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Background

• Defibrillation by application of a large shock is accomplished
routinely.

• The probability of defibrillation success is a sigmoidal
function of shock amplitude, approaching 1 for large
amplitude.

• The explanation of the mechanism of defibrillation remains
quite controversial.

• The fundamental controversy concerns the physical origin of
transmembrane currents.

• Our goal here is to understand the consequences of large
scale virtual electrodes on defibrillation. (The competing
hypothesis will not be discussed.)
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What is Fibrillation?

Transparent View of Spiral Breakup and Fibrillation

The Real Thing
Surface View Movie
3D View Movie
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Modelling Cardiac Tissue

Cardiac Tissue -
The Bidomain Model:

• At each point of the cardiac domain there are two comingled
regions, the extracellular and the intracellular domains with
potentials φe and φi, and transmembrane potential
φ = φi − φe.

• These potentials drive currents, ie = −σe∇φe, ii = −σi∇φi,
where σe and σi are conductivity tensors.

• Total current is

iT = ie + ii = −σe∇φe − σi∇φi.
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Kirchhoff’s laws:

• Total current is conserved: ∇ · (σi∇φi + σe∇φe) = 0

• Transmembrane current is balanced:

(+) = e� �Extracellular Space

Intracellular Space

φ

φ

I
ion

i

e

Cm iφ = φ − φ

surface to volume ratio, capacitive current, ionic current,
and current from intracellular space .

• Boundary conditions:
n · σi∇φi = 0, n · σe∇φe = I(t, x)
and

∫
∂Ω

I(t, x)dx = 0 on ∂Ω.
−+
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Consequences of the Bidomain
Model-I:

With current applied at the boundary of the domain, there is
depolarization and hyperpolarization at the boundaries. For a
homogeneous medium, in the interior (several space constants
from the boundary), the transmembrane potential is unaffected.

Intracellular Space

Extracellular Space
+ −

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �
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Consequences of the Bidomain
Model-II:

Resistive inhomogeneities lead to sources and sinks of
transmembrane current (virtual electrodes) in the interior of the
tissue domain:

For this talk, we consider large spatial scale virtual electrodes
only.
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Consequences of the Bidomain
Model-II:
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Modeling Cardiac Electrical Activity

Transmembrane potential φ is regulated by transmembrane ionic
currents and capacitive currents:

Cm
dφ

dt
+ Iion(φ,w) = Iin where

dw

dt
= g(φ,w), w ∈ Rn
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Examples

Examples include:
• Beeler-Reuter model
• Luo-Rudy model(s)
• Two Variable Models(Fitzhugh-Nagumo, Morris-Lecar,

Puschino, Aliev, etc.)

The Topology of Defibrillation – p.10/29



University of Utah
Mathematical Biology

theImagine 
Possibilities

"Defibrillation" in 1D

• The Initial State: Reentry on a 1-D Ring
• Case 1: Successful "defibrillation"
• Case 2: Unsuccessful "defibrillation" - Phase resetting
• Case 3: Unsuccessful "defibrillation" - Propagation reversal
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The Winding Number

w

φφ*

m

• There is a reentrant wave if and only if the winding number
is nonzero.

• "Defibrillation" is successful if a nonzero winding number is
converted to zero winding number.
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Changing the Winding Number

The winding number can be changed in two ways:

• A Depolarizing Stimulus:

New Front

New Back

• A Hyperpolarizing Stimulus:

New Front

New Back
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Probability of successful
defibrillation:

Probability(success) =
Probability(C- is depolarized and

C+ is not hyperpolarized)
F F F F F F FF F F F F F FG G G G G G GG G G G G G G
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+ Probability(C+ is hyperpolarized and
C- is not depolarized)
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V+

C+

V−
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(depolarizing region)

(hyperpolarizing region)
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Conclusion:

π/2 π 2π

(x 100)

3π/2

Stimulus
amplitude

0

Large scale inhomogeneity

40

30

20

10

50

Relative phase

• On a 1D ring, elimination of reentry requires proper timing.

• Probability of success does not approach one for large
stimulus amplitude.
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Two Dimensional Reentry

Two Dimensional Space is subdivided into several regions:

•

• Positive speed or negative speed, separated by the zero
speed curve.

• Transitions with C>0 are fronts, with C<0 are backs.
• Intersections of two curves are phase singularities, with

associated winding number.
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Two Dimensional Reentry

Two Dimensional Space is subdivided into several regions:

II
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C−
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I III
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• Excited and recovered, separated by sharp transitions.
• Positive speed or negative speed, separated by the zero

speed curve.
• Transitions with C>0 are fronts, with C<0 are backs.
• Intersections of two curves are phase singularities, with
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Initiation of Reentry - The Winfree
Mechanism

• In 1D: movie
• In 2D: movie

Observation: Each intersection of the boundary of the depolariz-

ing virtual electrode V+ with curve C- creates a new spiral core.
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Observation: Each intersection of the boundary of the depolariz-

ing virtual electrode V+ with curve C- creates a new spiral core.
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Observation: Each intersection of the boundary of the
hyperpolarizing virtual electrode V- with curve C+ creates a new
spiral core.
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With both hyperpolarizing and depolarizing virtual electrodes:
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Observation: Juxtaposition of hyperpolarizing and depolarizing
virtual electodes can create a new spiral pair.
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Applied to a Random Pattern

The result of the stimulus is a labyrinth of fronts and backs,
connecting spiral cores.
Initial pattern:
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−1

−1

+1

−1

−1

C+

C+ C−

C−

C+

C−
C+

C+

C−

Conclusion:
• Application of a boundary current can never directly

defibrillate tissue.
• Defibrillation is successful only if all of the spirals that are

created collapse and disappear.
• The only way that cores can disappear is by pairwise

collapse or by moving across a boundary.
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Necessary Conditions

Two necessary conditions for successful defibrillation:

• Total parity of the interior (away from the boundary) must be
zero after the stimulus has ended.

• All spiral pairs must be sufficiently close together to
spontaneously collapse.
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Necessary Condition I

Total parity of the interior (away from the boundary) must be zero
after the stimulus has ended.

Total parity is not changed by any closed depolarization or
hyperpolarization region.
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Necessary Condition I

Suppose the stimulus region encloses the boundary.
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C+

C−
C+

C+

C−

Total parity -2

Total parity becomes zero if the entire boundary is enclosed by a
single depolarizing (or hyperpolarizing) region. (But this is
physically impossible!)
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Necessary Condition II

All spiral pairs must be sufficiently close together to
spontaneously collapse.

C+

C−

Back

Front

V−
V+

d
θ

Even with large stimuli, the separation of spiral pairs varies
randomly with orientation.

Conclusion: It is highly unlikely that a randomly applied stimulus
will achieve both of these. Hence, it is unlikely that defibrillation
by this mechanism will be successful.
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Even with large stimuli, the separation of spiral pairs varies
randomly with orientation.
Conclusion: It is highly unlikely that a randomly applied stimulus
will achieve both of these. Hence, it is unlikely that defibrillation
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3 Dimensional Reentry - Scrolls

• In 3 dimensions, reentrant patterns are scrolls and the
phase singularities are curves (filaments).

• Filaments are the intersections of the Front/Back surface
with the C=0 surface.
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Interaction of Scrolls with Virtual
Electrodes

C+

• The intersection of the boundary of the V+ (depolarization)
surface with the C- surface will produce a new scroll wave
filament.

• The intersection of the boundary of the V-
(hyperpolarization) surface with the C+ surface will produce
a new scroll wave filament.
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Conclusions

• The applied stimulus changes the position of preexisting
scroll wave filaments and may add additional filaments, but
does not eliminate any filaments.

• A filament that is initially attached to an anatomical obstable
or a boundary will remain attached unless a virtual electrode
completely encases the obstacle or boundary.

• Because it is physically impossible for a virtual electrode to
encase a boundary, initially transmural filaments will remain
transmural after the shock is applied.
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Final Conclusions

• Virtual electrodes can change the topology of a reentrant
pattern but rarely do they successfully eliminate all reentrant
activity, even with very large stimulus amplitude.

• Only with carefully placed electrodes and carefully timed
stimuli on small domains can defibrillation success be
achieved relatively often.

• The probability of defibrillation success does not approach
one as the stimulus amplitude gets large for a "generic"
arrangement of electrodes.

• The virtual electrode mechanism does not give an adequate
explanation of clinical defibrillation success.
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