CHAOS

Stability conditions for the traveling pulse:
the restitution hypothesis

Eric Cytrynbaum?

VOLUME 12, NUMBER 3

SEPTEMBER 2002

Modifying

Institute of Theoretical Dynamics, University of California, Davis, California 95616

James P. Keener

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
(Received 6 November 2001; accepted 9 July 2002; published 23 August 2002

As a simple model of reentry, we use a general FitzHugh—Nagumo model on @rihg singular

limit) to build an understanding of the scope of the restitution hypothesis. It has already been shown
that for a traveling pulse solution with a phase wave back, the restitution hypothesis gives the
correct stability condition. We generalize this analysis to include the possibility of a pulse with a
triggered wave back. Calculating the linear stability condition for such a system, we find that the
restitution hypothesis, which depends only on action potential duration restitution, can be extended
to a more general condition that includes dependence on conduction velocity restitution as well as
two other parameters. This extension amounts to unfolding the original bifurcation described in the
phase wave back case which was originally understood to be a degenerate bifurcation. In addition,
we demonstrate that dependence of stability on the slope of the restitution curve can be significantly
modified by the sensitivity to other parametédmscluding conduction velocity restitution We
provide an example in which the traveling pulse is stable despite a steep restitution cug@020
American Institute of Physics[DOI: 10.1063/1.1503941

The question of spiral and scroll wave breakup has re-
cently received increased attention in the discussion of
the onset of fibrillation. A theoretical understanding of
the transition from ventricular tachycardia to ventricular
fibrillation is currently being constructed in terms of the
loss of stability of a steadily rotating spiral or scroll wave.
While numerical simulations of cardiac tissue models are
capable of demonstrating spiral and scroll wave breakup,
there is no consensus as to exactly what determines the
loss of stability. Although several candidates have been
proposed— (see Ref. 5 for a recent reviey in the work
presented here, we focus on one in particular, the restitu-
tion hypothesis. In the last few years, this hypothesis has
gained credibility through experimental advances>® nu-
merical simulations®° and analytical results'**? and is
being promoted as the new touchstone for anti-
arrhythmic drugs. >3 Courtemancheet al., in particular,
demonstrated the validity of the hypothesis for a simple
model of reentry. However, the stability result in that pa-
per hints at the main problem with the hypothesis. First,
the bifurcation through which stability is lost is degener-
ate (an infinite dimensional Hopf bifurcation), meaning
that the hypothesis lacks robustness and might fail for
slightly more complicated systems. Second, two physi-
ological properties, action potential duration (APD) res-
titution and conduction velocity (CV) restitution, are the
two main physiological parameters that play an impor-
tant role in the stability calculation but one of them (CV
restitution) drops out of the final stability condition. In
the present study, we “unfold” the bifurcation, deriving a
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more general stability condition which reintroduces the
dependence on conduction velocity restitution and gives a
modified restitution hypothesis. An example illustrates
the extent to which the modified restitution hypothesis
deviates from the original one.

I. INTRODUCTION

The principle assumption underlying the restitution hy-
pothesis, first adopted by Nolasco and DaHféis that the
duration of an action potentiglAPD) for a single cell is
dependent on the preceding recovery period or diastolic in-
terval (DI) only. The function relating APD to DI is called
the APD restitution curvésometimes simply the restitution
curve and, assuming the cell experiences a periodic stimu-
lus, can be used to define a map from the previous APD to
the next APD. The magnitude of the derivative of this map at
the fixed point determines the stability of the fixed point; less
than unity implies stability with instability otherwise. This
derivative condition is referred to here as tlstitution con-
dition.

The restitution hypothesis proposes that the stability not
only of isolated cells but also of reentrant signals is deter-
mined by the restitution condition. That is, if the slope of the
restitution curve is greater than unity for a steady periodic
signal then that signal is unstable. It is thought to be relevant
in a wide range of contexts including a pulse propagating on
a ring of tissue as well as spiral and scroll waves in higher
dimensions.

It should be noted that the problem of defining the res-
titution curve for a given system is not a trivial problem. For
the simplest case of an isolated cell undergoing periodic
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stimulus, one must decide when a cell is excited and when ieast in regions close to the core. The absence of the effects
is recovering. Choosing a cutoff transmembrane potential alef spatial coupling in the model proposed by Courtemanche
lows for a clear designation but the resulting restitution curveet al. has been addressed in other studies by modifying the
can be cutoff dependefit.Moreover, the restitution curve integral-delay equation from Ref. 11 through the addition of
may not be well defined in the sense that one value of Dan APD coupling term® Here, we return to the derivation of
might correspond to two different values of APD as has beetthe integral-delay equation, this time allowing for the pres-
observed previousht Fortunately, in theoretical studies ence of a triggered back, and proceed to derive a map that
where the excitable system is composed of a fast and a slogeneralizes the integral-delay equation. In this way, the effect
subsystem (as in FitzHugh—Nagume this problem is of coupling is carried through from the original PDE and not
(mostly) avoided. Cardiac cells appear to behave similarly. added to the derived model after the fact.

For an isopotential isolated cell satisfying the principle ~ Using this map, we derive a stability criterion for a
assumption of APD dependence and subject to an extern&itzHugh—Nagumo pulse on a ring with a triggered wave
periodic stimulus, the restitution condition is the correct con-back. As with the phase wave case, when the condition for
dition for stability of the steady response. Nolasco andhe loss of stability and the restitution condition coincide, the
Dahlen* Guevaraet al,*® and, more recently, Yehiat al'®  bifurcation is degenerate in the same wap infinite dimen-
among others use this approach to understand the appeararséenal Hopf bifurcation However, for a generic choice of
of alternation in the APD of a cell under periodic stimulus. parameter values, the loss of stability is through a one-

However, when such cells are coupled together to form glimensional Hopf bifurcation which is consistent with the
ring or a sheet, the coupling can influence the internal dynhumerical observation that APD coupling breaks the degen-
namics so that restitution is no longer a property of indi-eracy of the bifurcation? Furthermore, the stability condi-
vidual cells. Thus, there are two types of systems that can péon deviates from the restitution condition and a dependence
studied—those for which coupling héamosj no influence  On conduction velocity restitution is introduced. This new
on repolarization and those for which it does. The former arétability condition generalizes the restitution condition but
characterized by having a phase wave for a wave back whilgomplicates the question of how to “stabilize” an unstable
the latter are characterized by having a trigger wave for deentrant rhythm. Readers not interested in the details of the
wave back. The designatiophase wavein contrast with  stability calculation can refer to the derived stability and in-
trigger wave refers to the fact that repolarization occurs ac-Stability criteria at the end of Sec. Il for a summary of the
cording to a cell's internal “excitation clock” rather than by Main results and skip to Sec. Ill for a relatively self-
being triggered by its repolarized neighbors. contained discussion of the results.

With this in mind, it should be clear that for reentrant
S|g'nals pro.p'aga.tlng t.hrough tissue, the ng|d|ty of the restl-“_ THE SINGULAR FITZHUGH-NAGUMO SYSTEM
tution condition is a bit more subtle. Early in the last century,

Mines observed reentry in a “one-dimensional” ring of car- A. Reduction from FitzHugh—Nagumo

diac tissué'’ Several studies have focused on this simple  \ye pegin with the FitzHugh—Nagumo system on a ring
model of reentry to draw conclusions about the nature of the lengthLL

“alternans” instability>8 building an argument in favor of ’

t_he r_estitution hypothe_s_is which _claims the restitution conc_ji— c ‘9_0 _ 2 ‘9_202 i o.W), 1)
tion is the correct stability condition. One of the few analyti- ar X

cal results on the problem of stability of reentry added much

credibility to the hypothesis. Courtemanckéal. demon- —W=g(v,w), )
strated that the restitution condition is the correct stability — 97

condition for a FitzHugh—Nagumo pulse on a ring in the o ov

singular limit with a phase wave for a wave back. Despite  v,— ,W|,—g=v,— ,W|x=( ,
this apparent progress toward establishing the restitution hy- X X
pothesis, the Courtemanche result hints at its underlyingvhere space has been scaled by the space constant of the
weakness. Its narrow contexsingular wave front, phase medium so that is measured in nondimensional units. We
wave back and the nature of the bifurcation through which assume thaf has three zeros;_(w), vo(w), anduv, (W),
stability is lost(an infinite dimensional Hopf bifurcatigrare ~ for eachw in some bounded interval(,n ,Wma) and only
signs of a degenerate phenomenon. Does the restitution hgne zero forw outside of that intervalthe standard cubic-
pothesis still hold for slightly different systems?—the non-like function). g is chosen so that the system has a single
singular case?—a triggered wave back instead of a phaspatially homogeneous stable solution atvw) = (v _(0),0)
wave? (see Fig. 1 for the phase plane

In an attempt to better understand the restitution hypoth-  In order to formally reduce the problem to a discussion
esis, we examine the same system but with a triggered baak¥ the movement of fronts and backs, we take the limit
instead of a phase wave bad¢R technical discussion of the —0. This limit is singular and must be analyzed in two dis-
difference between a phase wave back and a triggered wavimct scalings. The outer scaling is the one given ab@et-
back is given in the AppendixThe relevance of this change ting e=0 in Eqg. (1)) and indicates that the transmembrane
to cardiac tissue is that an argument can be made for theotential,v, resides on one of two stable solution branches,
predominance of triggered wave backs in spiral waves, at . (w) or v_(w), of the equationf(v,w)=0. We refer to
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FIG. 3. Schematic plots of the positions of the frogi(r) (solid line), and
the back,¢,(7) (dashed ling The appropriatav dynamics between the
- curves are specified hy, (shaded regionandg_ (unshaded region

FIG. 1. The phase plane for a general FHN model. The nuliclingofw)  taking values between one and the number of layeeses-
Is labeled by its three branches, (W), vo(W), andv.(W). g(v.w) IS garily even. In addition, we must specify the statexcited
usually taken to be linear. . ’ .
or recovering of the system on the intervals between layers.
Thus, the singular FitzHugh—Nagumo dynamics are de-
v (w) as the excited branch and to (w) as the recovery scribed by
branch. Evolution ofv on these branches is described by Eq.

w
(2) wherev is replaced by the appropriate branch value ﬂ—(x,r)=g(ui(w),w), (4
T
(v4(w) orv_(w)).
The inner scaling is found by rescaling both time and ¢i'(T)=(—1)iC(W(¢i 7)), (5

space by a factor of. Taking the limite—0 in this scaling , ) ,
gives a bistable equatigfunctions of the inner variables are Wherex, ¢i(r) e[OL] with the end points of that interval

denoted with capital letters ider)tified. The sign in Eq(5) assumes t_h_at the origi_n is
5 excited or, more precisely, that the transition layerpatis
N _ IV oriented such that the interval to its left is excited and the
—=—+f(V,W), 3 e riht i -
a9z one to its right is recovering.

whereW is constant on the fast time scale giventbyThe V\I/Eque\:lon (I‘? isls oggilbyle Y{ﬁ!‘: arorsoxqv((f(tiTr)ﬁg
existence and stability of traveling waves to such an equatiovr%v (( (m")" )mjx\)N <0 cht the back becomes a phase \’Nave
is well known forW in the bistable interval® These travel- $(7),7) = Wnax P

ing waves play the role of transition layers from the excited,f:f:sttgg %pﬁr?ggrlxsgi)imorgfoan purlgzew\?tlﬁvaast’riw ee?:;j 'E;Ck
branch to the recovery branch. Thi¢ value at a transition Y P 99 '

: N we assume the phase wave scenario never arises.
layer determines the speed and direction of that layer, allow- P

ing for the definition of the speed functioo(W). Note that

this speed function is implicitly a function df An example

of a speed functiong(W), calculated explicitly, is given for Being interested in stability of the traveling pulse, we

f(v,w)=v(1l—v)(v—21/10)—w in Fig. 2. begin with the SFHN systemEgs. (4) and (5)), with two
The state of the singular FitzHugh—Nagumo systemransition layers, a front ap; and a back atp,, both trav-

(SFHN) can be expressed in termsw({x,7) and the loca- eling to the right:

tion of all transition layers which we denote ly(7) with i

B. The system as an iterated map

W j—
E(X1 T) - g(U i(W),W),

25r
Al $1(7)=—c(W(¢py1,7)),
. $3(7)=C(W( b2, 7).
5 1t In the first equation,v(w) is used on the interval
2 (p1(7),9(7)) andv_(w) is used on the complementary
& 0.51 interval (¢,(7),®1(7)) (see Fig. 3 for clarification
- 0 : ¢1(7) is the location of a front\ is relatively low that
%_0 5l Y max goes from the upper to the lower branch with increasing
' and ¢,(7) is the location of a backw is relatively high
-1r facing in the opposite direction.
_15t Our goal is to replace this system of equations with an
iterated map for which the traveling pulse is a fixed point and
-2f \ : : \ : : ) stability analysis amounts to calculating the eigenvalues of
0 02 04 06 08 1 12 14

the linearization of the map at this fixed point. One approach
is to calculate¢,(7) and ¢,(7) from a given initial condi-
FIG. 2. The speed function for cubf¢v,w). tion from 7=0 until the time at which each returns to the

w
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point at which it started. Continuing, one could calculate
these functions through a second rotation and so on. A map
can be defined fromd; , ¢,) on one rotation to ¢, ¢,) on
the following rotation. In Fig. 3, this would mean defining a G.,.(C)
map that has the first continuous segmentgofand ¢, as \o
input and the second continuous segments as output. The
difficulty with this map is that the argument is a pair of |
functions W_hose domain cannot be specified in advance be- Cmin Cmax
cause the time required for the front and back to make one
full rotation may vary from rotation to rotation. To avoid this
difficulty, we invert these functions so that the interj/@lL ] G (o)
is the domain of the input functions on every rotation.

To be more precise, the map we define takes the pair
(T(x),t(0)) to thepair (S(x),s(0)) whereT(x) and S(x) FIG. 4. A schematic diagram of the+” and “ —" branch dynamics in
are the first and second arrival times of the front at the poine™$ ofc-essentially, the original formulation of the SFHN system turned

. . on it's side. On the %" branch, ¢ increases until it falls off at= 5. On

x, respectively, and(0) ands(0) are the first and second ¢« pranch, ¢ approaches the steady statecaf,
arrival times of the back ax=0. We assume tha#; is
piecewise monotone increasing and invert it to §ét) on
the inte.rvaI[O,L].(V\./ithout Io;s of generalityT(0)=0). We c(x,T(x))=— 1T (X).
can definet(x) similarly (by inverting ¢,) but we only re-
quire a Sing|e point,t(o)' which is found by So|ving Flndlng the time,t(X), at which the evolution o switches
#-(75)=0 and settingt(0)=7,. The set of all such pairs, branches, is a more complicated matter. Notice the apparent
(T(x),t(0)) with T(x) smooth, is the space on which the Paradox in that we need to knax) in order to know when
map is to be defined. Given an initial condition to the SFHN!0 stop usingG .. (c) in calculatingc. But to calculatet(x),
system, we can calculate the corresponding initial pointWe requirec(x,7) for an unknown stretch of time.
(T(x),t(0)). The evolution of the SFHN system can be The solution to this problem is to temporarily ignore the
translated into a map as describe in the remainder of thifact that the evolution ot switches branches d(x). At
section. each pointx, we allowc to evolve according t@ , until it

In general, the speed function for propagating transitiorfalls off the end of the excited branch. Integratio, 7) in
layers,c(w), is a monotone function for @w<w,,,, with ~ time from T(x) to the end of the branch, we get a curve
values in the rangécin,Cmad Where Cyini=c(0) andc,,  tmadX) that serves as an upper boundtéx) wheret,,,(x) is
’ZC(Wmax)- ThUS, instead of tracking] everywhere in space defined as the value affor which C(X,T) hits the end of the
and eva|uating: 0n|y at the |ayer5, we can derive an equa_branCh. Once this upper bound is eStabliShed, we can find
tion for ¢ everywhere in space and eliminatefrom consid- ~ t(x) by solving
eration. This amounts to k_eeping tra<_:k of refractqriness in t'(x)=1le(X,t(X)). 7
terms of potential propagation speed instead of using an ex-

plicit refractory variable. Taking derivatives with respectrto  NOte thatc(x,7) as calculated previously is only valid up to
we get 7=1(x) and must be redefined for values eft(x) once

t(x) is properly determinedsee Fig. 5.

Jc

_ A1 &W_ !
S-=C' (W) ——=c"(W)g=(W).

tmax (X)

] phase wave o
ST (09)

Monotonicity of c(w) guarantees that we can rewrite this as

o
-—‘—.‘
o

Jc o
e G.(c). (6) 7 :
T
‘‘‘‘‘‘‘ =", propagated » T(X)
Note thatG , (c) >0 for c<cax COrresponding to increasing L wave I
refractoriness while in the excited state, whse (c) <0 for .
c>Cpmin COrresponding to recoverigee Fig. 4 t(0) 1
At a point x, for times betweernr=T(x) and r=t(x),
the evolution ofc is determined bydc/dr=G (c). Pro-
vided only with T(x) andt(0), we aremissing two vital
pieces of information. First, we require an initial condition, 0 L
c(x,T(x)), for Eq. (6). Second, we do not know the time at X
which the evolution ofc switches from the “” branch to

the “—" branch (with the exception that at=0. we know FIG. 5. An illustration of the steps involved in calculating the map. The
the switch oceurs at=t(0)) ' slope of T(x) gives an initial condition foc(x,7) which is integrated until

.. . K X tmax @t Which time it falls off the “+” branch. t(0) is used as an initial
The initial condition is calculated frorii(x) using the  condition for integrating(x) which is defined by the integratiofriggered

fact that section$ or by t,,., (phase wave sections
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If t(Xg) =tmaxfOr somexy, Eq.(7) is no longer valid and P ( &)
the wave back switches from a triggered wave to a phase p ( {:‘)
wave. As we are interested in the case of triggered waves A 1
only, we assume(X) # t,ax for all x.

In a similar fashion, without the complication of phase
waves, we can follow the same procedure starting W(ix)
andS(0) (by periodicity,S(0)=T(L)) to find S(x) ands(0)
which we define, respectively, as the second arrival time of
the front atx and the second arrival time of the backxat

=0. } ; >
This multi-step calculation defines a map €0 - min &
F: T(X))'_) S(x) ) FIG. 6. Plots ofp;(£) andp,(&) with a unique intersection at, for the
t(0) s(0) CASEC ™ — Crin -

Notice that this map can be interpreted as a generaliza-
tion of the APD restitution curve in that it maps the APD at
one point €(0)—T(0)) to the next APD at that point ¢
(s(0)—5(0)). Of course, information from the whole ring S(o)zt(0)+f ——dc
(T(x)) is required to define the map making it much more G-(c)
complicated to characterizé.e., it is no longer a one- By periodicity, the front must be at=0 andx=L simulta-

dimensional map neously so thaB(0)=T(L)=L/c,. These requirements on
The traveling pulse solution can be represented by & implicitly define ¢, through

straight lineT(x) =x/cy wherecy is the traveling speed of

the pulse. The calculation @f, andt(0) is carried out in the © 1 "% 1 L
dc+ ——dc=—
Sec. liC. G.(c) G-(c) Co’

To find conditions under which a solution to this equa-
tion exists, we define the following two functions

C. The traveling pulse as a fixed point

L

Even if the traveling pulse has a triggered wave back, it  P1(é)= 7 £>0, (10
is possible that, after a perturbation, the back might tran-
siently convert to a phase wave. However, for small enough & 1 -¢ 1
perturbations of the traveling pulse, this ought not happen. P2(€) J G+(s)der J'g G,(s)ds (11
Thus, we need not worry about phase waves which allows
the expression of the map to be simplified enormously. ThéOr 0< §<Max(—Cmin,Cmay)- Note that p;(§)— as &
equation forc on the excited branctic/dr =G, (c), canbe —07", p1(§)—0 as¢é— and the functiorp,(¢) is mono-
used to derive a single equation fofx) without going tone decreasing for alt>0. Conversely,p,(0)=0 and

through the intermediate step of solving fox, 7): p2(£) is increasing for 6<¢. When integrating the second of
the two integrals in Eq(11), there are two possibilities.
t(X) —T(x)= fl"'(x) 1 c. @ The first possibility is that > —Cmin. In this casep,
~11' (0 G+ (C) is only defined up t&=—c,,, and has a singularity at that
Similarly, we can derive an equation f&¢x): point. In this casep; and p, intersect so that a traveling
’ pulse with a triggered wave back necessarily exiséz Fig.
S tx) = —us'y 1 © 6).
(X)~t)= wx G-(c) The second possibility is that, .= —Cnin in Which case

p, is only defined up tec,.. The existence of a traveling
pulse with a triggered back requirgs(Cma)>L/Cnax- We
can always choosk sufficiently small so that the wave back
is a triggered wave. For larde, the wave back is a phase
wave.

In either case, the value gfat the intersection gb, and
p, is the desired.

Summarizing, the first passage of the traveling pulse
takes the form

Thus, givenT(x) andt(0) we can use Eq¥8) and (9) to
find t(x) andS(x), respectively. Notice that these two equa-
tions are integro-differential equation of a peculiar type.

The traveling pulse can be expressed ) =x/cg
where the traveling speed, is not yet known. The map
F:(T,t(0))—(S,s(0)) must giveS(x)=T(x)+L/cqy so the
pulse is a fixed point up to some spatially uniform shift
(L/cg). To completely determine the pulse we must calculate
Co andt(0).

Becauset(x):t(O)+x/co, Eq. (8) requires that

11’ (0)
10)= J'llT '(0)G+(c) (C) f G

Similarly, from Eq.(9) we see that

.
(X _Coy
t* (x)= X +t
_CO 0
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while the second passage is given by

X L
S*(X):C—+C—,
0 0

s*(x)=i+i+to,
Co Co
where
to:fco dc
G+ (C)
andcg solves
fco de+f760;dc=£.
~¢,G+(C) o G-(¢)  Co

D. Stability of the traveling pulse

To determine the stability of the traveling pulse calcu-
lated in Sec. IIC, we perturi™*(x) and t, by a small
amount and determine the influence of the perturbation on

S(x),s(0),
T(X)=T*(x)+ €A(x),
t(x)=t*(x)+ ea(x)+O(€?),
S(x)=S*(x)+ eB(x)+O(€?),
S(X)=s*(x)+ eb(x)+ O(€?).

In fact, we are only required to specify(x) andt(0) but in

anticipation of the structure dfx) and S(x), we name the
resulting perturbations first and proceed to find expressions
for them. We seek the linearization d¥ which takes

(A(x),a(0)) to (B(x),b(0)).
Linearizing Eq.(8), we find that

a(x)= f Oxekl(s’x)(klA(s) —k,A’(s))ds+a(0)e "X,

where
G.(co) G.(co)
ki=———>0, ky=4———
! Cé 2 G.(—=c¢p)
Note that the initial data for the map requires béifx) and
a(0).
Similarly,

B(x)= foxekS(S*X)(k3a(s) —kja'(s))ds+A(L)e k&,

where

~ G_(—¢cp) ~G_(—c¢p)
T Y e

To determine the stability of the fixed poifitraveling

>0.

pulse, we look for eigenvalues and eigenfunctions of the
map by settingA(x) =e** anda(0)=a, where a might be

complex. For a perturbation of this formassuming «
#—Kkq,—k3), we get

a(x)=pBe™+(ap— B)e” v

Modifying the restitution hypothesis 793

where 8= (k;— ak,)/(k;+ «) and
B(X)=C(a)e™+C e XX+ Cze X,
where

k3—ak4 k3+ klk4

Cla)= = B, Cl=—k3_k1 (ap—B)

and
Cz=e*—C(a)—C;.
In order for @:X) to be an eigenvector, it must be that

eaX
Qp

B(Xx)
a(L)

The first component of this equation forc€s=C3;=0,
which meansa,= and C(a)=e“. Thus the eigenvalues
are of the formx =e“L where « satisfies the characteristic
equationC(a) =e“".

We rewrite the characteristic equation in terms of a new
set of parameters:

l—ahll—ahg_ ol 12
1+ah21+ah4_e ! ( )
where
2 2
C C
hy=——2>— hy=———,
G.(—co) G.(co)
hs= Cg h,= Cg
8 G.(co)' Y G_(—co)

Interpretation of these parameters, which play a central role
in determining stability, is addressed more carefully in Sec.
1.

Equation(12) determinesx (infinitely many valuesand
therefore the eigenvalueg,=e®". Stability requires that
IN|<1 for every eigenvalua, or equivalently Ref)<O0 for
every solutiona, to Eq.(12).

Note thata=0 is always a solution to Eq12) and
corresponds to the constant eigenfunction. This means that
the traveling pulse is unique only up to phase shifts, a result
of the fact that the SFHN system is autonomous.

A few facts aboutC(«) that will be useful in under-
standing stability should be stated at this point. Because
C(a) is the product of linear fractional functions with no
singularities in the the right half plari@cluding the imagi-
nary axig, the image of that region is a compact set. More-
over, because tif and 1h; are both positive, the origin is
covered(twice) by that region. This structure allows us to
restrict our analysis to the imaginary axis. In particular, if the
image of the imaginary axis undeZ(«a) lies completely
within the unit circle(except for the origin which maps to
one and is always a roptso does the entire right half plane.
Becausee® maps the right half plane outside the unit circle,
there can be no solutiory, to Eq.(12) with Re(@)>0 (see
Fig. 7). Alternately, if the image of the imaginary axis lies
completely outside the unit circle, there can be no roots of
the characteristic equation in the left half plane.
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Im(ct) Im(C(0)), Im(e™ ) ity can be lost either through a simplene-dimensional

\\ Hopf bifurcation or through an infinite dimensional Hopf

bifurcation. The conditions for an infinite dimensional Hopf

Re(c) ) Re(C()), bifurcation are
'\\ Re(eo‘) h2+ h2_h2+ h2
{ 1 37112 4

FIG. 7. A representation of the functio® «) ande® for values ofh;, i Recall that the bifurcation found by Courtemanetial. was

=1,2,3,4 satisfying the stability criterion. The image of the right half plane of the latter type.

underC(«) is shaded by lines with positive slope; the solid curve is the

image of the imaginary axis. Note the double cover of the origin. The image

of the right half plane undee® is shaded by lines with negative slope; the |||. DISCUSSION

dashed curve is the image of the imaginary axis. Clearly, there can be no

point in the right half plandaside from the originthat maps to the same A. Testing the restitution hypothesis
point under both functions.

(15

77

In the stability analysis of Courtemancheal,'! a simi-

lar characteristic equation was derived and it was found that
: . . . . . the slope of the restitution curve is the crucial determinant of
For the image of the imaginary axis to be contained "N stability. In articulardAPD/dDI< 1 is a necessary and suf-
side the unit circle we requirkC(iv)|?><1, where Labliity. In p: . . Y
ficient condition for stability of the traveling pulse. Although
- 1+ (h2+h3)v2+h?h3p* this dependence on the slope of the APD restitution curve
|C(iv)|*= 1+ (N2 o2+ h2hZps - might have been anticipated by the stability criterion for one-
dimensional maps, it is surprising that this factor alone plays
Clearly, the numerator and denominator agre@ &0 the same role in the more complicated context of the singular
which, as previously mentioned, is always a root of the chartimit of the PDE flow. Furthermore, Courtemanaéteal. find
acteristic equation. The following two stability conditions that when stability is lost, it is always through an infinite
describe the two possibilities for the rest of the imaginarydimensional Hopf bifurcation which, they note, is probably
axis (either inside or outside the unit cirgle not the case for the original PDE system. Motivated by these
Stability criterion The image unde€(a) of the imagi-  facts, we attempt to reinterpret our stability condition in
nary axis(excluding the origin lies entirely inside the unit terms of these restitution properties. We begin with a brief
circle (/C(iv)|?<1) if the following two conditions are sat- description of restitution and how it appears in the discussion
isfied: of stability in general.
h§+h§<h§+h§, For an isolate_d cell stir_nul_ated _at sufficie_ntly Iow_ fre-
(13) quency, _the duration of excna_tlo(ractlon potential duration
or APD) is steady from one stimulus to the next. If the pac-
ing frequency increases, the APD begins to alternate between
long and short time intervals. In the standard analysis, the
APD is assumed to be a function of the amount of time spent
recovering prior to a stimulughe diastolic interval or DI
This function is referred to as the restitution curve. Theory
predicts that the APD undergoes a period doubling bifurca-

hyhs<h,h,.

When the parametets;, h,, h;, andh, satisfy these con-
ditions, stability of the traveling pulse is guaranteed.
Instability criterion The image underC(«) of the
imaginary axigexcluding the originlies entirely outside the
unit circle (C(iv)|?>>1) if the following two conditions are

satisfied: : o :
tion when the restitution curve achieves a slope of one at the
h3+h2>h3+h3, fixed point.
(14 From the perspective of a single cell on a ring of coupled
hihz>hsh,.

cells, a steady pulse looks like the periodic stimulus in the
When the parameters satisfy these conditions, any noncoiisolated cell experiment. In this case, the period of stimula-
stant perturbation of the traveling pulse is amplifiafl but  tion is determined by the speed of the pulse and the size of
the trivial eigenvalue are greater than pne the ring. Although the coupling changes the dynamics, one is
To understand how stability might be lost, we examinetempted to think only in terms of isolated cell dynamig@s.
how roots of the characteristic equation cross from the left tdact, this is not such a bad approximation when the back is a
the right half of the complex plane. A crossing of any rootphase wave because the phase wave assumption amounts to
must correspond to some valuefor which |C(iv)|=1. At  assuming that repolarization is intrinsic to a cell and is not
this value ofv, driven by coupling. This assumption brings the PDE system
2. 1,2 12 12 2 202 1202 4 conceptually closer to the ordinary differential equation sys-
(h1+h3=hy=ha)v"+(hihg—hzhz)v"=0. tem and is essential to the results of Courtemaretha 1)
If this polynomial is not identically zero, there can be at mostFor a given set of parameters, each cell is excited for a pe-
one pair of conjugate roots of this equation. Thus, stabilityriod of time (APD) and recovering for a period of tim®I).
can be lost only through one pair of roots changing the sigrf the traveling pulse is steady, every cell has the same APD
of their real part or all roots changing the sign of their realand the same DI. Changing a parameter of the system gives
parts simultaneously. In the language of bifurcations, stabila different APD and DI. Each of these two quantities is ex-
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plicitly a function of the underlying parameters and thus it is 5
possible to derive an implicit relation between APD and DI.
We refer to this relation as the restitution curve despite the 4
subtle difference between it and its more dynamical relative
of the same name which describes the dynamic response of -
an isolated cell to stimulus. 2
It is important to point out at that this notion of restitu-

tion curve does not provide a dynamic description in the
sense that it does not predict how a pulse converges to a g
steady APD-DI pair; it merely describes the steady state 0
relationship. In fact, the mags;, defined in Sec. IIB gives
the dynamic relationship between successive turns of the
pulse. Despite this limitation, one can still test to see if the
condition dJAPD/dDI>1 corresponds to the loss of stability
of a traveling pulse. In the rest of this section, we calculate N _
the slope of the restitution curve for the reduced model exFIG. 8. Splitting up parameter space. The region below the dark gray sur-

. L h. ho h dh dd ' “"face is the region of guaranteed stability. The region above the light gray
pressing it in terms ohy, hy, hs, andh, an emonStra_te _surface is that of guaranteed instability. Above the white surface is the
that the correspondence between the slope of the restitutiaBgion predicted by the restitution hypothesis to give stability and below it is
curve and the loss of stability for the traveling pulse is notpredicted instability. The curve correspondshiovalues for the piecewise

; linear FHN model—notice the segment in the “stable but predicted un-
generic. Loy

. L . . stable” region.
Before calculating the restitution curve, a brief descrip-

tion of the parameterd);, will be useful. Recall the defini-

)

tions of h; :
5 5 ate increase in APD due to a slow region in the phase space
h.— Co G that was not accessed before the parameter change. The other
1"Gi(—co)’' % Gi(cy’ three parameters can be interpreted similarly.
5 5 We now return to the restitution curve calculation. Note
hae — Co o= — Co that APD and DI are both functions af. This allows us to
37 G.(c)’ Y G.(—cp° determine the derivative of APD with respect to DI implicitly
0 0 h h
. throughcy:
Referring to Eqs(8) and(9), APD can be expressed as 9gnCo
1 dAPD h;+h, dDI hs+h,
C = —_—
APD= f ° dc (16) dce ¢ ' de ¢
~¢,G+(c) (18
dAPD h;+h,
and DI can be expressed as aor " herh.
3 4
DI= J_CO ! dc. (17) With this quantity in hand, we can explore parameter space
e G-(¢) to test the restitution hypothesis. Motivated by the infinite

dimensional Hopf bifurcation found in Ref. 11, we begin

Interpreting th_e_sg parameters, we See thatand h, ith parameter values satisfying E(L5) (the case of an
measure the sensitivity of APD to changes in parameters of .. . : : . L

; . . Infinite dimensional Hopf bifurcation in our systénThese

the model measured in terms of their effect on propagation

speed;h; and h, measure the sensitivity of DI to similar bifurcation conditions are equivalent to

changesh,; andh, measure changes due to dynamics near (h;—hy)(h;+hy)=(hs;—h3)(hs+hs),

the wave front, whileh, and h; measure changes due to he—hoeh,—h

dynamics near the wave back. 12—l s
To illustrate, suppose we start with a particular set oflf the loss of stability corresponds to an infinite dimensional

parameters and the corresponding traveling pulse solutiotdopf bifurcation with h;#h, then dAPD/dDI =1. This

Making a slight change in some parameter of the model inseems to support the restitution hypothesis but has the same

duces a slight change in the traveling pulse solution and, inlegeneracy difficulties that were found in the case with

particular, its speed of propagation. Now, suppose lthaés  phase wave backs.

large. Our small parameter change generates a relatively In fact, there are parameter values for which the travel-

large change in the contribution of the integrand in Ed) ing pulse is stable witdAPD/dDI>1. To see that this is the

at the upper limit of integratiorithe wave back Thus, we case, Fig. 8 presents a plot of parameter space that shows the

might say that ith, is large then APD is sensitive to param- regions in question. By rescalirty , h,, hs, h, by h;, we

eter changes that influence late pre-repolarization dynamicseduce the dimension of the parameter space from four to

In an ionic model, this might manifest itself as a high sensi-three.

tivity in Ca®* current to changes in some underlying param-  The two surfaces in Fig. 8 represent two sets of inequali-

eter of the model. Another way to describe this is to say thaties. The restitution condition is represented by the gray wire

a small increase in some parameter leads to a disproportiomesh with the region above the surface corresponding to a
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tion velocity restitution describes the relationship between
L ] . . . . .
2000 o & propagation speed of a front and the preceding diastolic in-
° terval in much the same way as APD restitution relates APD
& to DI. Courtemanchet al. parameterize their system using
o ° these two properties so that their stability condition is ex-
15008 8 o 2 pressed in terms of them. The characteristic equation for
& 00 . . .. . .
APD - K their problem is similar to the one derived here. By assuming
Ooo o 8 that the wave back is a phase wave, they essentially assume
i o that APD and DI have zero sensitivity to parameter changes
looop o o . in the wave back. In fact, setting,=h;=0 in Eq. (12 we
& er s A get their characteristic equation,
o ° o O¥
o . R o l_BA/ C/ L
o =eX ,
5000 o° , ‘ , , , 1+ CTO'B
300 400 500 600 700 800
DI where
FIG. 9. APD restitution curves for piecewise linear FHN for three different I dAPD . hy+h; - E
values ofu (from bottom to top,u=3,5,7). Stars correspond to points at ~ dDl  hz+h, hy’
which the slope is less than one, open circles correspond to points at which
the slope is greater than one. Despite the open cir@ekieving slopes dcv CS cé

greater than eightall traveling pulses were found to be stable. = =ah

dDl  hyth, h, P=oMs

I . . (a rescaled eigenvalue

restitution curve with a slope less than one. We refer to this™ .0 “0pconved by Courtemanehal, that the im-
region as thepredicted stability regionThe region below the age of theyleft-hand side in the compl@plaﬁ’e is indepen-
gray surface is theredicted instability regionThe region ent of C', so that the bifurcation curve in th&’—C' pa-

below the white surface satisfies the stability criterion and?ameter s,pace is independent ©f with only the wave
thus corresponds to parameter values WhiCh. guarante(_a rfumbers of the eigenmodes depend@n Recall that this
stable traveling pulse. The surface corresponding to the ifurcation is degenerate in the sense that it is always an

stability condltl_on is located above the white surface but IS finite dimensional Hopf bifurcation.
left out for clarity.

As an example. we offer a familv of models which. for In reformulating the problem to describe the case of a
. pie, Wi . Y - ) iggered wave back, we have unfolded the degenerate bifur-
certain parameter choices, violates the stability predictions o

the restitution condition. This family demonstrates the exis. ation to reveal its generic structure. Using these restitution
i y ae - garameters, the general stability condition becomes
tence of a stable traveling pulse despite a restitution curv

with a slope significantly greater than one. 2 C’ )
Consider a piecewise linear FHN model with a differ- A <1+20_g(h2A —hy), (20)
ence in time scale on the upper and lower branches:
1—w h;A’<h,. (21
9+(W)=T, As mentioned, settindi,=h;=0 gives the restitution
(19) condition. Otherwise, the condition is modified by the CV
g-(w)=—w. restitution slope. To understand how this modified restitution

The values of,, hs, andh, parametrized by, holding condition differs from the original restitution condition, we

all other parameters fixed, are plotted in Fig. 8 as a solid®fer to the modified condition in its original form, EQL3),

curve. The curve remains in the stability region for all @nd the diagram in Fig. 10. , _,
(below the dark gray surfageverified numerically foru Suppose we start with a particular FHN system specified

€[1/100,400Q, but crosses into the predicted unstable regiorPy certain parameters which has a traveling pulse solution of
(below the white surfagefor ~1.634. Numerical simula- Unknown stability on the ring. As we change one of the pa-
tion of this family of FHN systems¢=3,5,7) with positive rameters, the pulse changes a_ccord_mg to the sensititities

e demonstrates that the traveling pulse is stable even fdf Fig- 10, we see an example in which the parameter change

restitution slopes greater than eigkee Fig. 9. sh(_)rtens the pre-excitation (_jynamids4x_ accel_erating the _
arrival of the front at each point on the ring while changes in

post-excitation dynamicsh() delay the arrival of the front
with the net effect being a delayh{>h,). At the back,
When trying to understand the dynamics of a complexrepolarization is also delayed becaulsg>h,. Referring

system, it is often useful to look for simple relationships thatback to the stability condition, we see that a pulse in this
describe important features of the system. APD restitutiorparameter regime is unstable.

and conduction velocitfCV) restitution are two phenom- Notice that the restitution condition captures this balance
enological (and experimentally measurapl@roperties of of sensitivities at the front but gets it reversed at the back.
cardiac tissue that are sometimes used in this way. Condud-hat is to say that a stabilizing influence at the babk (

B. “Generalizing” the restitution hypothesis
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v apparent wave of bobbing children is seen moving back and
\ forth along the swing-set. This wave is described as a phase
wave because the wave motion is not organized by coupling
but by the order in which the children are set in motion.
Now, if the children all reach out and hold hands, the nature
of their motion changes due to the influence each child has
on his or her neighbors. This modified wave of motion is a
ISR triggered wave. In the latter case, only the first child requires
pushing to set the whole group in motion.

In the context of excitable media, a wave front of exci-
tation cannot be a phase wave since the only means by which
excitation can occufwithout external stimulusis by cell—
cell coupling. On the other hand, a wave back can be a phase
FIG. 10. An action potential at a point on the ring showing the sensitivitiesygye for the simple reason that deexcitation might occur
(i) to parameter changes. because of intrinsic dynamics. It might seem like coupling
necessarily influences repolarization but in the context of the

~hy) corresponds to a steepening of the restitution curveSiNgular FitzHugh—Nagumo system, this dependence can be

Thus, the restitution condition is only a good approximationrelegated to higher order terms when solutions are expressed

to the stability condition when repolarization is insensitive toash_p?]Wﬁr ISGH;S '8. Tdhuz, we d.eflnefa phe}se_ wave ZS onedm
parameter changes. which theleading orderdynamics of repolarization depen

The question remains as to whether the restitution con®" intrinsic factors only and are not explicitly influenced by

dition is a good approximation in actual cardiac tissue. TOcoupIing.(This classification of waves has been addressed in

complement their analytical work which is revisited here,the c_ontext of the Belousoy—Zhabotmsk!l regctlon both
Courtemanchet al?! numerically tested the stability of the experimentally® and theoretically”) Physiologically, a

traveling pulse for the Beeler Reuter model. They found thaphase wave might be defined as one in which the repolariza-
as ring length is decreased, the length at which stability idion profile differs from that of an isolated cell by Ies_s then
lost is well predicted by the restitution condition. We have S°™M€ small percentagef order e). To see how these ideas

demonstrated that the restitution condition is an approximaP!@y Out in the singular FitzHugh—Nagumo system, we pro-
tion which for some systems might be highly inaccurate.ceed with a discussion of the inner layer dynamics governed
More importantly, by introducing dependence on the CV res-by Eq.(3).

titution curve, we provide an analytical description of the

source of the deviations from the restitution hypothesis2 The bistable equation

Thus, even though the restitution condition appears to be’
accurate for the Beeler Reuter model, a fuller explanation of  For 0<W<w,, EQ.(3) is a bistable equation meaning
this accuracy awaits a better understanding of the role ot has two spatially uniform stable solutions ((W) and
repolarization in stabilizing or destabilizing waves in spa-v_(W)). For such a system, the existence and global stabil-

—

h2
(ol

f-b
lw:

time

tially extended systems. ity of a traveling wave is well known. This traveling wave
has a characteristic speed, and shapeV(z—ct) which
ACKNOWLEDGMENTS satisfies lim_, ...V(z—ct)=v . (W) for all t. This conver-

gence result is true for each<ON<w,,, SO that we can

This research was supported in part by NSF Grant Nodefine the bistable speed functiar= c(W).
DMS-99700876(J.P.K) and funding from Fonds pour la This speed function determines the speed of propagation
Formations de Chercheurs et I'Aide a la Recher@B€).  for a jump discontinuity inv located ate$ with tissue at rest
E.C. is grateful to the Sir Isaac Newton Institute for provid- to the left and excited to the right and wii=w(,0). The
ing office space, resources, and an interactive research enypeed of a transition layer with reversed orientatitrrest to
ronment(including helpful discussions with A. Panfilpv the right and excited to the lefis given by —c(W). For

large values ofV (highly refractory tissug the propagation
APPENDIX speed for a transition layer is positive and large, correspond-
ing to propagation that deexcites or repolarizes tissue. Such a
wave is referred to as wave back Similarly, for W small,

In this appendix, we focus on some technical calculathe speed of propagation is large and negative corresponding
tions which are useful in understanding the difference beto propagation of excitation or depolarization, referred to as
tween a phase wave and a triggered wave. In nontechnicalwave front
terms, a triggered wave is one in which the spatial coupling  Notice that a wave back of this type €ON<wW )
of cells plays a role in the wave propagation. A phase wavdorces cells to repolarize earlier than they would if they were
arises from the coincidental coordination of intrinsic dynam-isolated. This is most easily seen in thew phase plane.
ics in neighboring cells. For example, imagine a group ofRepolarization of an isolated SFHN cell occurs when the cell
children on a set of swings, all in a line. If each child is reaches the upper end of the excited branch which M/ at
pushed in order, after all children have been set in motion, ar w,,,,; a traveling wave of Eq(3) forces the jump from

1. Phase waves and triggered waves
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U the proposed nearly positively invariant region for some suit-

ableW andc. The boundary of this region is formed by two

curves, theV axis and the traveling wave solution for the

chosen value o#V. TheV axis is actually th&/ nullcline and

betweerv _ (W) anduv (W), the vector field points into the

/ P\ W) positive quadrant. Betweeny(W) andv (W), the vector

v ('W) | VO(W) H * - field pomt_s in the opposite d|rect|_on and this mterval_ is the

- / only possible escape from the region under construction. The
’ second curve, which completes the boundary of the nearly

FIG. 11. Phase plane for E6A2) with W andc as described in the text. The ~ invariant region, is the traveling wavketeroclinig solution

solid curve is the traveling wave solution to Egh2) for W which is a  for parameter value8V and c(W). Note that this traveling

heteroclinic trajectory connecting the two saddle points. As the valeeé®f  wave is a solution of the systefd2) for c(W) and not for

inc_regsed from:(\_N)., the vector field changes f_rom tangential to inv_vard the chosen value of>c(W). To see the structure of the

pointing. TheV axis is theV nullcline. The vector field along the axis points .

inward between the lower two critical points and outward between the uppeyeCtor field along the second curve, note that the slope of the

two critical points. The dashed curve is the unstable manifold which always/ector field is given by

enters the contained region forc(W). du V(V—a)(V-1)

av ¢t au

excited branch to resting branch to occur at some value 0fnq is monotone decreasing @ This guarantees that the
W<Wy,a. Thus, a bistable wave back is a triggered wave. \gctor field, which is tangent to the curve for=c(W),

points inward along the curve far>c(W). Note that Fig. 11

I ) \

3. The degenerate bistable equation is the generic phase plane for any value WK wpg, for
o ) » which ¢(W)>0 and any value o€>c(W).
For W=w,, the analysis in the previous sectidim If the unstable manifold of the saddle at_((W),0) en-

particular, the convergence result from Ref) 2@ longer  ters the region, it can only exit along the line segment ex-
appllgs. The valu®V=w,,, is a bifurcation point for EQ(3) tending from ¢o(W),0) to (v (W),0). AS W— W, this

at which the upper two zeros d{v,w) collide (vo(Wmad line segment reduces to a point and the unstable manifold
=v+(Wmay) in @ saddle-node bifurcation. We refer to the necessarily forms a heteroclinic trajectory connecting the

single degenerate root as (Wmay)- Using the existence re- g5qdie at ¢_(Wpa),0) and the degenerate saddle-node at
sults from the analysis for the bistable ca¥g<{w,,,), we (v + (Wia),0).

extend the speed functiom(W), to the degenerate case  Ag the final step in demonstrating the existence of this
(W:Wmax)-_ ) ) infinite family of heteroclinic trajectories, we show that the

Changing to traveling coordinatey=z—ct, and as- nstaple manifold always enters the nearly invariant region
sumingV is a function ofy only (with V' denotingdV/dx),  for ¢>c(W). Forc=c(W), the unstable manifold is tangent
Eq. (3) becomes to the nearly invariant region. As in the case of the vector

V" +cV' +f(V,W)=0. (A1) field, the slope of the unstable manifold as it leaves the point
v_(W) is monotone decreasing in so that the manifold
necessarily enters the nearly invariant region dorc(W).
This is clear by explicit calculation of the eigenvector asso-
V'=U, ciated with the unstable manifold:

(A2)

To facilitate the use of phase plane analysis, welletV’
which gives the system

"= —cU—f(V,W).

We look for values oft for which this system has a hetero-
clinic trajectory connectingu(_ (Wyay,0) and ¢  (Wma,0),
starting at the former and ending at the latter. The following It is important to note that the traveling wave result for
geometric argument demonstrates the existence of a travelind=w,,,, is different from the traveling wave result for the
wave solution for every speat> Cay- bistable caseW<w,,,) in that uniqueness is lost. This dif-
TreatingW andc as parameters for E§A2), we con-  ference comes from the fact that the traveling wave solution
sider the vector field for any value & for which c(W) for W=w,,,, is not necessarily a connection between the
>0 and anyc>c(W). Referring to Fig. 13 will be useful in  unstable manifold of one critical point and the stable mani-
following the construction. For any such pair, we construct &old of the other. Because the heteroclinic trajectory can ap-
nearly positively invariant region in the phase plane andproach the saddle-node via either the stable manifald
show that the unstable manifold of the saddlewat (W),0) single trajectory or the center manifolda family of trajec-
enters this region. In order to show the existence of a travtories, there is a half ray of traveling waves, one for each
eling wave with any speed>c,, we take the limitW  ¢>cCpax, With c=cCq,y corresponding to the stable manifold
—Wmay, SO that the nearly positively invariant region be- connection and all others corresponding to center manifold
comes positively invariant and the unstable manifold ofconnectiongsee Fig. 12 This is in contrast with the travel-
(v_-(W),0) is squeezed into approaching,(W),0). ing wave for the bistable case which is a connection between
Figure 11 shows the vector field along the boundary oftwo saddle points in the phase plane.

2
—c+\c?+4)
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above, we see that traveling wave solutions to the bistable
equation fall under the category of triggered waves while
solutions to the degenerate bistable equation are phase
waves.
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