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Biofilms

biofilm fouling of filter fibers

Placque on teeth
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Some Interesting Questions

How do gels grow?
• P. aeruginisa (on catheters, IV tubes, etc.)
• Mucus secretion (bronchial tubes, stomach lining)
• Colloidal suspensions, cancer cells
• Gel morphology (the shape of sponges)

Why are gels important?
• Protective capability
• Friction reduction
• High viscosity (low washout rate) for drugs
• Acid protection
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Biofilm Formation in P. Aeruginosa

Wild Type Biofilm Mutant Mutant with autoinducer
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Dynamics of Growing Biogels

I: Quorum sensing:
• What is it?
• How does it work?

II: Heterogeneous structures
• How do cells use polymer gel for locomotion?
• What are the mechanisms of pattern formation?
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I: Quorum Sensing in P. aeruginosa

Quorum sensing: The ability of a bacterial colony to sense its
size and regulate its activity in response.
Examples: Vibrio fisheri, P. aeruginosa
P. Aeruginosa:
• Major cause of hospital infection in the US.
• Major cause of death in intubated Cystic Fibrosis patients
• In planktonic form, they are non-toxic, but in biofilm they are

highly toxic and well-protected by the polymer gel in which
they reside. However, they do not become toxic until the
colony is of sufficient size, i.e., quorum sensing.
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Stages of Growth

Planktonic
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Stages of Growth

Small Dense Colony
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Stages of Growth
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Biochemistry of Quorum Sensing

lasI

lasR
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lasR

lasI

ALasR

The Dynamics of Growing Biofilm – p.8/30



University of Utah
Mathematical Biology

theImagine 
Possibilities

Biochemistry of Quorum Sensing

LasR

LasI
LasR

3−oxo−C12−HSL

lasI

lasR

A

A

The Dynamics of Growing Biofilm – p.8/30



University of Utah
Mathematical Biology

theImagine 
Possibilities

Biochemistry of Quorum Sensing

LasR

rsaL

LasI
LasR

3−oxo−C12−HSL

lasI

lasR

A

A

RsaL

The Dynamics of Growing Biofilm – p.8/30



University of Utah
Mathematical Biology

theImagine 
Possibilities

Biochemistry of Quorum Sensing

LasR

rsaL

LasI

RsaL

LasR

C4−HSL

rhlR

RhlR

RhlR

RhlI

rhlI

3−oxo−C12−HSL

lasI

lasR

The Dynamics of Growing Biofilm – p.8/30



University of Utah
Mathematical Biology

theImagine 
Possibilities

Biochemistry of Quorum Sensing
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Modeling Biochemical Reactions

Bimolecular reaction A+R←→ P

LasR

3−oxo−C12−HSL

A

A

LasR

dP

dt
= k+AR− k−P

Production of mRNA P
−→ l

LasR A lasI

dl

dt
=
VmaxP

Kl + P
− k−ll

Enzyme production l → L
LasIlasI

dL

dt
= kll −KLL
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Full system of ODE’s

dP
dt

= kRARA− kPP

dR
dt

= −kRARA+ kPP − kRR+ k1r,

dA
dt

= −kRARA+ kPP + k2L− kAA,

dL
dt

= k3l − klL,

dS
dt

= k4s− kSS,

ds
dt

= Vs
P

KS+P
− kss,

dr
dt

= Vr
P

Kr+P
− krr + r0,

dl
dt

= Vl
P

Kl+P
1

KS+S
− kll + l0
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LasI
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A

A
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Diffusion

E

A

dA

dt
= F (A,R, P ) + δ(E −A)

dE

dt
= − kEE + δ(A− E)
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Diffusion

E

A

dA

dt
= F (A,R, P ) + δ(E −A)

dE

dt
= − kEE + δ(A− E)

rate of change, production or degradation rate, diffusive
exchange,
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Diffusion

E

A

dA

dt
= F (A,R, P ) + δ(E −A)

(1− ρ) (
dE

dt
+KEE) = ρ δ(A− E)

rate of change, production or degradation rate, diffusive
exchange, density dependence.
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Model Reduction

Two (possible) ways to proceed:
• Numerical simulation (but few of the 22 kinetic parameters

are known),
• Qualitative analysis (QSS reduction)

dA

dt
= F (A) + δ(E −A), (1− ρ)(

dE

dt
+ kEE) = ρδ(A−E)
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Two Variable Phase Portrait
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A PDE Model

Suppose cells are immobile, so internal variables do not diffuse,
but extracellular autoinducer E diffuses

∂A

∂t
= F (A,U) + δ(E −A),

∂U

∂t
= G(A,U), U ∈ R7,

∂E

∂t
= ∇ · (DE∇E)− kEE +

ρ

1− ρ
δ(A− E)

in Ω with Robin boundary conditions

n ·De∇E + αE = 0

on ∂Ω.
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A Hydrogel Primer

• What is a hyrogel?
A tangled polymer network in solvent.

• Examples of biological hydrogels
Micellar gels
Jello (a collagen gel ≈ 97% water)
Extracellular matrix
Blood clots
Mucin - lining the stomach, bronchial tubes, intestines
Glycocalyx
Sinus secretions
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A Hydrogel Primer - II

Functions of a biological hydrogel
• Decreased permeability to large molecules
• Structural strength (for cell walls)
• Capture and clearance of foreign substances
• Decreased resistance to sliding/gliding
• High internal viscosity (low washout)

Important features of gels
• Usually comprised of highly polyionic polymers
• Can undergo volumetric phase transitions in response to

ionic concentrations, temperature, etc.
• Volume is determined by combination of forces (entropic,

electrostatic, hydrophobic, cross-linking, etc).The Dynamics of Growing Biofilm – p.17/30



University of Utah
Mathematical Biology

theImagine 
Possibilities

How gels grow

• Polymerization/deposition

networkmonomers polymers

• Secretion

swollencondensed secretion
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Modelling Biofilm Growth

A two phase material with polymer network volume fraction θ
∂θ
∂t

+∇ · (Vnθ) = gn Network Phase (EPS)

∂θs

∂t
+∇ · (Vsθs) = 0 Solute Phase

∂b
∂t

+∇ · (Vnb) = gb Bacterial concentration

∂θsu
∂t

+∇ · (θs(Vsu−Du∇u) = gu Resource Concentration

where θ + θs = 1,

solute volume fraction, network velocity,

solute velocity, artificial network diffusion.
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Modelling Biofilm Growth

A two phase material with polymer network volume fraction θ
∂θ
∂t

+∇ · (Vnθ) = gn + ε∇2θ Network Phase (EPS)

∂θs

∂t
+∇ · (Vsθs) = 0 Solute Phase

∂b
∂t

+∇ · (Vnb) = gb Bacterial concentration

∂θsu
∂t

+∇ · (θs(Vsu−Du∇u) = gu Resource Concentration
where θ + θs = 1, solute volume fraction, network velocity,

solute velocity, artificial network diffusion.
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Force Balance

Solute Phase (an inviscid fluid)

hfθθs(Vn − Vs) − θs∇p = 0,

solute-network friction

Network Phase (a viscoelastic material)

Imcompressibility

∇ · (θVn + θsVs) = gn
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Osmotic Pressure

What is the meaning of the term −∇ψ(θ)?
ψ

θ

θ

x

ψ′(θ) > 0 gives expansion (swelling)
ψ′(θ) < 0 gives contraction (deswelling)

To maintain an edge, ψ(θ) must be of the form ψ(θ) = θ2F (θ)
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Movement by Swelling
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Fingering Instability

"Nutrient Poor" Fingering Instability
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Channeling

Modified Network Model: Include elastic strains, σn = γε

η∇(θ(∇Vn+∇V T
n ))+ ∇ · (γθε) −hfθθs(Vn−Vs)−∇ψ(θ)−θ∇p = 0

and displacements D

∂D

∂t
+∇ · (VnD) = Vn

where ε is the Cauchy-Green strain tensor.
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Channel Formation
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The "Moses Bifurcation"

Remark: The existence of this channeling "Moses Bifurcation"
can be established using singular perturbation arguments.
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Summary

• Quorum sensing is via a hysteretic switch involving diffusible
autoinducer

• Fingering and mushrooming may be driven by a substrate
deficiency-fingering instability.

• Channeling may be driven by a gel-osmosis "Moses
Bifurcation".
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Structure of the "Moses Bifurcation"

The steady state equation is

εθ
d

dy

(

dθ
dy

θ

)

+
1

θ
H(θ, y) = k

subject to
∫

1

0

θdy = θ̂

where

H(y, θ) = G2(y −
1

2
)2 − θΨ(θ) + θ̂2

− θ2,Ψ(θ) = κθ2(θ − θref )
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Singular Perturbation Analysis

This is a singular perturbation problem.

For ε = 0 (the "outer solution"), we must solve an algebraic
equation for θ as a function of y. However, the equation
H(θ, y) = kθ has (possibly) multiple solutions.
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Boundary Layer Analysis

The governing equation is a "bistable equation", so transition
layers can be inserted at certain locations.
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It is possible that boundary layer solutions coexist with
non-boundary solutions, as is seen in the bifurcation diagram.

( Go back)
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