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CHANNEL FORMATION IN GELS∗

N. G. COGAN† AND JAMES P. KEENER‡

Abstract. We derive and give an analysis of a model of gel dynamics based on a two-phase
description of the gel, where one phase consists of networked polymer and the second phase is the
fluid solvent. It is found that for the gel to maintain an edge in a poor solvent, the function describing
the osmotic pressure must be of a particular form. The model is used to study the behavior of a gel
forced by a pressure gradient to move between two flat plates. The distribution of the network phase
under these conditions is found to be nonuniform and dependent on the pressure gradient. There
is a range of pressure gradients for which the network has regions of high and low volume fraction
separated by a sharp boundary, indicative of a channel. We provide the bifurcation analysis of how
these novel, singularly perturbed, channeled solutions occur.
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1. Introduction. There are numerous biological and biotechnological examples
where the structure and dynamics of polymer gels regulates the local environment.
Biological examples include maintenance of structural integrity in biofilms [8], cellu-
lar cytoplasm [3], force generators in myxobacteria [14], and chemical diffusion and
adsorption mediation in biofilm clusters [12]. Gel patches and ingestible pills used
to regulate the diffusion and adsorption of drugs are examples of bioengineered gels.
Quantifying the role of the polymer gel in such diverse systems requires understand-
ing the effect of the physical and chemical structure of the polymers on the material
properties of the system.

Gels are composed of a polymer network and a fluid solvent. This composition
endows gels with properties different than those of viscous materials for two primary
reasons. First, the polymeric structure induces viscoelastic behavior. Second, the
chemical structure of the polymer induces force, causing gel swelling and deswelling.
In this paper we first introduce a two-phase description of gel dynamics that em-
phasizes these two important differences between gels and Newtonian fluids. The
behavior of a pressure driven gel between two flat plates is analyzed in a manner
similar to the standard Poiseulle flow problem. Results from this analysis indicate
that the steady-state network profile depends on the pressure gradient in a relatively
complicated manner. There is an intermediate range of pressure gradients for which
the majority of the network is compressed and located near the plates, creating a
channeled region which is relatively free of polymer. This channeled solution arises
via a novel bifurcation mechanism from a nearly uniform network distribution by
forming a deep, narrow channel.

2. A model of gel dynamics. Gels consist of two materials, networked poly-
mer and fluid solvent, where the network encapsulates the solvent. The polymer
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network can be formed by several different interactions between the polymers them-
selves including covalent bonding, coulombic bonding, hydrogen bonding, and physical
entanglement.

In response to external conditions, gel networks absorb or expel solvent, causing
swelling or contraction, respectively. Thus the structure of the gel depends on the
temperature, solvent composition, pH, hydrostatic pressure, and ionic concentrations.
The potential which is responsible for the swelling properties of the gel is referred to
as osmotic or swelling pressure.

Forces due to osmotic pressure are not the only forces acting on the polymer net-
work. Deformation of the gel induces forces due to the elastic nature of the polymer
network. The elasticity is caused by both the elasticity of the polymers themselves and
polymer interactions. That is, a single polymer acts as a spring for small deformations,
while entanglement and cross-linking cause the network to resist deformations. The
behavior is in general not well described by a simple linear relationship between dis-
placement (strain) and stress primarily because the deformations are typically large.

Because the cross-links may be broken, a strain imposed on the gel and held
induces a stress which dissipates, a process referred to as relaxation. Further, if a
fixed stress is imposed on the gel, the gel will continue to displace, which is referred to
as creep. The two behaviors of creep and relaxation indicate that gels are viscoelastic
materials; therefore the constitutive relationship between stress and strain is typically
more complicated than for viscous materials.

Here we assume that a gel is composed of two immiscible materials, polymer
network and fluid solvent. The resulting model is similar to other models [3, 6, 9,
11, 13] that describe the gel as a two-phase material. The primary variation among
models in the literature results from the treatment of the viscoelastic stress and the
swelling pressure. In this study, we will neglect the relaxation of the network and
assume that the gel is composed of an elastic solid (network) embedded in a viscous
fluid (solvent). The swelling pressure is specified to ensure that physically reasonable
swelling/deswelling is reflected in the deformation process.

In the following sections we describe a general model of gel dynamics and specify
the forms of the viscoelastic stress and osmotic pressure used in this investigation.
The resulting model is then used to study the distribution of the polymer network
when the gel is forced to move between two flat plates by a pressure gradient.

2.1. Model derivation. We consider a region of space that contains networked
polymer and solvent, where the volume fraction of network, θn, and the volume frac-
tion of solvent, θs, sum to one. The network is assumed to act as a constant density
viscoelastic material, while the solvent acts as a Newtonian fluid of much less viscosity
than the networked material. The velocities of network and solvent are denoted �Un

and �Us, respectively.

The equation describing the momentum of the polymer network is given by the
balance of four forces that act on the network. Surface forces are given by ∇· (θnσn),
where σn is the network stress tensor. We assume that σn = σv+σe, where the viscous
and elastic stresses are denoted σv and σe, respectively. The viscous stress tensor is
proportional to the velocity gradient, σv = η

2 (∇�Un+∇�UT
n ). The non-Newtonian stress

tensor is given by constitutive relations which depend on the material and flow regimes
[1]. Here we take the elastic stress to be proportional to the elastic strain, which is
determined by the displacement gradient. We do not allow for creep or relaxation of
stress. Thus, we are describing the deformation process of the moving gel. Since the
displacements are not small, we use a finite strain tensor. The displacement of a fluid
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particle relative to fixed Eulerian coordinates is determined by

�x′ = �x + �D(�x, t),

where �x′ denotes the past position of the fluid particle and the components of the
vector �D are the displacements.

Following the development given in [1], the stress is related to the strain through

σe = γC,(1)

where C is the relative Cauchy strain tensor

C(�x, t)i,j = FjiFij − δij ,

with Fij =
∂x′

i

∂xj
= ∂Di

∂xj
+ δij the deformation gradient tensor and δij = 0 if i �= j,

δii = 1.
We must also specify equations describing the change in displacements due to

advection. The time derivative is measured in convected coordinates (i.e., relative
to a fixed coordinate system). We assume that the gel is an elastic solid with rest
position at which there is no network strain, while displacements from rest induce
a strain on the network. Relaxation of the network has been ignored since we are
primarily interested in coupling between elastic stress and network motion. Thus

∂

∂t
�D + ∇ · ( �D�Un) = �Un.(2)

The motion of the solvent influences the network through frictional drag, which
we model by hfθnθs(�Un− �Us), where �Un and �Us are the network and solvent velocities
and hf is the constant coefficient of friction.

The third force is induced by the chemically active nature of the polymers within
the gel. To model this force, we assume that there exists an osmotic pressure, Ψ(θ),
gradients of which induce force on the polymers. Additional description of this term
is provided below.

The final force that is included is due to hydrostatic pressure, P . Balancing all
these forces yields

∇ · (θnσn) − hfθnθs(�Un − �Us)(3)

− ∇Ψ(θn) − θn∇P = 0.

The equation governing the solvent momentum is derived in a similar manner.
However, the fluid is chemically passive so there is no osmotic force on the solvent
and the stress is Newtonian. Force balance yields

∇ · (θsσs) + hfθnθs(�Un − �Us) − θs∇P = 0,(4)

where σs = ηs

2 (∇�Us + ∇�UT
s ).

Notice that (3) and (4) are very similar to the Stokes equation for incompressible
flows at zero Reynolds number. In particular, by neglecting the inertial terms, we are
assuming that the system responds instantaneously to applied forces.

The redistribution of the polymer network is governed by the conservation equa-
tion

∂

∂t
θn + ∇ · (θn�Un) = 0,(5)
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and a similar equation governs the conservation of solvent, namely,

∂

∂t
θs + ∇ · (θs�Us) = 0.(6)

Assuming that θn+θs = 1, we combine (5) and (6) to conclude that the divergence

of the average flow, θn�Un + θs�Us, is zero; i.e.,

∇ · (θn�Un + θs�Us) = 0.(7)

Equations (2), (3), (4), (5), and (7) govern the gel dynamics, subject to boundary
conditions which depend on the specific problem. Throughout this paper, it will
be useful to allow for diffusive smoothing of the network. This can be motivated
physically by the fact that there is probably a small amount of polymeric diffusion
within the gel. It is also useful from a mathematical perspective because it guarantees
that solutions are smooth, even if there are sharp transitions. This modification yields
the equation

∂

∂t
θn + ∇ · (θn�Un) = ε∇2θn(8)

for the redistribution of polymer network, and

∇ · (θn�Un + θs�Us) = ε∇2θn(9)

for the incompressibility condition.

2.2. Osmotic pressure. Although there are many models of gel dynamics in
the literature which include terms representing osmotic pressure [2, 3, 6, 7, 10, 11, 13],
there is little agreement on either the definition or the derivation of this term. The
treatment of this term varies from qualitative [3, 6] to quantitative [13]. In [7, 10, 11]
a specific functional form of the osmotic pressure is not given. In fact, there has
been little investigation of the dynamic behavior using different forms of the swelling
pressure. Therefore our first task is to determine a model of swelling pressure which
reflects some experimental results. Specifically, in many experiments a blob of gel
is suspended in a solvent, causing the gel to swell. The amount of swelling is a
measure of the effectiveness of the solvent. In general, the gel does not completely
dissolve; instead, the blob swells a certain amount and then persists with a lower
volume fraction, maintaining a distinct interface between the gel and the surrounding
solvent.

We wish to determine what choice of Ψ, if any, allows for the existence of an edge
between the gel and the surrounding solvent. To do so, we examine the solution of
a simplified one-dimensional model of network redistribution due to swelling pressure
alone. In the absence of elastic restoring force (σe = 0), network motion is governed by
the balance of forces due to viscous stress, osmotic pressure, and hydrostatic pressure.
Considering the steady-state problem implies that �Us = 0 (from (5)). Using (4)
to eliminate P from (3), the time independent one-dimensional equations governing
network distribution are

η
d

dx

(
θn

dVn

dx

)
= hfθnVn +

d

dx
Ψ(θn),(10)

d

dx
(θnVn) = ε

d2θn
dx2

,(11)
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where Vn is the x-component of �Un. To be physically relevant, the solution should
persist in the limit ε → 0.

The boundary conditions for this system are that Vn = 0 and there is no network
flux εdθndx = θnVn at x = 0 and x = L, where L is the length of the one-dimensional
spatial domain. This second condition allows us to integrate (11) and then substitute
the result into (10), and also integrate this to find the second order system of equations

η
dVn

dx
= εhf +

Ψ(θn)

θn
+

k

θn
,(12)

ε
dθn
dx

= θnVn.(13)

This is a singularly perturbed system. We want there to be solutions θn = 0
and θn = θref which exist in the limit ε → 0 and which also can be connected by a
transition layer. For θn = θref to be a solution, it must be that k + Ψ(θref ) = 0, and
for θn = 0 to be a solution, it must be that

lim
θn→0

Ψ(θn)

θn
+

k

θn
= 0.(14)

It follows that

Ψ(θn) = −k + θ2
nf(θn),(15)

where f(θref ) = 0. Of course, we can take k = 0, since only the gradient of Ψ appears
in the governing equations.

Now we seek a transition layer that connects the two solutions θn = 0 and θn =
θref . In this transition layer it must be that (ignoring the term εhf )

η

ε

dVn

dθn
=

f(θn)

Vn
,(16)

from which it follows that

η

ε
V 2
n = −

∫ θref

θn

f(θ)dθ,(17)

implying that f(θn) < 0 on the interval 0 ≤ θn ≤ θref . In the special case that
f(θn) = γos(θn − θref ), we find that

Vn = ±
√

γosε

η
(θn − θref ),(18)

with transition layer trajectory satisfying

dθn
dx

= ±
√

γos
εη

θn(θn − θref ),(19)

a hyperbolic tangent solution with boundary layer width the order of
√
ε.

It follows that, for a gel to hold an edge, Ψ must be of the form (up to an arbitrary
additive constant) Ψ(θn) = θ2

nf(θn) with f(θref ) = 0 and f(θn) ≤ 0 for 0 < θn < θref .
A specific example of such a function that we use throughout the rest of this paper is
Ψ(θn) = γosθ

2
n(θn − θref ).
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Having determined the form of the osmotic pressure that allows transition layers
between θn = 0 and θn = θref , we now wish to determine the stability of steady
solutions. Notice that any constant θn = θ0 is a solution of (3), (4), (8), and (9) with
�Un = �Us = 0 (provided σe = 0). To study its stability, we linearize the governing

equations about this uniform solution (setting �Un = u, �Us = v, θn = θ0 + φ, θs =
1 − θ0 − φ.), to find

∂φ

∂t
+ ∇ · (uθ0) = ε∇2φ,(20)

∇ · (uθ0 + v(1 − θ0)) = ε∇2φ,(21)

1

2
∇ · (θ0η(∇u + ∇uT )) − hfθ0(u− v) − Ψ′(θ0)∇φ = 0.(22)

To find the dispersion relation for this problem, we try a solution of the form φ =
A(t)eiω·x, u = B(t)eiω·x, v = C(t)eiω·x, and obtain equations for A, B, and C:

dA

dt
+ iω(Bθ0) = −ω2εA,(23)

iω(Bθ0 + C(1 − θ0)) = −ω2εA,(24)

−ω2θ0ηB − hfθ0(B − C) − Ψ′(θ0)iωA = 0.(25)

We solve for B and C and substitute into (23) to find

C =
iωεA−Bθ0

1 − θ0
,(26)

B =
εhfθ0 − (1 − θ0)Ψ

′(θ0)

ω2θ0η(1 − θ0) + hfθ0
iωA,(27)

dA

dt
= ω2 εhfθ0 − (1 − θ0)Ψ

′(θ0)

ω2η(1 − θ0) + hf
A− ω2εA.(28)

In the limit ε → 0 this is

dA

dt
= −ω2 (1 − θ0)Ψ

′(θ0)

ω2η(1 − θ0) + hf
A.(29)

Clearly, this is stable if ψ′(θ0) > 0 and unstable if ψ′(θ0) < 0.

Thus, for the function Ψ(θn) = γosθ
2
n(θn−θref ), a uniform gel with θn < γos

2
3θref

is unstable, while a uniform gel with θn > γos
2
3θref is stable. Thus, very low density

gels are not stable and will tend to form deswelled spatially localized aggregates.
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3. Channeling behavior. We now turn to a simple problem illustrating one
difference between gel dynamics and Newtonian fluid dynamics. We consider the
deformation of the network component of a gel which is forced to move between two
flat plates due to a constant imposed pressure drop. We make one further assumption
that the viscosity of the system is dominated by the network viscosity (θnη � θsηs),
and thus, following [13], we neglect the solvent viscosity. Notice that although the
solvent is inviscid, the frictional interaction between the solvent and the network still
renders the entire system viscous.

The motion is assumed to be two-dimensional, where x, y and �U∗ = (V∗,W∗)
denote the horizontal and vertical coordinates and velocities, respectively. For New-
tonian fluids the steady-state x independent velocity profile is parabolic in y for all
pressure drops. This is not the case for the gel-Poiseulle flow. Instead, the steady-
state profile of the network volume fraction undergoes a large change as the magnitude
of the pressure gradient varies.

To demonstrate this, we seek a solution of (3)–(7) that is the analogue of Poiseulle
flow—the horizontally independent steady velocity profile for a fluid forced between
two flat plates by a pressure drop.

Under the assumption that D1 and D2 are independent of x, the elements of the
deformation gradient tensor Fij are

∂x′

∂x
= 1,

∂x′

∂y
=

∂D1

∂y
,

∂y′

∂x
= 0,

∂y′

∂y
= 1 +

∂D2

∂y
,

and the stress tensor becomes

σe = γ

[
0 ∂D1

∂y
∂D1

∂y
∂D1

∂y

2
+ 2∂D2

∂y + ∂D2

∂y

2

]
.

We change from vector to component notation here, so that the following simplifi-
cations are more apparent. In component form the steady-state equations for the
gel-Poiseulle flow are

η
∂

∂y

(
θn

∂

∂y
Vn

)
− ∂P

∂x
+ γ

∂

∂y

(
θn

∂

∂y
D1

)
= 0,(30)

η
∂

∂y

(
θn

∂

∂y
Wn

)
− ∂

∂y
Ψ(θn) − ∂P

∂y

+ γ
∂

∂y

(
θn

(
∂D1

∂y

2

+ 2
∂D2

∂y
+

∂D2

∂y

2))
= 0,(31)

hfθn(Vn − Vs) −
∂P

∂x
= 0,(32)

hfθn(Wn −Ws) −
∂P

∂y
= 0,(33)

∂

∂y
(θnWn + (1 − θn)Ws) = ε

∂2θn
∂y2

,(34)
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∂

∂y
(θnWn) = ε

∂2θn
∂y2

,(35)

∂

∂y
(D1Wn) = Vn,(36)

∂

∂y
(D2Wn) = Wn.(37)

Here we allow for network diffusion, with diffusion coefficient ε, but our goal is to
solve the system in the limit ε → 0.

The distance between the two plates is taken to be L; hence the domain of the
problem consists of an infinite strip (−∞ < x < ∞) × (0 < y < L). The boundary
conditions are D1 = D2 = 0 and ε∂θn∂y = θnWn at y = 0, L, implying that there is
neither network displacement nor network flux at the boundary.

We can simplify these equations substantially. Integrating (35) and solving for
the vertical velocity of the network, we find

Wn = ε

∂θn
∂y + c1

θn
,(38)

which, combined with (34), yields

(1 − θn)Ws = c2.(39)

These can be used in (33) to solve for the ∂P
∂y as

∂P

∂y
= hfθn

(
Wn − c2

1 − θn

)
.(40)

The boundary conditions imply that c1 = c2 = 0; hence Ws = 0 and ∂P
∂y = hf ε

∂θn
∂y .

Because Vn = 0 at steady state, and because the equations are independent of x, ∂P
∂x

is independent of x. That is, (32) implies that P = Gx + P̂ (y).
Integrating (30) and solving for ∂D1

∂y yields

∂D1

∂y
=

Gy + a

γθn
.(41)

We specify a by assuming that the steady-state profiles are symmetric about the
center line, y = 1

2 . We also relate the vertical displacements to the network volume
fraction using the Jacobian of the transformation

θ̂n = θn

(
1 +

∂D2

∂y

)
,

where θ̂n is the original homogeneous unstressed distribution of the network.
Finally, (31) reduces to an ordinary differential equation (ODE) relating the vol-

ume fraction of the network to y and parameters G, γ, hf , etc.:

εη
d

dy

(
θn

d

dy

(
dθn
dy

θn

))
− εhf

dθn
dy

− dΨ

dy
+ γ

d

dy

⎛
⎝θn

⎛
⎝(

Gy −GL/2

γθn

)2

+

(
θ̂n
θn

)2

− 1

⎞
⎠
⎞
⎠ = 0.(42)
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We nondimensionalize (42) by defining the nondimensional variable y∗ = y
L and

the nondimensional parameters ε∗ = η
L2γ ε and h∗

f =
L2hf

η , G∗ = L
γG; substituting

these into (42); and dropping the ∗-notation. Integrating once yields

(43)

ε

(
θn

d

dy

(
dθn
dy

θn

))
− εhfθn − 1

γ
Ψ(θn) +

⎛
⎝θn

⎛
⎝G2

(
y − 1/2

θn

)2

+

(
θ̂n
θn

)2

− 1

⎞
⎠
⎞
⎠= k,

which must be solved subject to the constraint that mass is conserved,∫ 1

0

θn dy = θ̂n.(44)

Although simpler than the original system, there remains quite a lot of interesting
structure in (43). In particular, (43) is a second order ODE which is singular in the
limit ε → 0. In the following section, we describe the singular perturbation analysis
of this problem, revealing the existence of channels, i.e., solutions with sharp interior
transition layers.

3.1. The channeling bifurcation. In this section we analyze the bifurcation
structure of channels by examining the solutions of (43) in the singular limit ε → 0.

We assume that the initially uniform gel at θ̂n is stable so that Ψ′(θ̂n) > 0.
The reduced equation (ε = 0) is an algebraic equation relating the network volume

fraction to the location between the plates. The steady state network profile is given
by the solution of the algebraic equation

H(y, θn) = G2

(
y − 1

2

)2

+ h(θn) = 0,(45)

where

h(θn) = −θnΨ(θn) + θnΨ(θ̂n) + θ̂2
n − θ2

n − kθn,(46)

and

Ψ(θn) = κθ2
n(θn − θref ),(47)

where κ = γos

γ represents the strength of osmosis compared to the elastic modulus.

Here k has been redefined so that H(θ̂n) = 0 when k = 0. The solution profile θn(y)
must also satisfy the integral constraint 44.

By virtue of the form of Ψ, the gel is capable of supporting an edge. In many
hydrogels, the polymer network is of very low density and is highly charged [5]. This
suggests that the strength of the osmotic pressure is large compared to the magnitude
of the elastic modulus, so that κ is large.

This problem can be viewed as a nonlinear eigenvalue problem: “For each value
of G determine the value(s) of k for which the solution of (45) satisfies the integral
constraint (44).” However, it turns out that it is easier to view the problem as follows:
“For each value of k find the value(s) of G for which the solution of (45) satisfies the
integral constraint (44).” We explain below why this is the case.

First we make some observations about the function h(θ). Because h(0) = θ̂2
n > 0,

and h(θ) < 0 for large θ, h(θ) always has at least one positive and one negative root.
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Fig. 1. Plot of h(θ) as a function of θ for k = 0, 2, 3.5, 5. Other parameter values are κ = 20,000

and θref = θ̂n = 0.1.

Since h(θ) is a quartic polynomial in θ, there can be as many as three positive roots
of H(y, θn) = 0, depending on the value of k. To see this, in Figure 1 are shown four
different plots of h(θ) for four values of k = 0, 2, 3.5, 5 (top to bottom). If 3κθ2

ref > 8,
the function h(θ) has two positive inflection points. Thus, if κ is sufficiently small,
the function h(θ) is monotone for positive θ, whereas, if κ is sufficiently large, it is
possible that h(θ) is nonmonotone.

We seek solutions of (45) that are of the form θn = Θn(y). However, because
h(θ) need not be monotone, such solutions do not always exist. However, it is always
possible to write the solution implicitly for y as function of θn,

y =
1

2
± 1

G

√
−h(θn).(48)

Thus, one can visualize solutions by turning the plots in Figure 1 “on their side.”
If the resulting solution is single-valued, there is little more to do. If the resulting
solution is multivalued, then one must determine which pieces of the multivalued
function should be used to construct a single-valued function.

To construct admissible single-valued solutions from multivalued ones, we look for
interior transition layers that connect different branches of the multivalued solution.
Suppose that at y = y0, H(y0, θn) = 0 has three positive roots, θ− ≤ θ0 ≤ θ+. We
introduce an inner scaling of (43) defining Y = y−y0

ε1/2 . Substituting this into (43) and
retaining the leading order terms in ε, we obtain

d

dY

(
dθn
dY

θn

)
+

H(y0, θn)

θ2
n

= 0.(49)

With the change of variable w = ln(θn), we can rewrite this as

d2w

dY 2
+ F (w, y0) = 0,(50)
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where F (w, y0) = H(y0, e
w)e−2w. Clearly, the function F (w, y0) has three roots,

w± = ln(θ±), w0 = ln(θ0). It is well known [4] that there is a solution to the inner-
layer (50) that provides a transition between w− and w+ if∫ w+

w−

F (w, y0)dw = 0.(51)

Inverting the transformation yields an equivalent requirement in the variable θn. An
interior layer providing a transition between θ− and θ+ can be fit at y = y0 if

∫ θ+

θ−

H(y0, θn)

θ3
n

dθn = 0.(52)

There is another interior layer solution that can be used to construct solutions.
If y0 = 1

2 and there are three positive roots of H( 1
2 , θ) = 0, and if

∫ θ+

θ−

H( 1
2 , θ)

θ3
dθ < 0,(53)

then there is a homoclinic orbit of (49) that approaches θ+ asymptotically as Y → ±∞
and has as its minimal value θ = θ∗, where θ− < θ∗ < θ0 and

∫ θ+

θ∗

H( 1
2 , θ)

θ3
dθ = 0.(54)

The first integral for this trajectory is

1

2

(
dθn
dY

)2

− θ2
n

∫ θ+

θn

H( 1
2 , θ)

θ3
dθ = 0.(55)

Now we use this information to construct all the possible single-valued solutions.
To do this we pick a value of k, determine the possible single-valued solutions, and
then find the appropriate value of G (and y0 if any) for this solution. There are three
different types of solutions.

If h(θ) = 0 has only one positive root and if and h(θ) is monotone decreasing for
θ larger than this root, then the solution of H(y, θn) = 0 is unique, for any value of G,
as seen in Figure 1 for the curves with k = 2 and for k = 5. In Figure 2 the solution
profiles θn(y) for k = 5 are shown for three different values of G.

Since G acts as a y-axis scale factor for these profiles, it is apparent that
∫ 1

0
θn(y)dy

is a monotone decreasing function of G. Thus, there is a unique value of G for which∫ 1

0
θn(y)dy = θ̂n. For the profiles shown in Figure 2, this unique value of G is 4.022.
Similarly, for small values of k, unique solutions can be obtained. For example,

Figure 3 shows the solution profile for k = 2. Again, since the y-axis for this profile

is scaled by G, the unique value of G for which
∫ 1

0
θn(y)dy = θ̂n is easily determined.

For the profile in Figure 3, this value is G = 1.74.
If the function h(θn) is not monotone decreasing, then there is the possibility of

nonunique solutions of H(y, θn) = 0. If a (positive) level x can be found so that

∫ θ+

θ−

x + h(θn)

θ3
n

dθn = 0,(56)
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Fig. 2. Plot of θn(y) for k = 5 and G = 2, 4.022, 6. Other parameter values are κ = 20,000 and

θref = θ̂n = 0.1.
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Fig. 3. Plot of θn(y) for k = 2 and G = 1.74. Other parameter values are κ = 20,000 and

θref = θ̂n = 0.1.

then a boundary layer can be inserted into the profile at y0 = 1
2 ±

√
x

G , and this
boundary layer can be used to connect the largest solution of H(y0, θn) = 0 with the
smallest. A plot of a profile that results is shown in Figure 4.

Notice that for this value of k (=2), there are three possible solution profiles,
one with no interior layer (shown in Figure 3), one with a boundary layer (shown in
Figure 4), and one with a symmetric boundary layer located at y0 = 1

2 . In the limit
that ε → 0, the third of these looks identical to the profile shown in Figure 3, with
the exception that θn is discontinuous at y = 1

2 , with θn( 1
2 ) = θ∗ defined in (54). The
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Fig. 4. Plot of θn(y) for k = 2 and G = 2.47 with a boundary layer inserted at y0 = 0.46. The
dashed curves show all possible solutions of H(y, θn) = 0. Other parameter values are κ = 20,000

and θref = θ̂n = 0.1.
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Fig. 5. Plot of θn(y) for k = 3.5 and G = 3.39 with a boundary layer inserted at y0 = 0.43. The
dashed curves show all possible solutions of H(y, θn) = 0. Other parameter values are κ = 20,000

and θref = θ̂n = 0.1.

value of G for the first and third solution profiles is the same, but it differs from the
value of G for the second transition-layer profile. For some values of k, the boundary
layer profile is the only possible solution. A profile of this type occurs for k = 3.5 and
is shown in Figure 5.

In this way, for each value of k we determine all possible solutions and their
corresponding values of G. A plot of the relationship between k and G is shown
in Figure 6. Here we see two curves. The lower curve that extends from k = 0 to
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Fig. 6. Plot of G versus k for the solutions of the gel-flow problem. For this plot, κ = 20,000
and θref = θ̂n = 0.1.

k = 2.9 corresponds to solutions like those shown in Figure 3 , with no boundary layer.
The upper curve that extends from the lower curve at about k = 1.4 (with y0 = 1

2 )
corresponds to channeled solutions, with a boundary layer as shown in Figures 4 and 5
for k < 5. These solutions merge smoothly into non–boundary layer solutions, such
as those shown in Figure 2, as k increases.

The nature of the bifurcation structure of these solutions is not apparent from
Figure 6. This is because, for values of k larger than the merger point, the lower branch
corresponds to two different solutions. The easier way to visualize this difference is
seen in Figure 7, where θn( 1

2 ) is plotted as a function of G. Here, the upper solution
branch corresponds to those solutions with no boundary layers, the lower solution
branch corresponds to those with interior transition layers, and the middle branch
(shown dashed) gives the solutions with a symmetric boundary layer at y = 1

2 . In
the limit ε → 0, this boundary layer has no thickness and so has no influence on the
integral of θn. Here we see that the solution is an S-shaped curve, and the bifurcations
are via limit points.

The physically significant feature of these curves is that for some values of G
there are two physically realizable solutions, a boundary layer, or channeled, solution
and a nonchanneled solution. The solution with a boundary layer at y = 1

2 is tran-
sitional between the two and is interesting for mathematical reasons but is unstable
and hence not physically realized. Thus, the solution of the gel-flow problem is not
unique and exhibits hysteretic behavior, with a hysteresis loop between channeled and
nonchanneled solutions, governed by the pressure gradient G.

The behavior of the fluid flow through these two different solution types is un-
derstandably different, as the channeled solution permits a higher flux for the same
cost. This is illustrated by Figure 8, where the flux of solvent,

J =

∫ 1

0

Vsdy =
1

hf

∫ 1

0

1 − θn
θn

dy,(57)
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Fig. 7. Plot of θn( 1
2
) versus G for the solutions of the gel-flow problem. For this plot, κ = 20,000

and θref = θ̂n = 0.1.
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Fig. 8. Plot of solvent flux as a function of G. For this plot, κ = 20,000 and θref = θ̂n = 0.1.

is plotted as a function of G for the two different solution types. Not surprisingly, if
two solutions are possible for the same value of G, the boundary layer solution permits
a larger solvent flux than the non–boundary layer solution.

4. Discussion. From this analysis we can deduce the physical mechanism that
underlies the formation of channels in a gel. If the osmotic force is sufficiently strong
compared to the elastic restoring force, then under a sufficiently high pressure gradi-
ent, it is energetically favorable to compress the gel near the wall and swell the gel in
the interior, thereby forming a low-resistance channel.

This same conclusion is correct for all gels for which there are two stable gel
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concentrations. That is, if Ψ(θn) is such that Ψ′(θn) < 0 for 0 ≤ θ∗ < θn < θ∗ < 1

and is positive elsewhere, then if the uniform gel distribution has θ̂n > θ∗ and if the
osmotic force is sufficiently strong compared to the elastic force, channels will form
under sufficiently high pressure gradient flows. This follows from the analysis of the
previous section, which relied entirely upon the generic “cubic” shape of the function
Ψ(θn) and not on its details. Any function Ψ(θn) with similar structure will lead to
the same bifurcation channeling behavior.
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