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the restitution hypothesis
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As a simple model of reentry, we use a general FitzHugh–Nagumo model on a ring~in the singular
limit ! to build an understanding of the scope of the restitution hypothesis. It has already been shown
that for a traveling pulse solution with a phase wave back, the restitution hypothesis gives the
correct stability condition. We generalize this analysis to include the possibility of a pulse with a
triggered wave back. Calculating the linear stability condition for such a system, we find that the
restitution hypothesis, which depends only on action potential duration restitution, can be extended
to a more general condition that includes dependence on conduction velocity restitution as well as
two other parameters. This extension amounts to unfolding the original bifurcation described in the
phase wave back case which was originally understood to be a degenerate bifurcation. In addition,
we demonstrate that dependence of stability on the slope of the restitution curve can be significantly
modified by the sensitivity to other parameters~including conduction velocity restitution!. We
provide an example in which the traveling pulse is stable despite a steep restitution curve. ©2002
American Institute of Physics.@DOI: 10.1063/1.1503941#
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The question of spiral and scroll wave breakup has re-
cently received increased attention in the discussion o
the onset of fibrillation. A theoretical understanding of
the transition from ventricular tachycardia to ventricular
fibrillation is currently being constructed in terms of the
loss of stability of a steadily rotating spiral or scroll wave.
While numerical simulations of cardiac tissue models are
capable of demonstrating spiral and scroll wave breakup,
there is no consensus as to exactly what determines th
loss of stability. Although several candidates have been
proposed1–4

„see Ref. 5 for a recent review…, in the work
presented here, we focus on one in particular, the restitu-
tion hypothesis. In the last few years, this hypothesis has
gained credibility through experimental advances,6–8 nu-
merical simulations,9,10 and analytical results11,12 and is
being promoted as the new touchstone for anti-
arrhythmic drugs. 5,13 Courtemancheet al., in particular,
demonstrated the validity of the hypothesis for a simple
model of reentry. However, the stability result in that pa-
per hints at the main problem with the hypothesis. First,
the bifurcation through which stability is lost is degener-
ate „an infinite dimensional Hopf bifurcation…, meaning
that the hypothesis lacks robustness and might fail for
slightly more complicated systems. Second, two physi
ological properties, action potential duration „APD… res-
titution and conduction velocity „CV… restitution, are the
two main physiological parameters that play an impor-
tant role in the stability calculation but one of them „CV
restitution… drops out of the final stability condition. In
the present study, we ‘‘unfold’’ the bifurcation, deriving a

a!Electronic mail: eric@math.utah.edu
7881054-1500/2002/12(3)/788/12/$19.00
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more general stability condition which reintroduces the
dependence on conduction velocity restitution and gives a
modified restitution hypothesis. An example illustrates
the extent to which the modified restitution hypothesis
deviates from the original one.

I. INTRODUCTION

The principle assumption underlying the restitution h
pothesis, first adopted by Nolasco and Dahlen,14 is that the
duration of an action potential~APD! for a single cell is
dependent on the preceding recovery period or diastolic
terval ~DI! only. The function relating APD to DI is called
the APD restitution curve~sometimes simply the restitutio
curve! and, assuming the cell experiences a periodic stim
lus, can be used to define a map from the previous APD
the next APD. The magnitude of the derivative of this map
the fixed point determines the stability of the fixed point; le
than unity implies stability with instability otherwise. Thi
derivative condition is referred to here as therestitution con-
dition.

The restitution hypothesis proposes that the stability
only of isolated cells but also of reentrant signals is det
mined by the restitution condition. That is, if the slope of t
restitution curve is greater than unity for a steady perio
signal then that signal is unstable. It is thought to be relev
in a wide range of contexts including a pulse propagating
a ring of tissue as well as spiral and scroll waves in hig
dimensions.

It should be noted that the problem of defining the re
titution curve for a given system is not a trivial problem. F
the simplest case of an isolated cell undergoing perio
© 2002 American Institute of Physics
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stimulus, one must decide when a cell is excited and whe
is recovering. Choosing a cutoff transmembrane potentia
lows for a clear designation but the resulting restitution cu
can be cutoff dependent.15 Moreover, the restitution curve
may not be well defined in the sense that one value of
might correspond to two different values of APD as has b
observed previously.11 Fortunately, in theoretical studie
where the excitable system is composed of a fast and a
subsystem ~as in FitzHugh–Nagumo!, this problem is
~mostly! avoided. Cardiac cells appear to behave similarl

For an isopotential isolated cell satisfying the princip
assumption of APD dependence and subject to an exte
periodic stimulus, the restitution condition is the correct co
dition for stability of the steady response. Nolasco a
Dahlen,14 Guevaraet al.,15 and, more recently, Yehiaet al.16

among others use this approach to understand the appea
of alternation in the APD of a cell under periodic stimulu

However, when such cells are coupled together to for
ring or a sheet, the coupling can influence the internal
namics so that restitution is no longer a property of in
vidual cells. Thus, there are two types of systems that ca
studied—those for which coupling has~almost! no influence
on repolarization and those for which it does. The former
characterized by having a phase wave for a wave back w
the latter are characterized by having a trigger wave fo
wave back. The designationphase wave, in contrast with
trigger wave, refers to the fact that repolarization occurs a
cording to a cell’s internal ‘‘excitation clock’’ rather than b
being triggered by its repolarized neighbors.

With this in mind, it should be clear that for reentra
signals propagating through tissue, the validity of the re
tution condition is a bit more subtle. Early in the last centu
Mines observed reentry in a ‘‘one-dimensional’’ ring of ca
diac tissue.17 Several studies have focused on this sim
model of reentry to draw conclusions about the nature of
‘‘alternans’’ instability,9,18 building an argument in favor o
the restitution hypothesis which claims the restitution con
tion is the correct stability condition. One of the few analy
cal results on the problem of stability of reentry added mu
credibility to the hypothesis. Courtemancheet al. demon-
strated that the restitution condition is the correct stabi
condition for a FitzHugh–Nagumo pulse on a ring in t
singular limit with a phase wave for a wave back. Desp
this apparent progress toward establishing the restitution
pothesis, the Courtemanche result hints at its underly
weakness. Its narrow context~singular wave front, phase
wave back! and the nature of the bifurcation through whic
stability is lost~an infinite dimensional Hopf bifurcation! are
signs of a degenerate phenomenon. Does the restitution
pothesis still hold for slightly different systems?—the no
singular case?—a triggered wave back instead of a ph
wave?

In an attempt to better understand the restitution hypo
esis, we examine the same system but with a triggered b
instead of a phase wave back.~A technical discussion of the
difference between a phase wave back and a triggered w
back is given in the Appendix.! The relevance of this chang
to cardiac tissue is that an argument can be made for
predominance of triggered wave backs in spiral waves
ownloaded 30 Sep 2005 to 137.82.36.150. Redistribution subject to AIP lic
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least in regions close to the core. The absence of the eff
of spatial coupling in the model proposed by Courteman
et al. has been addressed in other studies by modifying
integral-delay equation from Ref. 11 through the addition
an APD coupling term.19 Here, we return to the derivation o
the integral-delay equation, this time allowing for the pre
ence of a triggered back, and proceed to derive a map
generalizes the integral-delay equation. In this way, the ef
of coupling is carried through from the original PDE and n
added to the derived model after the fact.

Using this map, we derive a stability criterion for
FitzHugh–Nagumo pulse on a ring with a triggered wa
back. As with the phase wave case, when the condition
the loss of stability and the restitution condition coincide, t
bifurcation is degenerate in the same way~an infinite dimen-
sional Hopf bifurcation!. However, for a generic choice o
parameter values, the loss of stability is through a o
dimensional Hopf bifurcation which is consistent with th
numerical observation that APD coupling breaks the deg
eracy of the bifurcation.19 Furthermore, the stability condi
tion deviates from the restitution condition and a depende
on conduction velocity restitution is introduced. This ne
stability condition generalizes the restitution condition b
complicates the question of how to ‘‘stabilize’’ an unstab
reentrant rhythm. Readers not interested in the details of
stability calculation can refer to the derived stability and
stability criteria at the end of Sec. II for a summary of th
main results and skip to Sec. III for a relatively se
contained discussion of the results.

II. THE SINGULAR FITZHUGH–NAGUMO SYSTEM

A. Reduction from FitzHugh–Nagumo

We begin with the FitzHugh–Nagumo system on a ri
of lengthL,

e
]v
]t

5e2
]2v
]x2 1 f ~v,w!, ~1!

]w

]t
5g~v,w!, ~2!

v,
]v
]x

,wux505v,
]v
]x

,wux5L ,

where space has been scaled by the space constant o
medium so thatL is measured in nondimensional units. W
assume thatf has three zeros,v2(w), v0(w), andv1(w),
for eachw in some bounded interval (wmin ,wmax) and only
one zero forw outside of that interval~the standard cubic-
like function!. g is chosen so that the system has a sin
spatially homogeneous stable solution at (v,w)5(v2(0),0)
~see Fig. 1 for the phase plane!.

In order to formally reduce the problem to a discussi
of the movement of fronts and backs, we take the limite
→0. This limit is singular and must be analyzed in two d
tinct scalings. The outer scaling is the one given above~set-
ting e50 in Eq. ~1!! and indicates that the transmembra
potential,v, resides on one of two stable solution branch
v1(w) or v2(w), of the equationf (v,w)50. We refer to
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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v1(w) as the excited branch and tov2(w) as the recovery
branch. Evolution ofw on these branches is described by E
~2! where v is replaced by the appropriate branch val
(v1(w) or v2(w)).

The inner scaling is found by rescaling both time a
space by a factor ofe. Taking the limite→0 in this scaling
gives a bistable equation~functions of the inner variables ar
denoted with capital letters!:

]V

]t
5

]2V

]z2 1 f ~V,W!, ~3!

whereW is constant on the fast time scale given byt. The
existence and stability of traveling waves to such an equa
is well known forW in the bistable interval.20 These travel-
ing waves play the role of transition layers from the excit
branch to the recovery branch. TheW value at a transition
layer determines the speed and direction of that layer, all
ing for the definition of the speed function,c(W). Note that
this speed function is implicitly a function off . An example
of a speed function,c(W), calculated explicitly, is given for
f (v,w)5v(12v)(v21/10)2w in Fig. 2.

The state of the singular FitzHugh–Nagumo syst
~SFHN! can be expressed in terms ofw(x,t) and the loca-
tion of all transition layers which we denote byf i(t) with i

FIG. 1. The phase plane for a general FHN model. The nullcline off (v,w)
is labeled by its three branches,v2(w), v0(w), and v1(w). g(v,w) is
usually taken to be linear.

FIG. 2. The speed function for cubicf (v,w).
ownloaded 30 Sep 2005 to 137.82.36.150. Redistribution subject to AIP lic
.

n

-

taking values between one and the number of layers~neces-
sarily even!. In addition, we must specify the state~excited
or recovering! of the system on the intervals between laye
Thus, the singular FitzHugh–Nagumo dynamics are
scribed by

]w

]t
~x,t!5g~v6~w!,w!, ~4!

f i8~t!5~21! ic~w~f i ,t!!, ~5!

where x,f i(t)P@0,L# with the end points of that interva
identified. The sign in Eq.~5! assumes that the origin i
excited or, more precisely, that the transition layer atf1 is
oriented such that the interval to its left is excited and
one to its right is recovering.

Equation ~5! is only valid for w(f(t),t)
P(wmin ,wmax). It is possible that at some timet,
w(f(t),t)5wmax so that the back becomes a phase wa
~see the appendix for more on phase waves!. As we are in-
terested in linear stability of a pulse with a triggered ba
we assume the phase wave scenario never arises.

B. The system as an iterated map

Being interested in stability of the traveling pulse, w
begin with the SFHN system,~Eqs. ~4! and ~5!!, with two
transition layers, a front atf1 and a back atf2 , both trav-
eling to the right:

]w

]t
~x,t!5g~v6~w!,w!,

f18~t!52c~w~f1 ,t!!,

f28~t!5c~w~f2 ,t!!.

In the first equation,v1(w) is used on the interva
(f1(t),f2(t)) and v2(w) is used on the complementar
interval (f2(t),f1(t)) ~see Fig. 3 for clarification!.

f1(t) is the location of a front (w is relatively low! that
goes from the upper to the lower branch with increasingx
and f2(t) is the location of a back (w is relatively high!
facing in the opposite direction.

Our goal is to replace this system of equations with
iterated map for which the traveling pulse is a fixed point a
stability analysis amounts to calculating the eigenvalues
the linearization of the map at this fixed point. One approa
is to calculatef1(t) and f2(t) from a given initial condi-
tion from t50 until the time at which each returns to th

FIG. 3. Schematic plots of the positions of the front,f1(t) ~solid line!, and
the back,f2(t) ~dashed line!. The appropriatew dynamics between the
curves are specified byg1 ~shaded region! andg2 ~unshaded region!.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp



te

a

T
of
b

on
is

pa

in
d

,
e
N

in
e
th

io

a

i
e

as

g

n,
at

rent

e

e

find

o

ed

he

791Chaos, Vol. 12, No. 3, 2002 Modifying the restitution hypothesis

D

point at which it started. Continuing, one could calcula
these functions through a second rotation and so on. A m
can be defined from (f1 ,f2) on one rotation to (f1 ,f2) on
the following rotation. In Fig. 3, this would mean defining
map that has the first continuous segments off1 andf2 as
input and the second continuous segments as output.
difficulty with this map is that the argument is a pair
functions whose domain cannot be specified in advance
cause the time required for the front and back to make
full rotation may vary from rotation to rotation. To avoid th
difficulty, we invert these functions so that the interval@0,L#
is the domain of the input functions on every rotation.

To be more precise, the map we define takes the
(T(x),t(0)) to the pair (S(x),s(0)) where T(x) and S(x)
are the first and second arrival times of the front at the po
x, respectively, andt(0) ands(0) are the first and secon
arrival times of the back atx50. We assume thatf1 is
piecewise monotone increasing and invert it to getT(x) on
the interval@0,L# ~without loss of generality,T(0)50). We
can definet(x) similarly ~by inverting f2) but we only re-
quire a single point,t(0), which is found by solving
f2(t0)50 and settingt(0)5t0 . The set of all such pairs
(T(x),t(0)) with T(x) smooth, is the space on which th
map is to be defined. Given an initial condition to the SFH
system, we can calculate the corresponding initial po
(T(x),t(0)). The evolution of the SFHN system can b
translated into a map as describe in the remainder of
section.

In general, the speed function for propagating transit
layers,c(w), is a monotone function for 0<w,wmax with
values in the range@cmin ,cmax) where cminªc(0) and cmax

ªc(wmax). Thus, instead of trackingw everywhere in space
and evaluatingc only at the layers, we can derive an equ
tion for c everywhere in space and eliminatew from consid-
eration. This amounts to keeping track of refractoriness
terms of potential propagation speed instead of using an
plicit refractory variable. Taking derivatives with respect tot
we get

]c

]t
5c8~w!

]w

]t
5c8~w!g6~w!.

Monotonicity of c(w) guarantees that we can rewrite this

]c

]t
5G6~c!. ~6!

Note thatG1(c).0 for c,cmax corresponding to increasin
refractoriness while in the excited state, whileG2(c),0 for
c.cmin corresponding to recovery~see Fig. 4!.

At a point x, for times betweent5T(x) and t5t(x),
the evolution ofc is determined by]c/]t 5G1(c). Pro-
vided only with T(x) and t(0), we aremissing two vital
pieces of information. First, we require an initial conditio
c(x,T(x)), for Eq. ~6!. Second, we do not know the time
which the evolution ofc switches from the ‘‘1 ’’ branch to
the ‘‘2 ’’ branch ~with the exception that atx50, we know
the switch occurs att5t(0)).

The initial condition is calculated fromT(x) using the
fact that
ownloaded 30 Sep 2005 to 137.82.36.150. Redistribution subject to AIP lic
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c~x,T~x!!521/T8~x!.

Finding the time,t(x), at which the evolution ofc switches
branches, is a more complicated matter. Notice the appa
paradox in that we need to knowt(x) in order to know when
to stop usingG1(c) in calculatingc. But to calculatet(x),
we requirec(x,t) for an unknown stretch of time.

The solution to this problem is to temporarily ignore th
fact that the evolution ofc switches branches att(x). At
each pointx, we allowc to evolve according toG1 until it
falls off the end of the excited branch. Integratingc(x,t) in
time from T(x) to the end of the branch, we get a curv
tmax(x) that serves as an upper bound ont(x) wheretmax(x) is
defined as the value oft for which c(x,t) hits the end of the
branch. Once this upper bound is established, we can
t(x) by solving

t8~x!51/c~x,t~x!!. ~7!

Note thatc(x,t) as calculated previously is only valid up t
t5t(x) and must be redefined for values oft.t(x) once
t(x) is properly determined~see Fig. 5!.

FIG. 4. A schematic diagram of the ‘‘1’’ and ‘‘ 2’’ branch dynamics in
terms ofc-essentially, the original formulation of the SFHN system turn
on it’s side. On the ‘‘1’’ branch, c increases until it falls off atc5cmax. On
the ‘‘2’’ branch, c approaches the steady state atcmin .

FIG. 5. An illustration of the steps involved in calculating the map. T
slope ofT(x) gives an initial condition forc(x,t) which is integrated until
tmax at which time it falls off the ‘‘1’’ branch. t(0) is used as an initial
condition for integratingt(x) which is defined by the integration~triggered
sections! or by tmax ~phase wave sections!.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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If t(x0)5tmax for somex0 , Eq.~7! is no longer valid and
the wave back switches from a triggered wave to a ph
wave. As we are interested in the case of triggered wa
only, we assumet(x)Þtmax for all x.

In a similar fashion, without the complication of pha
waves, we can follow the same procedure starting witht(x)
andS(0) ~by periodicity,S(0)5T(L)) to find S(x) ands(0)
which we define, respectively, as the second arrival time
the front atx and the second arrival time of the back atx
50.

This multi-step calculation defines a map

F:S T~x!

t~0! D°S S~x!

s~0! D .

Notice that this map can be interpreted as a genera
tion of the APD restitution curve in that it maps the APD
one point (t(0)2T(0)) to the next APD at that point
(s(0)2S(0)). Of course, information from the whole rin
(T(x)) is required to define the map making it much mo
complicated to characterize~i.e., it is no longer a one-
dimensional map!.

The traveling pulse solution can be represented b
straight lineT(x)5x/c0 wherec0 is the traveling speed o
the pulse. The calculation ofc0 andt(0) is carried out in the
Sec. II C.

C. The traveling pulse as a fixed point

Even if the traveling pulse has a triggered wave back
is possible that, after a perturbation, the back might tr
siently convert to a phase wave. However, for small eno
perturbations of the traveling pulse, this ought not happ
Thus, we need not worry about phase waves which allo
the expression of the map to be simplified enormously. T
equation forc on the excited branch,]c/]t 5G1(c), can be
used to derive a single equation fort(x) without going
through the intermediate step of solving forc(x,t):

t~x!2T~x!5E
21/T8(x)

1/t8(x) 1

G1~c!
dc. ~8!

Similarly, we can derive an equation forS(x):

S~x!2t~x!5E
1/t8(x)

21/S8(x) 1

G2~c!
dc. ~9!

Thus, givenT(x) and t(0) we can use Eqs.~8! and ~9! to
find t(x) andS(x), respectively. Notice that these two equ
tions are integro-differential equation of a peculiar type.

The traveling pulse can be expressed asT(x)5x/c0

where the traveling speedc0 is not yet known. The map
F:(T,t(0))→(S,s(0)) must giveS(x)5T(x)1L/c0 so the
pulse is a fixed point up to some spatially uniform sh
(L/c0). To completely determine the pulse we must calcul
c0 and t(0).

Becauset(x)5t(0)1x/c0 , Eq. ~8! requires that

t~0!5E
21/T8(0)

1/t8(0) 1

G1~c!
dc5E

2c0

c0 1

G1~c!
dc.

Similarly, from Eq.~9! we see that
ownloaded 30 Sep 2005 to 137.82.36.150. Redistribution subject to AIP lic
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S~0!5t~0!1E
c0

2c0 1

G2~c!
dc.

By periodicity, the front must be atx50 andx5L simulta-
neously so thatS(0)5T(L)5L/c0 . These requirements o
S implicitly define c0 through

E
2c0

c0 1

G1~c!
dc1E

c0

2c0 1

G2~c!
dc5

L

c0
.

To find conditions under which a solution to this equ
tion exists, we define the following two functions

p1~j!5
L

j
, j.0, ~10!

p2~j!5E
2j

j 1

G1~s!
ds1E

j

2j 1

G2~s!
ds ~11!

for 0,j,max(2cmin ,cmax). Note that p1(j)→` as j
→01, p1(j)→0 asj→` and the functionp1(j) is mono-
tone decreasing for allj.0. Conversely,p2(0)50 and
p2(j) is increasing for 0,j. When integrating the second o
the two integrals in Eq.~11!, there are two possibilities.

The first possibility is thatcmax.2cmin . In this case,p2

is only defined up toj52cmin and has a singularity at tha
point. In this case,p1 and p2 intersect so that a traveling
pulse with a triggered wave back necessarily exists~see Fig.
6!.

The second possibility is thatcmax<2cmin in which case
p2 is only defined up tocmax. The existence of a traveling
pulse with a triggered back requiresp2(cmax).L/cmax. We
can always chooseL sufficiently small so that the wave bac
is a triggered wave. For largeL, the wave back is a phas
wave.

In either case, the value ofj at the intersection ofp1 and
p2 is the desiredc0 .

Summarizing, the first passage of the traveling pu
takes the form

T* ~x!5
x

c0
,

t* ~x!5
x

c0
1t0 ,

FIG. 6. Plots ofp1(j) and p2(j) with a unique intersection atc0 for the
casecmax.2cmin .
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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while the second passage is given by

S* ~x!5
x

c0
1

L

c0
,

s* ~x!5
x

c0
1

L

c0
1t0 ,

where

t05E
2c0

c0 dc

G1~c!

andc0 solves

E
2c0

c0 1

G1~c!
dc1E

c0

2c0 1

G2~c!
dc5

L

c0
.

D. Stability of the traveling pulse

To determine the stability of the traveling pulse calc
lated in Sec. II C, we perturbT* (x) and t0 by a small
amount and determine the influence of the perturbation
S(x),s(0),

T~x!5T* ~x!1eA~x!,

t~x!5t* ~x!1ea~x!1O~e2!,

S~x!5S* ~x!1eB~x!1O~e2!,

s~x!5s* ~x!1eb~x!1O~e2!.

In fact, we are only required to specifyT(x) andt(0) but in
anticipation of the structure oft(x) andS(x), we name the
resulting perturbations first and proceed to find express
for them. We seek the linearization ofF which takes
(A(x),a(0)) to (B(x),b(0)).

Linearizing Eq.~8!, we find that

a~x!5E
0

x

ek1(s2x)~k1A~s!2k2A8~s!!ds1a~0!e2k1x,

where

k15
G1~c0!

c0
2 .0, k25

G1~c0!

G1~2c0!
.0.

Note that the initial data for the map requires bothA(x) and
a(0).

Similarly,

B~x!5E
0

x

ek3(s2x)~k3a~s!2k4a8~s!!ds1A~L !e2k3x,

where

k352
G2~2c0!

c0
2 .0, k45

G2~2c0!

G2~c0!
.0.

To determine the stability of the fixed point~traveling
pulse!, we look for eigenvalues and eigenfunctions of t
map by settingA(x)5eax anda(0)5a0 wherea might be
complex. For a perturbation of this form~assuming a
Þ2k1 ,2k3), we get

a~x!5beax1~a02b!e2k1x
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whereb5 (k12ak2)/(k11a) and

B~x!5C~a!eax1C1e2k1x1C3e2k3x,

where

C~a!5
k32ak4

k31a
b, C15

k31k1k4

k32k1
~a02b!

and

C35eaL2C~a!2C1 .

In order for (a0

eax
) to be an eigenvector, it must be that

S B~x!

a~L ! D5lS eax

a0
D .

The first component of this equation forcesC15C350,
which meansa05b and C(a)5eaL. Thus the eigenvalues
are of the forml5eaL wherea satisfies the characteristi
equationC(a)5eaL.

We rewrite the characteristic equation in terms of a n
set of parameters:

12ah1

11ah2

12ah3

11ah4
5eaL, ~12!

where

h15
c0

2

G1~2c0!
, h25

c0
2

G1~c0!
,

h352
c0

2

G2~c0!
, h452

c0
2

G2~2c0!
.

Interpretation of these parameters, which play a central
in determining stability, is addressed more carefully in S
III.

Equation~12! determinesa ~infinitely many values! and
therefore the eigenvalues,l5eaL. Stability requires that
ulu,1 for every eigenvaluel, or equivalently Re(a),0 for
every solution,a, to Eq. ~12!.

Note that a50 is always a solution to Eq.~12! and
corresponds to the constant eigenfunction. This means
the traveling pulse is unique only up to phase shifts, a re
of the fact that the SFHN system is autonomous.

A few facts aboutC(a) that will be useful in under-
standing stability should be stated at this point. Beca
C(a) is the product of linear fractional functions with n
singularities in the the right half plane~including the imagi-
nary axis!, the image of that region is a compact set. Mo
over, because 1/h1 and 1/h3 are both positive, the origin is
covered~twice! by that region. This structure allows us t
restrict our analysis to the imaginary axis. In particular, if t
image of the imaginary axis underC(a) lies completely
within the unit circle~except for the origin which maps to
one and is always a root!, so does the entire right half plane
Becauseea maps the right half plane outside the unit circl
there can be no solution,a, to Eq. ~12! with Re(a).0 ~see
Fig. 7!. Alternately, if the image of the imaginary axis lie
completely outside the unit circle, there can be no roots
the characteristic equation in the left half plane.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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For the image of the imaginary axis to be contained
side the unit circle we requireuC( iv)u2,1, where

uC~ iv !u25
11~h1

21h3
2!v21h1

2h3
2v4

11~h2
21h4

2!v21h2
2h4

2v4 .

Clearly, the numerator and denominator agree atv50
which, as previously mentioned, is always a root of the ch
acteristic equation. The following two stability condition
describe the two possibilities for the rest of the imagina
axis ~either inside or outside the unit circle!.

Stability criterion. The image underC(a) of the imagi-
nary axis~excluding the origin! lies entirely inside the unit
circle (uC( iv)u2,1) if the following two conditions are sat
isfied:

h1
21h3

2,h2
21h4

2,
~13!

h1h3,h2h4 .

When the parametersh1 , h2 , h3 , andh4 satisfy these con-
ditions, stability of the traveling pulse is guaranteed.

Instability criterion. The image underC(a) of the
imaginary axis~excluding the origin! lies entirely outside the
unit circle (uC( iv)u2.1) if the following two conditions are
satisfied:

h1
21h3

2.h2
21h4

2,
~14!

h1h3.h2h4 .

When the parameters satisfy these conditions, any non
stant perturbation of the traveling pulse is amplified~all but
the trivial eigenvalue are greater than one!.

To understand how stability might be lost, we exami
how roots of the characteristic equation cross from the lef
the right half of the complex plane. A crossing of any ro
must correspond to some valuev for which uC( iv)u51. At
this value ofv,

~h1
21h3

22h2
22h4

2!v21~h1
2h3

22h2
2h4

2!v450.

If this polynomial is not identically zero, there can be at mo
one pair of conjugate roots of this equation. Thus, stabi
can be lost only through one pair of roots changing the s
of their real part or all roots changing the sign of their re
parts simultaneously. In the language of bifurcations, sta

FIG. 7. A representation of the functionsC(a) andea for values ofhi , i
51,2,3,4 satisfying the stability criterion. The image of the right half pla
underC(a) is shaded by lines with positive slope; the solid curve is t
image of the imaginary axis. Note the double cover of the origin. The im
of the right half plane underea is shaded by lines with negative slope; th
dashed curve is the image of the imaginary axis. Clearly, there can b
point in the right half plane~aside from the origin! that maps to the same
point under both functions.
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ity can be lost either through a simple~one-dimensional!
Hopf bifurcation or through an infinite dimensional Hop
bifurcation. The conditions for an infinite dimensional Ho
bifurcation are

h1
21h3

25h2
21h4

2,
~15!

h1h35h2h4 .

Recall that the bifurcation found by Courtemancheet al.was
of the latter type.

III. DISCUSSION

A. Testing the restitution hypothesis

In the stability analysis of Courtemancheet al.,11 a simi-
lar characteristic equation was derived and it was found
the slope of the restitution curve is the crucial determinan
stability. In particular,dAPD/dDI,1 is a necessary and su
ficient condition for stability of the traveling pulse. Althoug
this dependence on the slope of the APD restitution cu
might have been anticipated by the stability criterion for on
dimensional maps, it is surprising that this factor alone pla
the same role in the more complicated context of the sing
limit of the PDE flow. Furthermore, Courtemancheet al.find
that when stability is lost, it is always through an infini
dimensional Hopf bifurcation which, they note, is probab
not the case for the original PDE system. Motivated by th
facts, we attempt to reinterpret our stability condition
terms of these restitution properties. We begin with a br
description of restitution and how it appears in the discuss
of stability in general.

For an isolated cell stimulated at sufficiently low fre
quency, the duration of excitation~action potential duration
or APD! is steady from one stimulus to the next. If the pa
ing frequency increases, the APD begins to alternate betw
long and short time intervals. In the standard analysis,
APD is assumed to be a function of the amount of time sp
recovering prior to a stimulus~the diastolic interval or DI!.
This function is referred to as the restitution curve. Theo
predicts that the APD undergoes a period doubling bifur
tion when the restitution curve achieves a slope of one at
fixed point.

From the perspective of a single cell on a ring of coup
cells, a steady pulse looks like the periodic stimulus in
isolated cell experiment. In this case, the period of stimu
tion is determined by the speed of the pulse and the siz
the ring. Although the coupling changes the dynamics, on
tempted to think only in terms of isolated cell dynamics.~In
fact, this is not such a bad approximation when the back
phase wave because the phase wave assumption amou
assuming that repolarization is intrinsic to a cell and is n
driven by coupling. This assumption brings the PDE syst
conceptually closer to the ordinary differential equation s
tem and is essential to the results of Courtemancheet al.11!
For a given set of parameters, each cell is excited for a
riod of time ~APD! and recovering for a period of time~DI!.
If the traveling pulse is steady, every cell has the same A
and the same DI. Changing a parameter of the system g
a different APD and DI. Each of these two quantities is e

e

no
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plicitly a function of the underlying parameters and thus it
possible to derive an implicit relation between APD and D
We refer to this relation as the restitution curve despite
subtle difference between it and its more dynamical rela
of the same name which describes the dynamic respons
an isolated cell to stimulus.

It is important to point out at that this notion of restitu
tion curve does not provide a dynamic description in
sense that it does not predict how a pulse converges
steady APD–DI pair; it merely describes the steady s
relationship. In fact, the map,F, defined in Sec. II B gives
the dynamic relationship between successive turns of
pulse. Despite this limitation, one can still test to see if
condition dAPD/dDI.1 corresponds to the loss of stabili
of a traveling pulse. In the rest of this section, we calcul
the slope of the restitution curve for the reduced model,
pressing it in terms ofh1 , h2 , h3 , andh4 and demonstrate
that the correspondence between the slope of the restitu
curve and the loss of stability for the traveling pulse is n
generic.

Before calculating the restitution curve, a brief descr
tion of the parameters,hi , will be useful. Recall the defini-
tions of hi :

h15
c0

2

G1~2c0!
, h25

c0
2

G1~c0!
,

h352
c0

2

G2~c0!
, h452

c0
2

G2~2c0!
.

Referring to Eqs.~8! and ~9!, APD can be expressed a

APD5E
2c0

c0 1

G1~c!
dc ~16!

and DI can be expressed as

DI5E
c0

2c0 1

G2~c!
dc. ~17!

Interpreting these parameters, we see thath1 and h2

measure the sensitivity of APD to changes in parameter
the model measured in terms of their effect on propaga
speed;h3 and h4 measure the sensitivity of DI to simila
changes.h1 and h4 measure changes due to dynamics n
the wave front, whileh2 and h3 measure changes due
dynamics near the wave back.

To illustrate, suppose we start with a particular set
parameters and the corresponding traveling pulse solu
Making a slight change in some parameter of the model
duces a slight change in the traveling pulse solution and
particular, its speed of propagation. Now, suppose thath2 is
large. Our small parameter change generates a relati
large change in the contribution of the integrand in Eq.~16!
at the upper limit of integration~the wave back!. Thus, we
might say that ifh2 is large then APD is sensitive to param
eter changes that influence late pre-repolarization dynam
In an ionic model, this might manifest itself as a high sen
tivity in Ca21 current to changes in some underlying para
eter of the model. Another way to describe this is to say t
a small increase in some parameter leads to a dispropor
ownloaded 30 Sep 2005 to 137.82.36.150. Redistribution subject to AIP lic
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ate increase in APD due to a slow region in the phase sp
that was not accessed before the parameter change. The
three parameters can be interpreted similarly.

We now return to the restitution curve calculation. No
that APD and DI are both functions ofc0 . This allows us to
determine the derivative of APD with respect to DI implicit
throughc0 :

dAPD

dc0
5

h11h2

c0
2 ,

dDI

dc0
5

h31h4

c0
2 ,

~18!
dAPD

dDI
5

h11h2

h31h4
.

With this quantity in hand, we can explore parameter sp
to test the restitution hypothesis. Motivated by the infin
dimensional Hopf bifurcation found in Ref. 11, we beg
with parameter values satisfying Eq.~15! ~the case of an
infinite dimensional Hopf bifurcation in our system!. These
bifurcation conditions are equivalent to

~h12h2!~h11h2!5~h42h3!~h41h3!,

h12h25h42h3 .

If the loss of stability corresponds to an infinite dimension
Hopf bifurcation with h1Þh2 then dAPD/dDI 51. This
seems to support the restitution hypothesis but has the s
degeneracy difficulties that were found in the case w
phase wave backs.

In fact, there are parameter values for which the trav
ing pulse is stable withdAPD/dDI.1. To see that this is the
case, Fig. 8 presents a plot of parameter space that show
regions in question. By rescalingh1 , h2 , h3 , h4 by h1 , we
reduce the dimension of the parameter space from fou
three.

The two surfaces in Fig. 8 represent two sets of inequ
ties. The restitution condition is represented by the gray w
mesh with the region above the surface corresponding

FIG. 8. Splitting up parameter space. The region below the dark gray
face is the region of guaranteed stability. The region above the light g
surface is that of guaranteed instability. Above the white surface is
region predicted by the restitution hypothesis to give stability and below
predicted instability. The curve corresponds toh values for the piecewise
linear FHN model—notice the segment in the ‘‘stable but predicted
stable’’ region.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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restitution curve with a slope less than one. We refer to
region as thepredicted stability region. The region below the
gray surface is thepredicted instability region. The region
below the white surface satisfies the stability criterion a
thus corresponds to parameter values which guarante
stable traveling pulse. The surface corresponding to the
stability condition is located above the white surface bu
left out for clarity.

As an example, we offer a family of models which, f
certain parameter choices, violates the stability prediction
the restitution condition. This family demonstrates the ex
tence of a stable traveling pulse despite a restitution cu
with a slope significantly greater than one.

Consider a piecewise linear FHN model with a diffe
ence in time scale on the upper and lower branches:

g1~w!5
12w

m
,

~19!
g2~w!52w.

The values ofh2 , h3 , andh4 parametrized bym, holding
all other parameters fixed, are plotted in Fig. 8 as a s
curve. The curve remains in the stability region for allm
~below the dark gray surface!, verified numerically form
P@1/100,400#, but crosses into the predicted unstable reg
~below the white surface! for m'1.634. Numerical simula-
tion of this family of FHN systems (m53,5,7) with positive
e demonstrates that the traveling pulse is stable even
restitution slopes greater than eight~see Fig. 9!.

B. ‘‘Generalizing’’ the restitution hypothesis

When trying to understand the dynamics of a comp
system, it is often useful to look for simple relationships th
describe important features of the system. APD restitut
and conduction velocity~CV! restitution are two phenom
enological ~and experimentally measurable! properties of
cardiac tissue that are sometimes used in this way. Con

FIG. 9. APD restitution curves for piecewise linear FHN for three differe
values ofm ~from bottom to top,m53,5,7). Stars correspond to points
which the slope is less than one, open circles correspond to points at w
the slope is greater than one. Despite the open circles~achieving slopes
greater than eight!, all traveling pulses were found to be stable.
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tion velocity restitution describes the relationship betwe
propagation speed of a front and the preceding diastolic
terval in much the same way as APD restitution relates A
to DI. Courtemancheet al. parameterize their system usin
these two properties so that their stability condition is e
pressed in terms of them. The characteristic equation
their problem is similar to the one derived here. By assum
that the wave back is a phase wave, they essentially ass
that APD and DI have zero sensitivity to parameter chan
in the wave back. In fact, settingh25h350 in Eq. ~12! we
get their characteristic equation,

12bA8

11b
5expS C8

c0
2 bL D ,

where

A85
dAPD

dDI
5

h11h2

h31h4
5

h1

h4
,

C85
dCV

dDI
5

c0
2

h31h4
5

c0
2

h4
, b5ah4

~a rescaled eigenvalue!.
Notice, as observed by Courtemancheet al., that the im-

age of the left-hand side in the complexb plane is indepen-
dent of C8, so that the bifurcation curve in theA8–C8 pa-
rameter space is independent ofC8 with only the wave
numbers of the eigenmodes depend onC8. Recall that this
bifurcation is degenerate in the sense that it is always
infinite dimensional Hopf bifurcation.

In reformulating the problem to describe the case o
triggered wave back, we have unfolded the degenerate b
cation to reveal its generic structure. Using these restitu
parameters, the general stability condition becomes

A82,112
C8

c0
2 ~h2A82h3!, ~20!

h3A8,h2 . ~21!

As mentioned, settingh25h350 gives the restitution
condition. Otherwise, the condition is modified by the C
restitution slope. To understand how this modified restitut
condition differs from the original restitution condition, w
refer to the modified condition in its original form, Eq.~13!,
and the diagram in Fig. 10.

Suppose we start with a particular FHN system specifi
by certain parameters which has a traveling pulse solutio
unknown stability on the ring. As we change one of the p
rameters, the pulse changes according to the sensitivitieshi .
In Fig. 10, we see an example in which the parameter cha
shortens the pre-excitation dynamics (h4) accelerating the
arrival of the front at each point on the ring while changes
post-excitation dynamics (h1) delay the arrival of the front
with the net effect being a delay (h1.h4). At the back,
repolarization is also delayed becauseh3.h2. Referring
back to the stability condition, we see that a pulse in t
parameter regime is unstable.

Notice that the restitution condition captures this balan
of sensitivities at the front but gets it reversed at the ba
That is to say that a stabilizing influence at the back (h2

t
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.h3) corresponds to a steepening of the restitution cur
Thus, the restitution condition is only a good approximati
to the stability condition when repolarization is insensitive
parameter changes.

The question remains as to whether the restitution c
dition is a good approximation in actual cardiac tissue.
complement their analytical work which is revisited he
Courtemancheet al.21 numerically tested the stability of th
traveling pulse for the Beeler Reuter model. They found t
as ring length is decreased, the length at which stability
lost is well predicted by the restitution condition. We ha
demonstrated that the restitution condition is an approxim
tion which for some systems might be highly inaccura
More importantly, by introducing dependence on the CV r
titution curve, we provide an analytical description of t
source of the deviations from the restitution hypothes
Thus, even though the restitution condition appears to
accurate for the Beeler Reuter model, a fuller explanation
this accuracy awaits a better understanding of the role
repolarization in stabilizing or destabilizing waves in sp
tially extended systems.
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APPENDIX

1. Phase waves and triggered waves

In this appendix, we focus on some technical calcu
tions which are useful in understanding the difference
tween a phase wave and a triggered wave. In nontechn
terms, a triggered wave is one in which the spatial coupl
of cells plays a role in the wave propagation. A phase w
arises from the coincidental coordination of intrinsic dyna
ics in neighboring cells. For example, imagine a group
children on a set of swings, all in a line. If each child
pushed in order, after all children have been set in motion

FIG. 10. An action potential at a point on the ring showing the sensitivi
(hi) to parameter changes.
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apparent wave of bobbing children is seen moving back
forth along the swing-set. This wave is described as a ph
wave because the wave motion is not organized by coup
but by the order in which the children are set in motio
Now, if the children all reach out and hold hands, the nat
of their motion changes due to the influence each child
on his or her neighbors. This modified wave of motion is
triggered wave. In the latter case, only the first child requi
pushing to set the whole group in motion.

In the context of excitable media, a wave front of exc
tation cannot be a phase wave since the only means by w
excitation can occur~without external stimulus! is by cell–
cell coupling. On the other hand, a wave back can be a ph
wave for the simple reason that deexcitation might oc
because of intrinsic dynamics. It might seem like coupli
necessarily influences repolarization but in the context of
singular FitzHugh–Nagumo system, this dependence ca
relegated to higher order terms when solutions are expre
as power series ine. Thus, we define a phase wave as one
which the leading orderdynamics of repolarization depen
on intrinsic factors only and are not explicitly influenced b
coupling.~This classification of waves has been addresse
the context of the Belousov–Zhabotinskii reaction bo
experimentally22 and theoretically.23! Physiologically, a
phase wave might be defined as one in which the repolar
tion profile differs from that of an isolated cell by less the
some small percentage~of ordere!. To see how these idea
play out in the singular FitzHugh–Nagumo system, we p
ceed with a discussion of the inner layer dynamics gover
by Eq. ~3!.

2. The bistable equation

For 0,W,wmax, Eq. ~3! is a bistable equation meanin
it has two spatially uniform stable solutions (v1(W) and
v2(W)). For such a system, the existence and global sta
ity of a traveling wave is well known. This traveling wav
has a characteristic speed,c, and shape,V(z2ct) which
satisfies limz→6`V(z2ct)5v6(W) for all t. This conver-
gence result is true for each 0,W,wmax so that we can
define the bistable speed function,c5c(W).

This speed function determines the speed of propaga
for a jump discontinuity inv located atf with tissue at rest
to the left and excited to the right and withW5w(f,0). The
speed of a transition layer with reversed orientation~at rest to
the right and excited to the left! is given by 2c(W). For
large values ofW ~highly refractory tissue!, the propagation
speed for a transition layer is positive and large, correspo
ing to propagation that deexcites or repolarizes tissue. Su
wave is referred to as awave back. Similarly, for W small,
the speed of propagation is large and negative correspon
to propagation of excitation or depolarization, referred to
a wave front.

Notice that a wave back of this type (0,W,wmax)
forces cells to repolarize earlier than they would if they we
isolated. This is most easily seen in thev –w phase plane.
Repolarization of an isolated SFHN cell occurs when the c
reaches the upper end of the excited branch which is aW
5wmax; a traveling wave of Eq.~3! forces the jump from

s
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excited branch to resting branch to occur at some value
W,wmax. Thus, a bistable wave back is a triggered wav

3. The degenerate bistable equation

For W5wmax, the analysis in the previous section~in
particular, the convergence result from Ref. 20! no longer
applies. The valueW5wmax is a bifurcation point for Eq.~3!
at which the upper two zeros off (v,w) collide (v0(wmax)
5v1(wmax)) in a saddle-node bifurcation. We refer to th
single degenerate root asv1(wmax). Using the existence re
sults from the analysis for the bistable case (W,wmax), we
extend the speed function,c(W), to the degenerate cas
(W5wmax).

Changing to traveling coordinates,x5z2ct, and as-
sumingV is a function ofx only ~with V8 denotingdV/dx),
Eq. ~3! becomes

V91cV81 f ~V,W!50. ~A1!

To facilitate the use of phase plane analysis, we letU5V8
which gives the system

V85U,
~A2!

U852cU2 f ~V,W!.

We look for values ofc for which this system has a hetero
clinic trajectory connecting (v2(wmax),0) and (v1(wmax),0),
starting at the former and ending at the latter. The follow
geometric argument demonstrates the existence of a trav
wave solution for every speedc.cmax.

TreatingW and c as parameters for Eq.~A2!, we con-
sider the vector field for any value ofW for which c(W)
.0 and anyc.c(W). Referring to Fig. 13 will be useful in
following the construction. For any such pair, we construc
nearly positively invariant region in the phase plane a
show that the unstable manifold of the saddle at (v2(W),0)
enters this region. In order to show the existence of a tr
eling wave with any speedc.cmax, we take the limitW
→wmax, so that the nearly positively invariant region b
comes positively invariant and the unstable manifold
(v2(W),0) is squeezed into approaching (v1(W),0).

Figure 11 shows the vector field along the boundary

FIG. 11. Phase plane for Eq.~A2! with W andc as described in the text. Th
solid curve is the traveling wave solution to Eq.~A2! for W which is a
heteroclinic trajectory connecting the two saddle points. As the value ofc is
increased fromc(W), the vector field changes from tangential to inwa
pointing. TheV axis is theV nullcline. The vector field along the axis point
inward between the lower two critical points and outward between the u
two critical points. The dashed curve is the unstable manifold which alw
enters the contained region forc.c(W).
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the proposed nearly positively invariant region for some s
ableW andc. The boundary of this region is formed by tw
curves, theV axis and the traveling wave solution for th
chosen value ofW. TheV axis is actually theV nullcline and
betweenv2(W) andv0(W), the vector field points into the
positive quadrant. Betweenv0(W) and v1(W), the vector
field points in the opposite direction and this interval is t
only possible escape from the region under construction.
second curve, which completes the boundary of the ne
invariant region, is the traveling wave~heteroclinic! solution
for parameter valuesW and c(W). Note that this traveling
wave is a solution of the system~A2! for c(W) and not for
the chosen value ofc.c(W). To see the structure of th
vector field along the second curve, note that the slope of
vector field is given by

dU

dV
52c1

V~V2a!~V21!

aU

and is monotone decreasing inc. This guarantees that th
vector field, which is tangent to the curve forc5c(W),
points inward along the curve forc.c(W). Note that Fig. 11
is the generic phase plane for any value ofW,wmax for
which c(W).0 and any value ofc.c(W).

If the unstable manifold of the saddle at (v2(W),0) en-
ters the region, it can only exit along the line segment
tending from (v0(W),0) to (v1(W),0). As W→wmax, this
line segment reduces to a point and the unstable mani
necessarily forms a heteroclinic trajectory connecting
saddle at (v2(wmax),0) and the degenerate saddle-node
(v1(wmax),0).

As the final step in demonstrating the existence of t
infinite family of heteroclinic trajectories, we show that th
unstable manifold always enters the nearly invariant reg
for c.c(W). Forc5c(W), the unstable manifold is tangen
to the nearly invariant region. As in the case of the vec
field, the slope of the unstable manifold as it leaves the po
v2(W) is monotone decreasing inc so that the manifold
necessarily enters the nearly invariant region forc.c(W).
This is clear by explicit calculation of the eigenvector ass
ciated with the unstable manifold:

S 2

2c1Ac214D .

It is important to note that the traveling wave result f
W5wmax is different from the traveling wave result for th
bistable case (W,wmax) in that uniqueness is lost. This dif
ference comes from the fact that the traveling wave solut
for W5wmax is not necessarily a connection between t
unstable manifold of one critical point and the stable ma
fold of the other. Because the heteroclinic trajectory can
proach the saddle-node via either the stable manifold~a
single trajectory! or the center manifold~a family of trajec-
tories!, there is a half ray of traveling waves, one for ea
c.cmax, with c5cmax corresponding to the stable manifo
connection and all others corresponding to center mani
connections~see Fig. 12!. This is in contrast with the travel
ing wave for the bistable case which is a connection betw
two saddle points in the phase plane.
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In addition, it should be emphasized that although
half ray of traveling waves for the degenerate bistable eq
tion is reminiscent of the traveling wave result for the Fish
equation,24 the proof is quite different.

The full relation betweenW and traveling wave speed i
given in two parts as shown in Fig. 13. The first part is t
speed function from the bistable equation calculation ass
ated with triggered waves (0,W,wmax) and the second par
corresponds to the infinite family of phase waves associa
with the degenerate bistable equation (W5wmax).

We can now interpret these analytical results in terms
the original discussion of phase waves and triggered wa
As mentioned earlier in this appendix, a phase wave is on
which repolarization is uninfluenced by spatial coupling.
the singular FitzHugh–Nagumo system, this means that
polarization occurs when the recovery variable,w, reaches
wmax. In the context of the traveling wave calculation

FIG. 12. A schematic representation of the phase plane showing a he
clinic trajectory connecting the unstable manifold of (v2(wmax),0) to the
center manifold of (v1(wmax),0). The solid curves are stable and unsta
manifolds. The dashed curves~short dashes! represent the center manifol
of (v1(wmax),0) and the dashed curve~long dashes! is the heteroclinic tra-
jectory. The associated traveling wave is a phase wave withc.c(wmax) ~the
connection is via the center manifold!.

FIG. 13. A schematic representation of the traveling wave speed as a
tion of W. The speed relationship consists of two parts, the speed func
c(W), associated with triggered waves of the bistable equation (0,W
,wmax), and the half ray of speeds (c.cmax) associated with phase wave
of the degenerate bistable equation (W5wmax).
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above, we see that traveling wave solutions to the bista
equation fall under the category of triggered waves wh
solutions to the degenerate bistable equation are ph
waves.
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