next up previous
Next: Tyson-Fife Up: Two_variable_models Previous: Mitchell-Schaeffer

Mitchell-Schaeffer Revised

To make the Mitchell-Schaeffer look more like a cardiac ionic model, take
$\displaystyle C_m{dv\over dt}$ $\textstyle =$ $\displaystyle g_{Na}hm^2(V_{Na}-v) +g_K(V_K-v),$ (23)
$\displaystyle {dh\over dt}$ $\textstyle =$ $\displaystyle a_h(v)(1- h) - b_h(v)h$ (24)

where
\begin{displaymath}
m(v) = \left\{\begin{array}{cc} 0,
&v<0\\ v,&0<v<1\\ 1,&v>1\end{array}\right.
\end{displaymath} (25)

To match the M-S model, we take

\begin{displaymath}
{g_{Na}\over C_m} = {1\over \tau_{in}} = {1\over 0.3} = 3.33...
...\over C_m} = {1\over \tau_{out}} = {1\over 6} = 0.16 /{\rm ms}
\end{displaymath} (26)

We also take
\begin{displaymath}
a(v) = {1-f\over\tau_{open}+(\tau_{close}-\tau_{open})f},\qquad b(v) =
{f\over\tau_{open}+(\tau_{close}-\tau_{open})f}
\end{displaymath} (27)

where
\begin{displaymath}f(v) = {1\over 2}(1+\tanh(\kappa(v-v_{gate})),
\end{displaymath} (28)

so that $h_\infty = 1-f(v)$, and $\tau_h =
{\tau_{open}+(\tau_{close}-\tau_{open})f}$. If $\kappa \rightarrow
\infty$, this reduces exactly to the M-S model. In the M-S model, $\tau_{open} = 120$ms, $\tau_{close} = 150$ms, and $v_{gate} = 0.13$.



Movie