next up previous


\begin{displaymath}
\frac{d L}{dt } = \kappa (L_f-L)
\end{displaymath} (22)

where $\kappa = 0.04$ and $L_{f} = 3$.

Figure: Plot of $L(t)$ and $E(0,t)$ starting from constant initial data $E(x,0) = 0.0$, $A(x,0)=0.0$, $L(0) = 0.01$. The parameter values are $ K_A = 1.0$,$ V_A = 1.0$,$ A_0 = 0.05$, $ \delta = 0.1$, $
k_A = 0.2$,$ k_E = 0.1$, $ \rho=0.3$, $ \alpha = 1.0$, and $L=2.0$.
\begin{figure}
\epsfxsize =3in
\centerline {\epsffile{lvtfig1.eps}}\end{figure}

Figure: Plot of $L(t)$ and $E(0,t)$ starting from constant initial data $E(x,0) = 0.0$, A$(x,0) = 0.0$, $L(0) = 0.01$. The parameter values are $ K_A = 1.0$, $ V_A = 1.0$, $ A_0 = 0.05$, $ \delta = 0.1$, $
k_A = 0.2$, $ k_E = 0.1$, $ \rho=0.3$, $ \alpha = 1.0$, and $L=2.0$.
\begin{figure}
\epsfxsize =3.5in
\centerline {\epsffile{lvtfig2.eps}}\end{figure}

To see a movie demonstrating the bistability of this system click here.


next up previous
Jim Keener
2000-09-06