3
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factors, including the flagellar protein FliC. When possible, σ28binds with core RNA to
form activated RNA polymerase, called Eσ28, and transcription of class 3 factors proceeds.
However, FlgM inhibits the activity of σ28[1]. Thus, as long as there is an excess of FlgM,
the activity of σ28is inhibited, and class 3 transcription is prevented.

Before the hook assembly is complete, the ATP-ase that drives secretion is selective for
hook protein FlgE. Upon completion of the hook, the specificity of the ATP-ase is modified
so that hook protein is no longer secreted and proteins necessary for the completion of the
filament are secreted. At this time, FlgK, FlgL, and FlgM become substrates for the ATP-ase
and so are secreted. FlgK and FlgL are class 2 factors that stabilize the hook structure and
provide a junction between hook and filament. The secretion of FlgM, however, acts as a
signal that flagellar construction is about to begin. As FlgM is secreted, σ28is released from
its inactivation, and class 3 factors FlgM and FliC are produced. As long as FlgM is secreted,
this production continues. However, if the secretion slows (as it will as the flagella grows
longer), the concentration of FlgM begins to build up again, once again inhibiting σ28activity,
shutting off the production of FliC. However, if the filament is broken off, secretion of FlgM
increases dramatically (since the secretion rate is length dependent), setting off a signal that
more FliC is needed for the reconstruction project.

We wish to develop a mathematical model of this regulatory process. The chemical
reactions are as follows: It is known that σ28forms a complex Eσ28with core RNA, via

σ28
kσ

−→

←−

k
−σ

Eσ28. (30)

It is suggested that FlgM inhibits the activity of σ28in three ways [1]. It binds with σ28, it
probably destabilizes Eσ28, causing σ28to unbind from the core RNA, and it may bind to
Eσ28, preventing polymerase activity. Thus, we assume that FlgM forms a complex with σ28

FlgM + σ28
km

−→

←−

k
−m

Cσ. (31)

We model the interaction of FlgM with Eσ28by assuming that they form a complex C∗σ via

FlgM + Eσ28
km∗

−→

←−

k
−m∗

C∗σ, (32)

and that C∗σ degrades to Cσ via

Cσ

kC

−→

←−

k
−C

C∗σ. (33)

Because this scheme forms a loop, the principle of detailed balance requires that

kC

k−C

k−m∗

km∗

=
k−m

km

kσ

k−σ

. (34)

Finally, FlgM is produced at a rate proportional to σ∗ and secreted (after the hook is
completed), while σ28is gradually degraded.

8



The differential equations for the biochemistry are as follows. We denote M = [FlgM],
σ =[σ28], σ∗ = [Eσ28], C = [Cσ], and C∗ = [C∗σ]. Then,

dM

dt
= k∗σ

∗ − µM − kmσM + k−mC − km∗σ∗M + k−m∗C∗, (35)

dσ

dt
= −kmσM + k−mC − kσσ + k−σσ∗, (36)

dσ∗

dt
= −km∗σ∗M + k−m∗C∗ + kσσ − k−σσ∗, (37)

dC

dt
= kmσM − k−mC − kCC + k−CC∗, (38)

dC∗

dt
= km∗σ∗M − k−m∗C∗ + kCC − k−CC∗. (39)

Here we have ignored the degradation of σ28. Finally, we assume that the production of
flagellar protein FliC is governed by

dF

dt
= ρk∗σ

∗ − µF , (40)

where F = [FliC], assuming that ρ copies of FliC are produced for every copy of FlgM. The
rates of secretion are

µF =
F

F + M
µsec, µM =

M

F + M
µsec, (41)

where vµsec = J
l
, and v is the control volume in which the concentration of FlgM and FliC

are measured. This assumes that molecules FlgM and FliC are secreted at a rate that is
proportional to their relative concentrations, since both are secretion targets for the secretion
machinery. The rate of secretion is determined by the diffusion model proposed in section
2, namely, with the flux-length relationship given by (27), and Kon related to substrate
concentration through

Kon = kon

[S]

KS + [S]
, [S] = [F ] + [M ]. (42)

This relationship assumes that FlgM and FliC are the sole targets of secretion. In fact,
FliD (cap protein) is also secreted during filament construction, but we ignore this secretion
substrate here.

To simplify these equations somewhat, we assume that the biochemistry is in quasi-
equilibrium, in which case

σ∗ =
σ0KσKM

M + KM

, C + C∗ =
σ0M

M + KM

, (43)

where

KM =
kσ + k−σ

kσ
km∗

k
−m∗

+ k−σ
km

k−m

, Kσ =
k−σ

k−σ + kσ

. (44)
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With this approximation, the equation for M becomes

d

dt
(vM +

vσ0M

M + KM

) = K∗
KM

M + KM

− M

S

J

l
. (45)

Similarly, equation (40) becomes

d(vF )

dt
= ρK∗

KM

M + KM

− F

S

J

l
, (46)

where K∗ = k∗vσ0Kσ.
The flagellar length is slowly increasing, related to the rate of secretion of FliC,

dL

dt
=

F

S

J

βl
, (47)

at x = L. Since the relative amounts of FliC and FlgM secreted can vary, equation (47)
should include the time delay τ = L

J
to account for transport delay from the time a molecule

enters the x = 0 end until it arrives at the x = L end, but we ignore this complication here.
The relationship between J and L is given by

Ll

D
=

l

J
− 1

koff − 1
Kon

J
l

. (48)

Since this is an implicit relationship for J
l

as a function of L, it is useful to rewrite (47) as
an equation for J

l
as

d

dt
(
J

l
)(l

dL

dJ
) =

F

S

J

βl
, (49)

and use (48) to determine that

l
dL

dJ
=

D

l

(

− l2

J2
− 1

Kon

1

(koff − 1
Kon

J
l
)2

)

. (50)

In this way, we have the system of three differential equations (45), (46), and (49) for vM ,
vF , and J

l
with L determined from these through (48).

3.1 Parameter Values

The data for length-velocity relationships for filaments are sparse. Iino [5] found length-
velocity curves for three strains of Salmonella that were well fit by curves of the form

V = V0 exp(−κL), (51)

with κ = 0.27/µm, and V0 ranging between 0.25 and 0.55 µm/min. However, V0 is not the
maximal velocity since this fit is valid only for filaments in the range of 4-14µm. (A fourth
strain of Salmonella had much slower velocities with V0 = 0.02µm/min.) Using this data,
we estimate l

D
= 1.3 × 10−3min/µm.
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Table 2: Table of filament parameter values

β 2.4/nm
l
D

1.0 × 10−3min/µm
kon 2500/min
koff 500/min

1
kp

0

vσ0 0
K∗ 500/min
vKS 10
vKM 10

ρ 5

It is known that k−m

km
= 200pM, and

k
−m∗

km∗

= 800pM [2]. Thus, it must be that

k−C

kC

= 4
k−σ

kσ

. (52)

This implies that the complex C∗ is less stable than Eσ28, so that FlgM indeed destabilizes
the complex C∗. Using these equilibrium constants, we find

KM = 800
kσ + k−σ

kσ + 4k−σ

pM. (53)

The remaining parameter values are unknown, but were estimated to give reasonable
agreement with data, and are shown in Table 2.

3.2 Results

The qualitative behavior of these equations is readily deduced. Initially (at the termination
of hook construction), M is large, being a class 2 product, and F = 0. With M initially
much larger than KM , σ28is effectively inhibited and there is no production of class 3 factors.
When the hook is completed, secretion specificity is switched so that secretion of M begins.
Subsequently, M decreases to small levels, inducing the production of both F and M . As F
increases, filament growth increases at first, but as the length of the filament increases, the
rate of secretion drops, while both M and F continue to increase. This increase of M causes
the rate of production of both F and M to decrease, to match the decreased need for these.

If a filament is suddenly shortened, this growth scenario is repeated with a minor modi-
fication. Since the levels of both F and M are high when the shortening occurs, the initial
growth rate is large as the stores of F are used up. As F and M drop, however, their
production rates are again increased, allowing continued regrowth.

Numerical simulation of these equations demonstrates this scenario. In Fig. 3 is shown
the length as a function of time of a filament that starts at length L = 55nm, and grows
until length L = 20µm, at which point it is broken off to L = 2µm and then regrows. In
Fig. 4 are shown the numbers of intracellular FlgM and FliC molecules during this process.
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Figure 3: Length of a filament as a function of time.
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growth of a filament.
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4 Discussion

Here we have presented a model based on physical mechanisms for the growth of flagellar fil-
aments. We find a monotonically decreasing relationship between speed and velocity that is
inversely proportional to length for large length. This agrees qualitatively but not quantita-
tively with measurements that find exponential decay, rather than algebraic. That velocity
should be inversely proportional to length is not surprising. In fact, this is the expected
result for any diffusive process.

The fact that our model finds algebraic decays whereas data show exponential decay is
disturbing. There are two possible explanations for this discrepancy. First, it could be that
the movement of monomers is not by a standard diffusive process. In a narrow channel, it is
certain that monomer-wall interactions are significant and this will affect the details of the
molecular movement. However, it is unlikely that this will change the overall behavior from
an effective diffusion process.

It has been suggested (privately) that there should be a Boltzmann factor appearing
somewhere. For example, if polymerization could be viewed as escape from a potential well,
the depth of which was proportional to the length of the filament, then the mean escape
time, and hence velocity of growth, would be exponential in length. However, a mechanistic
explanation for this effect is not obvious.

The second possible explanation for this discrepancy lies with the interpretation of the
data. The conclusion that the velocity is exponential is made using roughly a half dozen data
points over one order of magnitude of lengths. Curiously, the data lie exactly on the fit curve,
with no error. It is difficult to believe that the experimental procedures (especially when
measuring a velocity, which involves finite differences) were as accurate as this suggests.

The model presented here finds that length detection is accomplished by the combination
of a length dependent flux of a secreted molecule with a negative feedback on the production
of the molecule.

A similar mechanism is used for quorum sensing in P. aeruginosa [3]. With quorum
sensing, there is positive feedback for the production of the diffusible molecule. Here, when
the diffusible molecule moves freely to the exterior of the cell, its concentration remains
at low levels within the cell. However, when outward diffusion is slowed, because of high
levels of the molecule in the extracellular space, intracellular levels of the molecule build
up, triggering an autocatalytic switch which upregulates this and other products. In P.
aeruginosa, the diffusible molecule is called an auto-inducer.

5 Appendix

Here we derive the boundary condition 3). It is clear that it is energetically favorable for
flagellin molecules to be folded rather than unfolded. Thus, the polymerization process is
fueled by the energy of folding. We can model this by assuming that near the growing end
of the tube, molecules experience a force so that for L − l < x < L,

J = −W ′(x)

ν
p − Dpx, (54)
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where W (x) is the potential energy well associated with folding, and ν is molecular viscosity.
We expect that W ′(x) < 0 so that folding has the effect of pulling the molecule out of the
tube. Furthermore, p = 0 for x ≥ L. Since l/L is small, the diffusion process should be in
quasi-steady state in the small (boundary layer) region L − l < x < L. Thus,

p(x) =
J

D

∫ L

x

exp(
W (η) − W (x)

νD
)dη, (55)

on the interval L− l < x < L. For x < L− l, J = −Dpx, so to match the flux J , it must be
that

p(L − l) = −px(L − l)

∫ L

L−l

exp(
W (η) − W (L − l)

νD
)dη, (56)

which is of the form
D

l
px(L − l) = −kpp(L − l), (57)

with

kp =
D

l

(
∫ L

L−l

exp(
W (η) − W (L − l)

νD
)dη

)−1

. (58)

In the simple case that W ′(x) = −F is a constant, we find that

kp =
∆W

l2ν

(

1 − exp(−∆W

Dν
)

)

−1

. (59)

where F l = ∆W is the depth of the potential energy well.
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