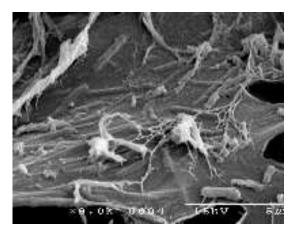


The Dynamics of Growing Biofilm

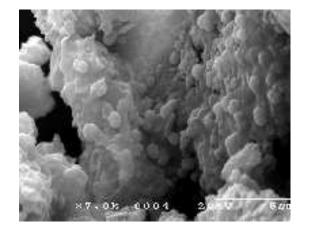
J. P. Keener

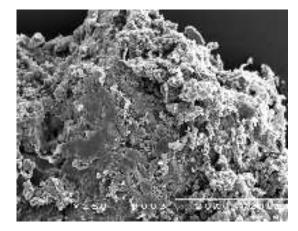
Department of Mathematics University of Utah Imagine the Possibilities Mathematical Biology University of Utah

Biofilms



biofilm fouling of filter fibers





Placque on teeth

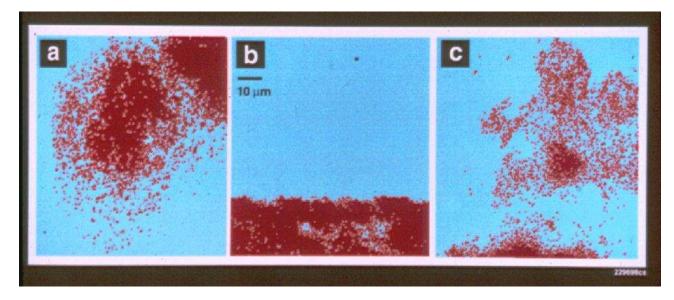
How do gels grow?

- *P. aeruginisa* (on catheters, IV tubes, etc.)
- Mucus secretion (bronchial tubes, stomach lining)
- Colloidal suspensions, cancer cells
- Gel morphology (the shape of sponges)

Why are gels important?

- Protective capability
- Friction reduction
- High viscosity (low washout rate) for drugs
- Acid protection

Biofilm Formation in P. Aeruginosa



Wild Type

Biofilm Mutant Mutant with autoinducer

I: Quorum sensing:

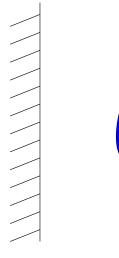
- What is it?
- How does it work?
- II: Heterogeneous structures
 - How do cells use polymer gel for locomotion?
 - What are the mechanisms of pattern formation?

Quorum sensing: The ability of a bacterial colony to sense its size and regulate its activity in response. Examples: *Vibrio fisheri*, *P. aeruginosa P. Aeruginosa*:

- Major cause of hospital infection in the US.
- Major cause of death in intubated Cystic Fibrosis patients
- In planktonic form, they are non-toxic, but in biofilm they are highly toxic and well-protected by the polymer gel in which they reside. However, they do not become toxic until the colony is of sufficient size, i.e., quorum sensing.



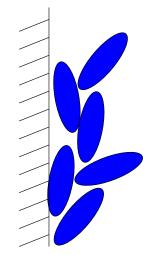
Stages of Growth



Planktonic



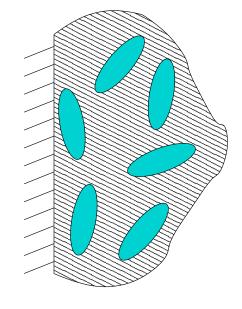
Stages of Growth



Small Dense Colony



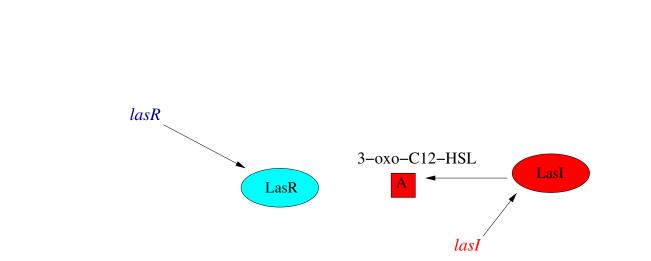
Stages of Growth

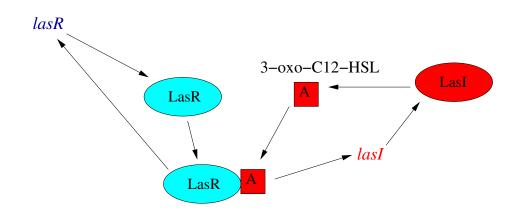


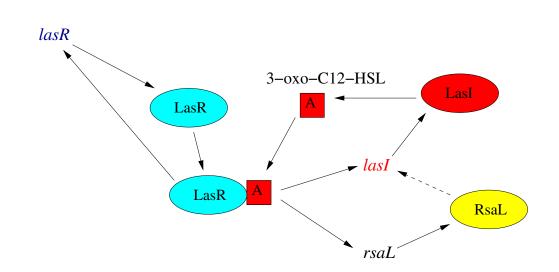
Biofilm Colony

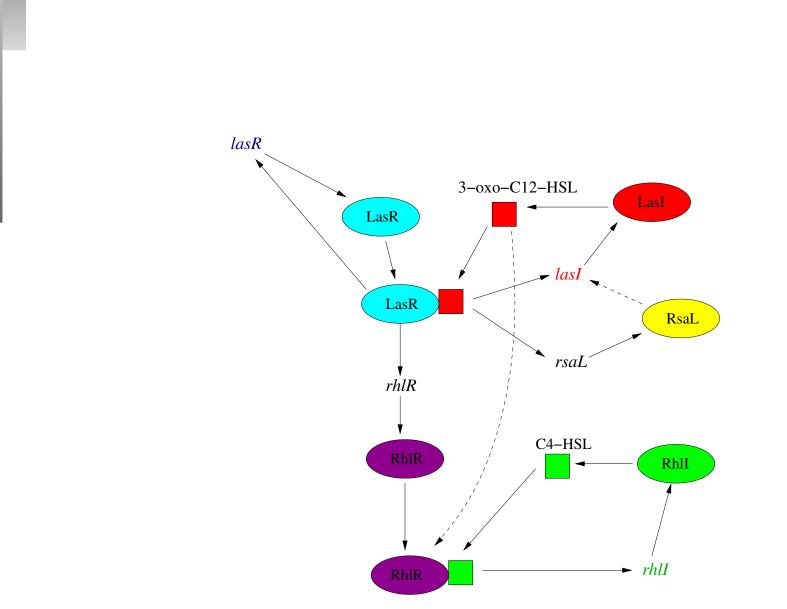
lasR

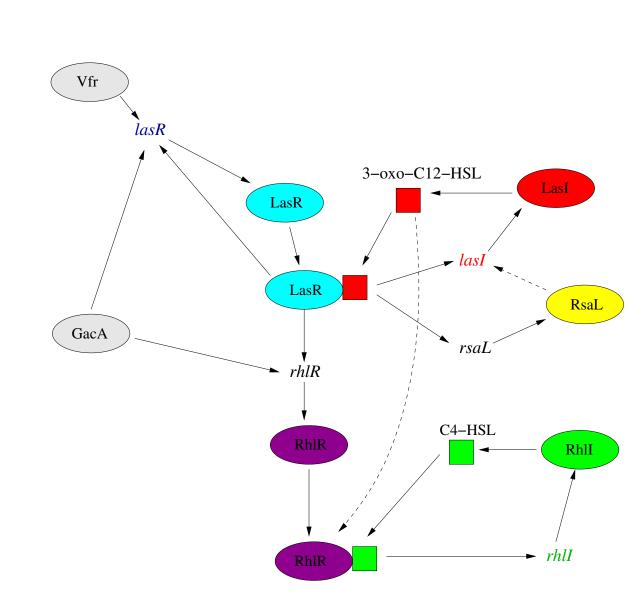
lasI







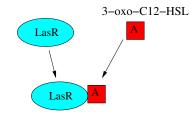




The Dynamics of Growing Biofilm - p.8/30

Modeling Biochemical Reactions

Bimolecular reaction $A + R \longleftrightarrow P$

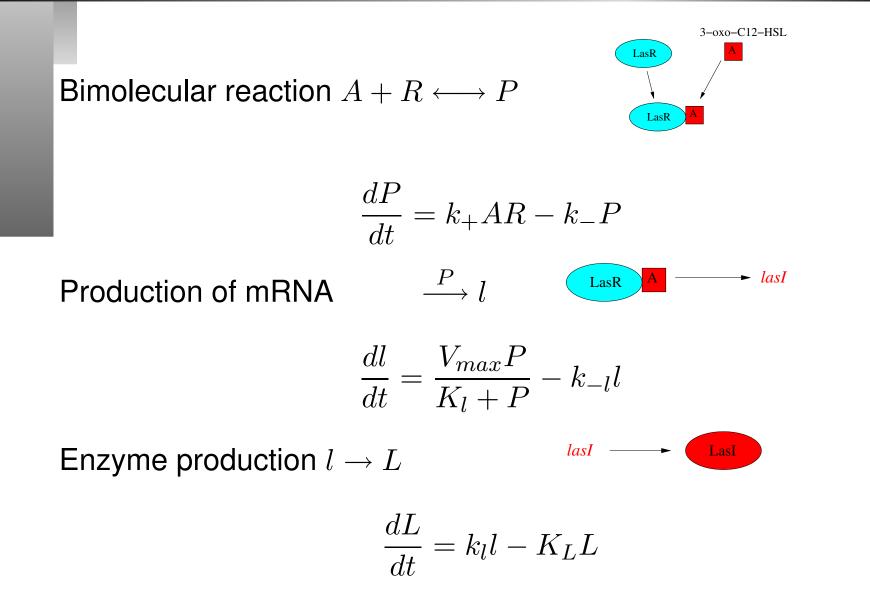


$$\frac{dP}{dt} = k_+ AR - k_- P$$

Modeling Biochemical Reactions

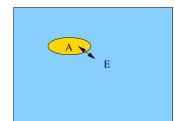


Modeling Biochemical Reactions



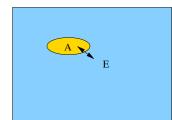
Full system of ODE's

$$\begin{split} \frac{dP}{dt} &= k_{RA}RA - k_PP \\ \frac{dR}{dt} &= -k_{RA}RA + k_PP - k_RR + k_1r, \\ \frac{dA}{dt} &= -k_{RA}RA + k_PP + k_2L - k_AA, \\ \frac{dL}{dt} &= k_3l - k_lL, \\ \frac{dS}{dt} &= k_4s - k_SS, \\ \frac{ds}{dt} &= V_s \frac{P}{K_s + P} - k_ss, \\ \frac{dr}{dt} &= V_r \frac{P}{K_r + P} - k_rr + r_0, \\ \frac{dl}{dt} &= V_l \frac{P}{K_l + P} \frac{1}{K_s + S} - k_ll + l_0 \end{split}$$



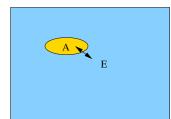
$$\frac{dA}{dt} = F(A, R, P) + \delta(E - A)$$
$$\frac{dE}{dt} = -k_E E + \delta(A - E)$$

The Dynamics of Growing Biofilm - p.11/30



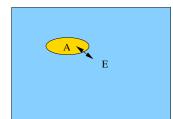
$$\frac{dA}{dt} = F(A, R, P) + \delta(E - A)$$
$$\frac{dE}{dt} = -k_E E + \delta(A - E)$$

rate of change,



$$\frac{dA}{dt} = F(A, R, P) + \delta(E - A)$$
$$\frac{dE}{dt} = -k_E E + \delta(A - E)$$

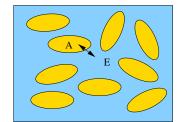
The Dynamics of Growing Biofilm – p.11/30



$$\frac{dA}{dt} = F(A, R, P) + \delta(E - A)$$
$$\frac{dE}{dt} = -k_E E + \delta(A - E)$$

rate of change, production or degradation rate, diffusive exchange,





$$\frac{dA}{dt} = F(A, R, P) + \delta(E - A)$$

$$(1-\rho)\left(\frac{dE}{dt} + K_E E\right) = \rho \delta(A-E)$$

rate of change, production or degradation rate, diffusive exchange, density dependence.

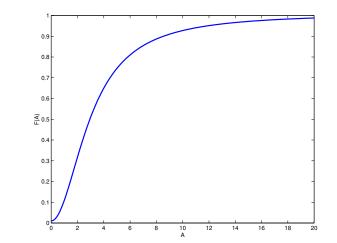
Two (possible) ways to proceed:

- Numerical simulation (but few of the 22 kinetic parameters are known),
- Qualitative analysis (QSS reduction)

Two (possible) ways to proceed:

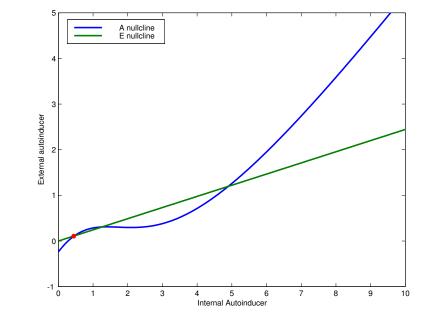
- Numerical simulation (but few of the 22 kinetic parameters are known),
- Qualitative analysis (QSS reduction)

$$\frac{dA}{dt} = F(A) + \delta(E - A), \qquad (1 - \rho)(\frac{dE}{dt} + k_E E) = \rho\delta(A - E)$$





Two Variable Phase Portrait



A PDE Model

Suppose cells are immobile, so internal variables do not diffuse, but extracellular autoinducer E diffuses

$$\frac{\partial A}{\partial t} = F(A, U) + \delta(E - A),$$

$$\frac{\partial U}{\partial t} = G(A, U), U \in \mathbb{R}^{7},$$

$$\frac{\partial E}{\partial t} = \nabla \cdot (D_{E} \nabla E) - k_{E} E + \frac{\rho}{1 - \rho} \delta(A - E)$$

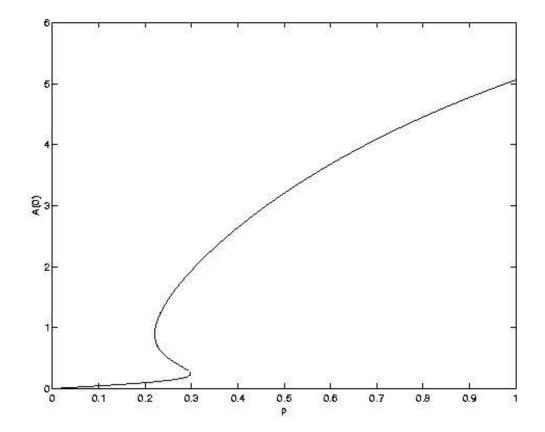
in Ω with Robin boundary conditions

$$n \cdot D_e \nabla E + \alpha E = 0$$

on $\partial \Omega$.

Imagine the Possibilities

Autoinducer as function of cell density



- What is a hyrogel?
 - A tangled polymer network in solvent.
- Examples of biological hydrogels Micellar gels
 - Jello (a collagen gel $\approx 97\%$ water)
 - Extracellular matrix
 - Blood clots
 - Mucin lining the stomach, bronchial tubes, intestines
 - Glycocalyx
 - Sinus secretions

A Hydrogel Primer - II

Functions of a biological hydrogel

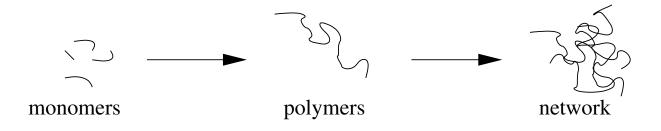
- Decreased permeability to large molecules
- Structural strength (for cell walls)
- Capture and clearance of foreign substances
- Decreased resistance to sliding/gliding
- High internal viscosity (low washout)

Important features of gels

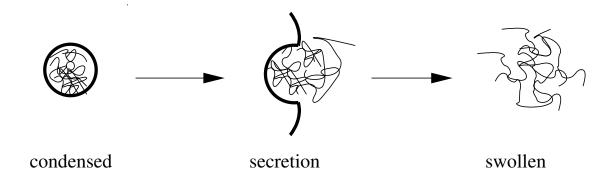
- Usually comprised of highly polyionic polymers
- Can undergo volumetric phase transitions in response to ionic concentrations, temperature, etc.
- Volume is determined by combination of forces (entropic, electrostatic, hydrophobic, cross-linking, etc). The Dynamics of Growing Biofilm – p. 17/30

How gels grow

Polymerization/deposition



Secretion



A two phase material with polymer network volume fraction θ $\frac{\partial\theta}{\partial t} + \nabla \cdot (V_n \theta) = g_n$ Network Phase (EPS) $\frac{\partial \theta_s}{\partial t} + \nabla \cdot (V_s \theta_s) = 0$ Solute Phase $\frac{\partial b}{\partial t} + \nabla \cdot (V_n b) = g_b$ Bacterial concentration $\frac{\partial \theta_s u}{\partial t} + \nabla \cdot (\theta_s (V_s u - D_u \nabla u)) = g_u$ Resource Concentration where $\theta + \theta_s = 1$,

A two phase material with polymer network volume fraction θ $\frac{\partial\theta}{\partial t} + \nabla \cdot (V_n \theta) = g_n$ Network Phase (EPS) $\frac{\partial \theta_s}{\partial t} + \nabla \cdot (V_s \theta_s) = 0$ Solute Phase $\frac{\partial b}{\partial t} + \nabla \cdot (V_n b) = g_b$ Bacterial concentration $\frac{\partial \theta_s u}{\partial t} + \nabla \cdot (\theta_s (V_s u - D_u \nabla u)) = g_u$ Resource Concentration where $\theta + \theta_s = 1$, solute volume fraction,

A two phase material with polymer network volume fraction θ $\frac{\partial \theta}{\partial t} + \nabla \cdot (\mathbf{V}_n \theta) = g_n$ Network Phase (EPS) $\frac{\partial \theta_s}{\partial t} + \nabla \cdot (V_s \theta_s) = 0$ Solute Phase $\frac{\partial b}{\partial t} + \nabla \cdot (V_n b) = g_b$ Bacterial concentration $\frac{\partial \theta_s u}{\partial t} + \nabla \cdot (\theta_s (V_s u - D_u \nabla u)) = g_u \quad \text{Resource Concentration}$ where $\theta + \theta_s = 1$, solute volume fraction, network velocity,

A two phase material with polymer network volume fraction θ $\frac{\partial \theta}{\partial t} + \nabla \cdot (\mathbf{V}_n \theta) = g_n$ Network Phase (EPS) $\frac{\partial \theta_s}{\partial t} + \nabla \cdot (V_s \theta_s) = 0$ Solute Phase $\frac{\partial b}{\partial t} + \nabla \cdot (V_n b) = g_b$ Bacterial concentration $\frac{\partial \theta_s u}{\partial t} + \nabla \cdot (\theta_s (V_s u - D_u \nabla u)) = g_u$ Resource Concentration where $\theta + \theta_s = 1$, solute volume fraction, network velocity, solute velocity,

A two phase material with polymer network volume fraction θ $\frac{\partial \theta}{\partial t} + \nabla \cdot (V_n \theta) = g_n + \epsilon \nabla^2 \theta$ Network Phase (EPS) $\frac{\partial \theta_s}{\partial t} + \nabla \cdot (V_s \theta_s) = 0$ Solute Phase $\frac{\partial b}{\partial t} + \nabla \cdot (V_n b) = g_b$ Bacterial concentration $\frac{\partial \theta_s u}{\partial t} + \nabla \cdot (\theta_s (V_s u - D_u \nabla u)) = g_u$ Resource Concentration where $\theta + \theta_s = 1$, solute volume fraction, network velocity,

solute velocity, artificial network diffusion.

Solute Phase (an inviscid fluid)

$$h_f \theta \theta_s (V_n - V_s) - \theta_s \nabla p = 0,$$

solute-network friction

Solute Phase (an inviscid fluid)

$$h_f \theta \theta_s (V_n - V_s) - \theta_s \nabla p = 0,$$

solute-network friction

pressure

Solute Phase (an inviscid fluid)

$$h_f \theta \theta_s (V_n - V_s) - \theta_s \nabla p = 0,$$

solute-network friction pressure Network Phase (a viscoelastic material)

 $\eta \nabla (\theta (\nabla V_n + \nabla V_n^T)) - h_f \theta \theta_s (V_n - V_s) - \nabla \psi(\theta) - \theta \nabla p = 0$

network viscosity

Solute Phase (an inviscid fluid)

$$h_f \theta \theta_s (V_n - V_s) - \theta_s \nabla p = 0,$$

solute-network friction pressure Network Phase (a viscoelastic material)

$$\eta \nabla (\theta (\nabla V_n + \nabla V_n^T)) - h_f \theta \theta_s (V_n - V_s) - \nabla \psi(\theta) - \theta \nabla p = 0$$

network viscosity

solute-network friction

Solute Phase (an inviscid fluid)

$$h_f \theta \theta_s (V_n - V_s) - \theta_s \nabla p = 0,$$

solute-network friction pressure Network Phase (a viscoelastic material)

 $\eta \nabla (\theta (\nabla V_n + \nabla V_n^T)) - h_f \theta \theta_s (V_n - V_s) - \nabla \psi(\theta) - \theta \nabla p = 0$

network viscosity solute-network viscosity osmosis

Solute Phase (an inviscid fluid)

$$h_f \theta \theta_s (V_n - V_s) - \theta_s \nabla p = 0,$$

solute-network friction pressure Network Phase (a viscoelastic material)

 $\eta \nabla (\theta (\nabla V_n + \nabla V_n^T)) - h_f \theta \theta_s (V_n - V_s) - \nabla \psi(\theta) - \theta \nabla p = 0$

Solute Phase (an inviscid fluid)

$$h_f \theta \theta_s (V_n - V_s) - \theta_s \nabla p = 0,$$

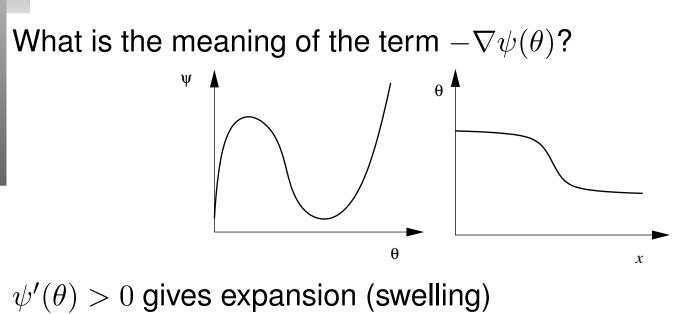
solute-network friction pressure Network Phase (a viscoelastic material)

 $\eta \nabla (\theta (\nabla V_n + \nabla V_n^T)) - h_f \theta \theta_s (V_n - V_s) - \nabla \psi(\theta) - \theta \nabla p = 0$

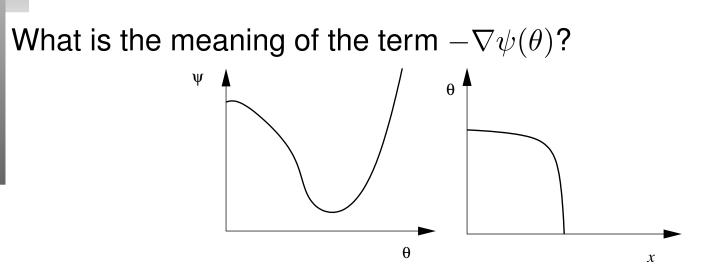
network viscosity solute-network viscosity osmosis pressure Imcompressibility

$$\nabla \cdot (\theta V_n + \theta_s V_s) = g_n$$

Osmotic Pressure

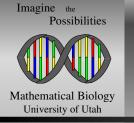


 $\psi'(\theta) < 0$ gives contraction (deswelling)

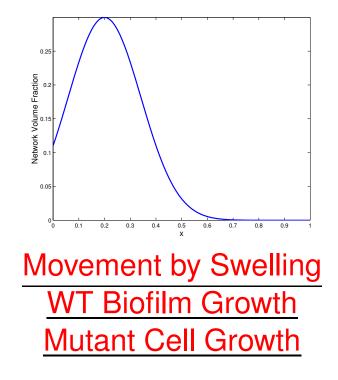


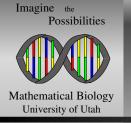
 $\psi'(\theta) > 0$ gives expansion (swelling) $\psi'(\theta) < 0$ gives contraction (deswelling)

To maintain an edge, $\psi(\theta)$ must be of the form $\psi(\theta) = \theta^2 F(\theta)$

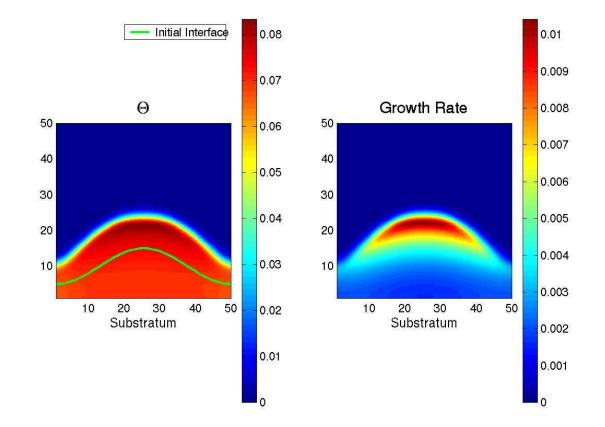


Movement by Swelling





Fingering Instability



"Nutrient Poor" Fingering Instability

Channeling

Modified Network Model: Include elastic strains, $\sigma_n = \gamma \epsilon$

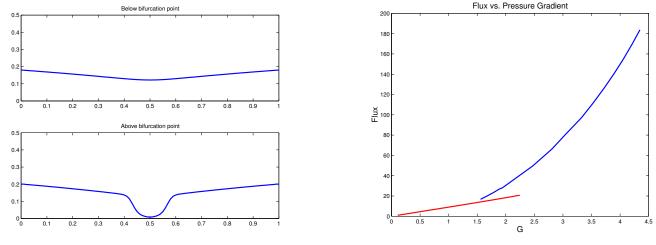
 $\eta \nabla (\theta (\nabla V_n + \nabla V_n^T)) + \nabla \cdot (\gamma \theta \epsilon) - h_f \theta \theta_s (V_n - V_s) - \nabla \psi(\theta) - \theta \nabla p = 0$

and displacements D

$$\frac{\partial D}{\partial t} + \nabla \cdot (V_n D) = V_n$$

where ϵ is the Cauchy-Green strain tensor.

Channel Formation



The "Moses Bifurcation"

Remark: The existence of this channeling "Moses Bifurcation" can be established using singular perturbation arguments.

- Quorum sensing is via a hysteretic switch involving diffusible autoinducer
- Fingering and mushrooming may be driven by a substrate deficiency-fingering instability.
- Channeling may be driven by a gel-osmosis "Moses Bifurcation".

Acknowledgments

Collaborators

- Jack Dockery, Montana State University
- Nick Cogan, Tulane University

Notes

- Funding provided by a grant from the NSF.
- This talk can be viewed at http://www.math.utah.edu/keener/lectures/biofilmdynamics
- No Microsoft products were used or harmed during the production of this talk.

The End

Structure of the "Moses Bifurcation"

The steady state equation is

$$\epsilon \theta \frac{d}{dy} \left(\frac{\frac{d\theta}{dy}}{\theta} \right) + \frac{1}{\theta} H(\theta, y) = k$$

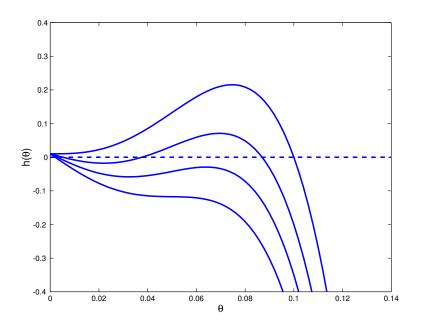
$$\int_0^1 \theta dy = \hat{\theta}$$

where

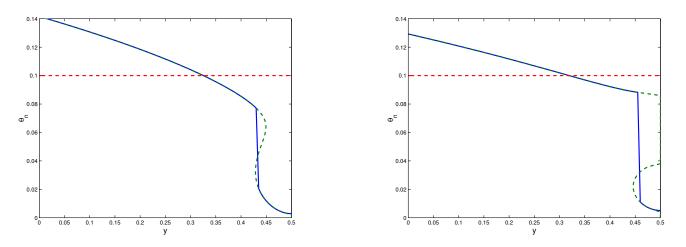
$$H(y,\theta) = G^2(y - \frac{1}{2})^2 - \theta \Psi(\theta) + \hat{\theta}^2 - \theta^2, \Psi(\theta) = \kappa \theta^2(\theta - \theta_{ref})$$

This is a singular perturbation problem.

For $\epsilon = 0$ (the "outer solution"), we must solve an algebraic equation for θ as a function of y. However, the equation $H(\theta, y) = k\theta$ has (possibly) multiple solutions.



The governing equation is a "bistable equation", so transition layers can be inserted at certain locations.



It is possible that boundary layer solutions coexist with non-boundary solutions, as is seen in the bifurcation diagram. (Go back)