
Available online at http://www.idealibrary.com on
doi:10.1006/bulm.2001.0235
Bulletin of Mathematical Biology (2001) 00, 1–17

Diffusion Induced Oscillatory Insulin Secretion
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Oscillatory secretion of insulin has been observed in many different experimental
preparations. Here we examine a mathematical model for in vitro insulin secre-
tion from pancreatic beta cells in a flow-through reactor. The analysis shows
that oscillations result because of an important interplay between flow rate of the
reactor and insulin diffusion. In particular, if the ratio of flow rate to volume of
the reaction bed is too large, oscillations are eliminated, in contradiction to the
conclusions of Maki and Keizer (L. W. Maki and Keizer J. Mathematical analysis
of a proposed mechanism for oscillatory insulin secretion in perifused HIT-15 cells.
Bull. Math. Biol., 57(1995), 569–591). Furthermore, with reasonable numbers for
the experimental parameters and the diffusion of insulin, the model equations do
not exhibit oscillations.

c© 2001 Society for Mathematical Biology

1. INTRODUCTION

Insulin is secreted from the pancreas in an oscillatory fashion. Many in vivo and
in vitro experiments have been carried out to try to understand the biochemical
control mechanisms underlying these oscillations.

One particular in vitro experiment measures insulin oscillations in flow columns
(Chou and Ipp, 1990; Cunningham, 1993). The apparatus for this experiment
consists of a perifusion pump which pumps glucose-containing perifusate, a bed
of islets or insulin secreting cells sandwiched between microcarrier beads, and
a device for collecting the efflux perifusate. Because of this experimental ar-
rangement, this system has been modeled as a one-dimensional chemical flow
reactor (with no diffusion), where the reaction region is represented by the volume
occupied by the cells. Under the assumption that the ratio of the length of the
bed to the flow rate is small, it was suggested in Maki and Keizer (1995) that this
model system could be reduced using asymptotic analysis to that of a well mixed
continuously stirred tank reactor (CSTR), and therefore modeled by a system of
four ordinary differential equations. Further, in this parameter range the ode system
could be reduced to a system of two first-order differential equations, which could
be studied in the phase plane. With these two simplifications, ranges for the glucose
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feed concentration were found for which there were stable oscillations of insulin
secretion, thereby giving theoretical support for the experimental observations.

It is the claim of this paper that the reduction of a flow reactor system (without
diffusion) to a CSTR is not valid and leads to the appearance of insulin oscillations
that cannot exist in the (no diffusion) flow reactor. Specifically, we show that if the
ratio of the length of the bed to the flow rate is small, then insulin oscillations are
suppressed. On the other hand, there is a range of values of this ratio, determined
by the diffusion coefficient of insulin, for which stable oscillations occur. This
implies that oscillations are regulated by the interplay between the flow rate and
diffusion. It also implies that the CSTR approximation is only valid when there is
sufficient diffusion (or some other means of mixing).

We will develop these results in two steps. First, in the next section, we describe
the standard model of a flow reactor containing insulin secreting cells. In the fol-
lowing section, we show that if diffusion is ignored, then for large flow rates, there
are no oscillations, contrary to the claim of Maki and Keizer (1995). Finally, in the
subsequent section, we modify the flow model, allowing diffusion of insulin. For
this modified model, there are oscillations in certain parameter ranges, and in the
limit of large diffusion the CSTR model of Maki and Keizer (1995) is recovered.

2. THE MODEL

We consider the secretion of insulin from cells which are fixed in a flow reactor,
with solution flowing through the reactor. The mechanism of insulin secretion that
we use here is exactly the same as proposed in Maki and Keizer (1995). That
is, glucose enters the cell through GLUT-type glucose transporters of two types,
GLUT1 and GLUT2 transporters. Once inside the cell, internal glucose is metab-
olized, activating secretion via insulin granule exocytosis. In the external medium,
insulin activates GLUT1 transporters and inactivates GLUT2 transporters.

To model this reaction, we assume that there is a steady flow of solution at
velocity V along the one-dimensional reactor, with insulin secreting cells con-
fined to the one-dimensional region 0 < x < Lbed. In the fluid we must track
two concentrations, the external glucose concentration G and the external insulin
concentration I . The conservation equations for these quantities are

(1− ρ)

(
∂G

∂t
+ V

∂G

∂x
− DG

∂2G

∂x2

)
=−R1 − R2, (1)

∂ I

∂t
+ V

∂ I

∂x
− DI

∂2 I

∂x2
= Rs, (2)

for 0 < x < Lbed, where R1 is the rate of glucose uptake by GLUT-1 receptors,
R2 is the rate of glucose uptake by GLUT-2 receptors, and Rs is the rate of insulin
secretion by the cells in the bed, and ρ is the volume fraction of cells in the bed.
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The boundary data are that G(0, t) = G0, and I (0, t) = 0, since the incoming
flow is assumed to have fixed glucose concentration and no insulin. However,
with these boundary conditions the problem is not well posed, unless diffusion is
ignored. In the next section we study this problem in the case with no diffusion, in
which case these boundary conditions suffice. However, in the subsequent section,
where diffusion is included, these boundary conditions will be modified.

Inside the cell, glucose is metabolized at the rate Rm . Thus, if Gi denotes the
interior concentration of glucose,

ρ
∂Gi

∂t
= R1 + R2 − Rm . (3)

Notice that (3) has no derivatives with respect to x since the cells are assumed to
be at a fixed position in the reactor.

To complete the model description, it remains to describe the functional forms
of the various rate terms. First, the rate of glucose metabolism is assumed to be an
increasing function of glucose concentration. Thus,

Rm

ρ
= VmGi

Km + Gi
, (4)

for some constants Vm and Km . In a similar way, the rates of the GLUT-1 and
GLUT-2 transporters are assumed to be simple increasing functions of the external
concentration of external glucose, G. R1 is assumed to be an increasing function
of I , which models the recruitment of GLUT-1 transporters by insulin, and results
in positive feedback,

R1

ρ
= V1(G − Gi )

(K1 + Gi )(1+ G/K1)

I

Ki + I
. (5)

R2 is assumed to be an increasing function of an inactivation variable J through

R2

ρ
= V2(G J m − Gi )

(K2 + Gi )(1+ G/K2)
. (6)

The rate of insulin secretion is controlled by a complicated biochemical network,
the details of which we do not wish to model here (Alberts et al., 1983). Instead,
the insulin secretion rate Rs is described by an empirical function determined by
fitting to experimental data. By combining data on how Rm depends on G with data
on how Rs depends on G, one can determine the relationship between Rs and Rm .
We are then able to express Rs in terms of Rm and hence in terms of Gi . By doing
so we circumvent the inconvenient fact that, although the rate of insulin secretion
depends in some way on internal glucose concentrations, this relationship has not
been measured directly. The result is

Rs = Vs(R4
m + ρ4L4)

R4
m + ρ4 K 4

s + ρ4L4
. (7)
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Notice that insulin secretion is positive even when Rm = 0, by virtue of the
parameter L .

Finally we introduce a variable J , an inhibition variable (similar to h or n in the
Hodgkin–Huxley context), which measures the extent to which insulin inhibits its
own release. J does not correspond directly to a measured physiological process,
but is a phenomenological representation of the slow negative feedback process.
The variable J is assumed to evolve according to the differential equation

τJ
d J

dt
= J∞ − J, (8)

where

J∞ = Kinh

Kinh + I
. (9)

Note that J∞ decreases as the concentration of insulin increases, and, thus, an
increase in insulin leads to a decrease in J , with a time delay related to the time
constant τJ . Thus, increasing I leads to a decrease in glucose flux through the
GLUT2 transporters.

Most of the model parameters can be determined from experimental data, and
are summarized in Table 1. The estimated parameters, Kinh, Ki , and τJ , are
parameters associated with the various types of insulin feedback, which are not
known. The flow rate was reported in Chou and Ipp (1990) to be 0.3 ml min−1

through a 1 cm diameter column, yielding a flow velocity of 3.8 mm min−1. The
thickness of the bed is more difficult to determine. A monolayer of islets would
make Lbed about 0.3 mm, so that k0 = V

Lbed
= 1.3 min−1. For a monolayer of cells,

with Lbed = 10µm, k0 = 30 min−1. In contrast, in Maki and Keizer (1995), k0 was
estimated as 400 min−1.

The first step in our analysis is to non-dimensionalize the model. We set G =
K2g, Gi = K2gi , I = ε K2Vs

V2
i = Vs Lbed

V i , x = Lbed y, t = K2
V2

τ , ε = V2 Lbed
V K2

, and the
model becomes(

∂g

∂τ
+ 1

ε

∂g

∂y
− δG

∂2g

∂y2

)
=

(
−v1

g − gi

(k1 + gi )(k1 + g)

εi

ki + εi
− (g J m − gi )

(1+ gi )(1+ g)

)

×
(

ρ

1− ρ

)
, (10)

ε
∂i

∂τ
+ ∂i

∂y
− δ

∂2i

∂y2
= r4

m + l4

r4
m + k4

s + l4
, (11)

∂dgi

∂τ
= v1

g − gi

(k1 + gi )(k1 + g)

εi

ki + εi
+ g J m − gi

(1+ gi )(1+ g)

−vm
gi

km + gi
, (12)

τ j
∂ J

∂τ
= kinh

kinh + εi
− J, rm = gi

km + gi
(13)
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Table 1. Standard parameter values of the model for insulin secretion.

Fixed by experiment Vm 0.24 mM min−1

Km 9.8 mM
Vs 0.034 mM min−1

Ks 0.13 mM min−1

V1 120.0 mM min−1

K1 1.4 mM
V2 32.0 mM min−1

K2 17.0 mM
L 0.01 mM min−1

Dg 6.6× 10−6cm2 s−1

DI 2.1× 10−6cm2 s−1

Experimentally variable V 3.8 mm min−1

Lbed 0.3 mm
G0 5–22 mM

Estimated (not known) Kinh 1× 10−6 mM
Ki 4.0× 10−5 mM
τJ 20 min

for 0 < y < 1, with g(0, τ ) = g0, and i(0, τ ) = 0.
The analysis of this model that follows is based on the assumption that ε is small,

in the range of 10−1–10−4. Physically, this means that the flow rate is large and/or
the length of the reactor bed is small. With ε small, we expect ∂g

∂y to be small, in
which case g = g0, to leading order in ε. Also, because ε is small, i equilibrates
rapidly in τ , so that i can be taken to be in quasi-equilibrium. The resulting reduced
system of equations is

∂i

∂y
− δ

∂2i

∂y2
= r4

m + l4

r4
m + k4

s + l4
, rm = gi

km + gi
, (14)

∂gi

∂τ
= v1

(g0 − gi )

(k1 + g0)(k1 + gi )

εi

ki + εi
+ (g0 J m − gi )

(1+ g0)(1+ gi )
− vm

gi

km + gi

≡ f (gi , J, i), (15)

τ j
∂ J

∂τ
= kinh

kinh + εi
− J, (16)

for 0 < y < 1, with i(0, τ ) = 0. Notice that it is incorrect to set ε = 0 in (15)
or (16) since ki and kinh are both significantly smaller than ε in the experimental
parameter range.
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3. STEADY STATE ANALYSIS

In this section we examine the model equations (14)–(16) in the case of no
diffusion by setting δ = 0 in equation (14), and show that there is a unique stable
steady state solution.

To show that there is a unique steady state solution, we set derivatives with
respect to τ to zero, finding

∂i

∂y
= r4

m + l4

r4
m + k4

s + l4
≡ rs(gi ), rm = gi

km + gi
, (17)

0= v1
(g0 − gi )

(k1 + g0)(k1 + gi )

εi

ki + εi
+ (g0 J m − gi )

(1+ g0)(1+ gi )
− vm

gi

km + gi
, (18)

J = kinh

kinh + εi
= J∞(i). (19)

It is clear from (15) that gi cannot exceed g0, since ∂gi
∂τ

< 0 if gi = g0. Observe
that (18) can be solved to find J m as a function of gi and i ,

g0 J m = gi + (1+ g0)(1+ gi )

v2

(
vm

gi

km + gi
− (g0 − gi )

(k1 + g0)(k1 + gi )

εi

ki + εi

)

≡ H(gi , i). (20)

The function H(gi , i) is a monotonically increasing function of gi for each fixed i ,
and H(0, i) < 0 while H(g0, i) > g0. Thus, the equation

g0 J m
∞(i) = H(gi ; i) (21)

has a unique solution gi = h(i), for each positive i . It follows from (17) that there
is a unique solution profile i(y) with i(0) = 0 which is monotonically increasing
in y and satisfies the differential equation

∂i

∂y
≡ rs(h(i)), i(0) = 0. (22)

Sketches of the steady profiles of insulin and internal glucose are shown in Figs 1
and 2. It is apparent from these that the uptake of glucose in different regions of
the reactor is by different mechanisms. At the front end of the reactor (near x = 0)
where there is little insulin, the GLUT-2 receptors are most active. As insulin
increases down the reactor, however, these receptors are inhibited and GLUT-1
receptors are activated, so that at the far end of the reactor (near x = 1) the uptake
of insulin is entirely through GLUT-1 receptors.
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Figure 1. The steady distribution of insulin i(y) for three different values of glucose
g0 = 1.0, 2.0, 3.0.

3.1. Linear stability. The goal of this section is to establish conditions under
which the unique steady state solution is linearly stable. First, it is easy to see that
the steady solution is stable if ε is sufficiently small. In the limit of small ε, the
dynamics become trivial,

∂i

∂y
= r4

m + l4

r4
m + k4

s + l4
, rm = gi

km + gi
, (23)

∂gi

∂τ
= (g0 J m − gi )

(1+ g0)(1+ gi )
− vm

gi

km + gi
, (24)

τJ
∂ J

∂τ
= 1− J, (25)

so that J → 1, and gi → constant, independent of i , a boring (non-oscillatory)
solution.

Physically, it makes intuitive sense that the system should be stable if ε, which
is inversely proportional to the flow rate, is small, since then all insulin that is pro-
duced is rapidly removed from the reactor. In this parameter regime, the GLUT2
transporters never inactivate and the GLUT1 transporters never activate.

For a more general stability analysis, we linearize the system (14)–(16) about the
steady state, finding the linear system

∂u

∂y
= αv, (26)

∂v

∂τ
=−βv + γ u + δw, (27)
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Figure 2. The steady distribution of internal glucose gi (y) for three different values of
external glucose g0 = 1.0, 2.0, 3.0.

τ j
∂w

∂τ
=−ηu − w, (28)

where

α = ∂rs

∂gi
, (29)

β =− ∂ f

∂gi
= v1

1

(k1 + gi )2

εi

ki + εi
+ 1+ g0 J m

(1+ g0)(1+ gi )2
+ vm

km

(km + gi )2
,

(30)

γ = ∂ f

∂i
= v1

(g0 − gi )

(k1 + g0)(k1 + gi )

εki

(ki + εi)2
, (31)

δ = ∂ f

∂ J
= mg0 J m−1

(1+ g0)(1+ gi )
, (32)

η =−∂ J∞(i)

∂i
= εkinh

(kinh + εi)2
(33)

evaluated at the steady solution i(y). Thus, each of these parameters are functions
of y. Notice also that each of these parameters is positive.

We simplify this linear system somewhat by introducing the variables

V = αv, W = w

η
, σ = τ

τ j
(34)

yielding the linear system

∂u

∂y
= V, (35)
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∂V

∂σ
=−aV + bu + cW, (36)

∂W

∂σ
=−u −W, (37)

subject to the boundary condition u(0, σ ) = 0, where a = τ jβ, b = τ jαγ ,
c = τ jαδη.

Now we construct a Lyapunov function for this system. Notice that

∂

∂σ
((a + 1)V 2 + 2cV W + bcW 2) = −AV 2 − BW 2 + CuV, (38)

where A = 2(a + 1)a, B = 2c(b − c), and C = 2(a + 1)b − 2c. Observe that∫ 1

0
CuV dy =

∫ 1

0
Cuuydy

= 1
2C(1)u2(1)− 1

2

∫ 1

0
Cyu2dy

= 1
2C(1)

(∫ 1

0
V dy

)2

− 1
2

∫ 1

0
Cy

(∫ y

0
V dξ

)2

dy, (39)

and invoking the Schwarz inequality, we find∫ 1

0
CuV dy ≤ 1

2C(1)

∫ 1

0
V 2dy + 1

2

∫ 1

0
|Cy|dy

∫ 1

0
V 2dy

= 1
2

∫ 1
0 DV 2dy, (40)

where

D = C(1)+
∫ 1

0
|Cy|dy. (41)

Integrating (38), we find that

d

dσ

∫ 1

0
((a + 1)V 2 + 2cV W + bcW 2)dy =−

∫ 1

0
(AV 2 + BW 2)dy +

∫ 1

0
CuV dy

≤ −
∫ 1

0

((
A − 1

2 D

)
V 2 + BW 2

)
dy.

We now have a proof of stability if:

(i) the Lyapunov function

L =
∫ 1

0
((a + 1)V 2 + 2cV W + bcW 2)dy (42)

is positive definite,
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(ii) A > 1
2 D for all y, and

(iii) B > 0 for all y,

since then, d L
dσ
≤ 0 whenever L > 0, which implies that L → 0 as σ →∞.

The Lyapunov function is positive definite whenever

b(a + 1) > c, (43)

and B > 0 whenever

b > c. (44)

Clearly, (43) is satisfied whenever (44) is satisfied.
Notice that a, b and c are all proportional to τ j , so that (43) is satisfied for large

enough τ j . Notice also that both γ and η are proportional to ε and so vanish in the
limit that ε → 0. It follows that D is small whenever ε is small, so that a > 1

2 D
for all sufficiently small ε. Thus, we have stability for all small ε, provided b > c,
or equivalently, provided γ > δη.

In Fig. 3 is shown a sketch of γ − δη for g0 = 1.0 and ε = 4.9 × 10−3, and all
other parameters as in Table 2. Unfortunately, for these parameter values, γ − δη

is not strictly positive, and so the proof of linear stability given here fails. There
are several possible ways to salvage something. The first is to change the model
equations slightly so that the proof of stability works. This is not particularly
difficult to do, since the failure of the proof to apply is due to the sensitivity of
J∞ to i for small values of i . Since the function J∞ is not known, changing it
slightly has little effect on the faithfulness of the model to known reality. Here,
the function J∞ was used solely because it is the same as was used in Maki and
Keizer (1995). The second way to assess the stability of the steady solution is
with extensive numerical simulations. Indeed, numerical simulations verify that
the steady solution is stable, so we take this as satisfactory evidence for stability.

4. DIFFUSION

It appears that to obtain oscillations, one must include diffusion. Thus, we
consider the model system

∂i

∂y
− δ

∂2i

∂y2
= r4

m + l4

r4
m + k4

s + l4
≡ rs(gi ), rm = gi

km + gi
, (45)

∂gi

∂τ
= v1

(g0 − gi )

(k1 + g0)(k1 + gi )

εi

ki + εi
+ (g0 J m − gi )

(1+ g0)(1+ gi )

−vm
gi

km + gi
, (46)

τ j
∂ J

∂τ
= kinh

kinh + εi
− J, (47)
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Figure 3. γ − δη as a function of y for g0 = 1.0 and ε = 4.9× 10−3.

for 0 < y < 1. Our first challenge is to determine appropriate boundary conditions
for i .

Outside the interval 0 < y < 1, i must satisfy ∂i
∂y − δ ∂2i

∂y2 = 0. Solutions of
this equation are of the form i = A + Bey/δ. The only solution with i bounded as
y → ∞ is i = A, so we must have ∂i

∂y (1) = 0. For y < 0, however, all solutions
are bounded, so we simply require i(0) = δ ∂i

∂y (0).
Now consider the solution of the equation

∂i

∂y
− δ

∂2i

∂y2
= rs (48)

subject to these boundary conditions, in the limit that δ is large. We let α = 1/δ

and write
∂2i

∂y2
= α

(
∂i

∂y
− rs

)
(49)

subject to
∂i

∂y
(0) = αi(0),

∂i

∂y
(1) = 0. (50)

Now a power series expansion in α, i = i0 + αi1 + O(α2) yields the hierarchy of
equations

∂2i0

∂y2
= 0,

∂i0

∂y
(0) = 0, i0

∂i

∂y
(1) = 0, (51)

∂2i1

∂y2
= ∂i0

∂y
− rs,

∂i1

∂y
(0) = i0(0),

∂i1

∂y
(1) = 0. (52)
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Table 2. Standard nondimensional parameter values for the model of insulin secretion.

Fixed by experiment vm
Vm
V2

0.0075

km
Km
K2

0.58

l L
Vm

0.04

ks
Ks
Vm

0.54

k1
K1
K2

0.08

v1
K1V1
K2V2

0.31

Experimentally variable ε
V2 Lbed
V K2

g0
G0
K2

0.5–1.5

δG
DG K2
V2 L2

bed

δ
DI

V Lbed

Estimated kinh Kinh
V2

K2Vs
5.5× 10−5

ki
Ki V2
Vs K2

2.2× 10−3

τ j τJ
V2
K2

37.6

The solution of the first of these is clearly i0 = constant. Then, from the second we
learn that

∂i1

∂y
= −

∫ y

0
rsdy + i0, (53)

and the requirement that ∂i1
∂y (1) = 0 implies that

i0 =
∫ 1

0
rsdy. (54)

Notice, however, that if i is well approximated by a constant, then gi is nearly a
constant also, in which case rs is constant, i0 = rs(gi ), and the system reduces to

dgi

dτ
= v1

(g0 − gi )

(k1 + g0)(k1 + gi )

εi

ki + εi
+ (g0 J m − gi )

(1+ g0)(1+ gi )
− vm

gi

km + gi
, (55)

τ j
d J

dτ
= kinh

kinh + εi
− J, (56)

where

i = gi

km + gi
, (57)

which is the system studied by Maki and Keizer (1995).
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Figure 4. Phase portrait for the two variable system (55)–(56), shown with g0 = 0.9. The
nullclines d J

dt = 0 and dgi
dt = 0 are shown as long and short dashed curves, respectively.
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Figure 5. Curve of Hopf bifurcation points for the ode system (55)–(56) in the g0–ε

parameter plane.

The observation of Maki and Keizer is that this system has periodic solutions
which arise from Hopf bifurcations. The reason for these Hopf bifurcations is
clear, revealed by a phase portrait.

In Fig. 4 is shown a phase portrait for this system with g0 = 0.9. The nullclines
d J
dt = 0 and dgi

dt = 0 are shown as long and short dashed curves respectively, and
the periodic solution is shown as the solid curve.

Because of the ‘N-shaped’ nature of the dgi
dt = 0 nullcline, we expect there to

be two values of g0 at which there are Hopf bifurcations. That this is the case is
verified by Fig. 5, wherein is shown the curve of Hopf bifurcation points plotted
in the g0 versus ε parameter plane. The significant feature of this plot is that for a
finite range of positive ε, there are two Hopf bifurcation points. For values of g0

between these, the two variable system has a stable periodic solution.
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Figure 6. Curve of Hopf bifurcation points for the pde system with δ = 1.0 in the g0–ε

parameter plane.
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Figure 7. Curve of Hopf bifurcation points for the pde system with δ = 0.25 in the g0–ε

parameter plane.

This two variable system was found as the limiting system in the limit of large δ.
Therefore, we expect this same behavior to occur for the pde system with δ finite,
even though a phase portrait for the pde system cannot be drawn. That this is the
case is shown in Figs 6 and 7, where the curves in the g0–ε parameter plane at
which there is a Hopf bifurcation are shown. In Fig. 6, δ = 1.0 whereas in Fig. 7,
δ = 0.25. Notice that the size of the region in which there are periodic solution
decreases as δ becomes smaller. (All of the computations in this section were done
using AUTO97 (Doedel et al., 1997).)

A second way to examine the Hopf bifurcations of this system is in the g0–
δ parameter plane, holding ε fixed. Slicing the Hopf bifurcation surface in this
way, there are two characteristic behaviors. For ε sufficiently large, curves are as
depicted in Fig. 8, while for smaller values of ε they are as in Fig. 9. In Fig. 10 is
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Figure 8. Hopf bifurcation curve in the g0–δ parameter plane with ε = 2.3× 10−3.
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Figure 9. Hopf bifurcation curve in the g0–δ parameter plane with ε = 1.5× 10−3.

shown the boundary of Hopf bifurcation points in the δ–ε plane. Above this curve
the system has stable oscillatory solutions, whereas below this curve the steady
solution is stable and there are no oscillatory solutions. This region actually has
two boundaries but because of the scale the leftmost boundary cannot be seen in
Fig. 10. For this reason, a blowup of the same region is shown in Fig. 11. From
this plot it is apparent that the steady solution is stable and there are no oscillatory
solutions if δ is sufficiently small, less than about 0.1.

5. CONCLUSION

In this problem there are two parameters that determine the behavior of the
system. In the limit ε → 0 (the flow dominated limit) the dynamics are trivial,
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Figure 10. The boundary of Hopf bifurcation points in the δ–ε parameter plane.
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Figure 11. Blowup of the boundary of Hopf bifurcation points in the δ–ε parameter plane
near the ε = 0 axis.

approaching a stable steady state. Furthermore, with no diffusion, there are no
oscillations for any value of ε. In the limit δ → ∞ (the diffusion dominated
limit), there is oscillatory behavior for g0 in the right range. Furthermore, there
are oscillations for ranges of g0 with large enough diffusion, provided ε is not too
small. Thus, oscillations occur when there is sufficient diffusion to adequately mix
the concentrations in the reacting layer of cells. If there is insufficient mixing (as
occurs with very high flow rates), then the oscillation is inhibited. That oscillations
are inhibited at high flow rates is to be expected for the simple reason that upstream
cells cannot know what downstream cells are doing, and so upstream cells cannot
be inhibited by high levels of insulin that are only experienced by downstream cells.

Having observed that sufficient diffusion is required for insulin oscillations, we
are faced with an unresolved dilemma. Using reasonable estimates for the exper-
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imental parameters Lbed and V , and a reasonable diffusion coefficient for insulin
(see Table 1), we estimate that δ = 1.8 × 10−4, a number that is far too small to
induce diffusion driven oscillations in this model. (Numerical solutions suggest a
lower bound for δ on the order of 0.1.) In other words, adding physically realistic
diffusion to the model does not account for the observed oscillations. However,
a further dilemma is that without diffusion it is difficult to understand how the
cellular oscillations can be synchronized across the reactor bed, which was 0.5
cm in radius. Perhaps the fluid dynamics of the reactor bed was much more
complicated than is assumed in this simple model, and diffusion was substantially
enhanced by fluid mixing, but the observation stands that insulin oscillations cannot
occur in a flow reactor unless there is sufficient diffusion (mixing) to overcome the
unidirectional flow.
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