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Rhythmic phenomena represent one of the
most striking manifestations of dynamic
behaviour in biological systems. In 1936,
Fessard1 published a book on the Rhythmic
Properties of Living Matter. This book was

devoted solely to the oscillatory properties of nerve cells,
but it is now clear that rhythms are encountered at all
levels of biological organization, with periods ranging
from a fraction of a second to years2,3. These rhythms find
their roots in the many regulatory mechanisms that
control the dynamics of living systems. Thus, at the
cellular level, neural and cardiac rhythms are associated
with the regulation of voltage-dependent ion channels,
metabolic oscillations originate from the regulation of
enzyme activity, pulsatile intercellular signals and
intracellular calcium oscillations involve the control of
receptor activity or transport processes, while regulation
of gene expression underlies circadian rhythms.

Understanding the molecular and cellular mechanisms
responsible for oscillations is crucial for unravelling the
dynamics of life. When based firmly on experiments, 
computational biology provides an essential tool for 
studying these mechanisms which, because of their 
complexity, cannot be comprehended by sheer intuition
alone. The purpose of this article is to present an overview of
how models and computer simulations are used to address
the origin, properties and functions of some of the main 
cellular rhythms.

Theoretical models for biological rhythms were first
used in ecology to study the oscillations resulting from
interactions between populations of predators and prey4.
Neural rhythms represent another field where such models
were used at an early stage: the formalism developed by
Hodgkin and Huxley5 still forms the core of most models for
oscillations of the membrane potential in nerve and cardiac
cells6–8. Of more recent vintage are models for oscillations of
non-electrical nature that arise at the cellular level from 
regulation of enzyme, receptor or gene activity (see ref. 3 for
a detailed list of references). 

The computational biology of these rhythms forms the
core of this review. I shall consider, in turn, oscillations of
intracellular calcium, pulsatile signalling in intercellular
communication, and circadian rhythms. Additionally, I
shall describe how computational biology can help in
understanding the transition from simple periodic 

behaviour to complex oscillations including bursting 
and chaos.

Basic phenomenology of oscillatory phenomena
In the course of time, open systems that exchange matter
and energy with their environment generally reach a stable
steady state. However, as shown by Glansdorff and 
Prigogine, once the system operates sufficiently far from
equilibrium and when its kinetics acquire a nonlinear
nature, the steady state may become unstable9. Feedback
processes and cooperativity are two main sources of 
nonlinearity that favour the occurrence of instabilities in
biological systems. When the steady state becomes unstable,
the system moves away from it, often bursting into sustained
oscillations around the unstable steady state (Fig. 1a, b).

In the phase space defined by the system’s variables (for
example, the concentrations of the biochemical species that
are involved in the oscillatory mechanism), sustained 
oscillations correspond to the evolution towards a closed
curve — the limit cycle. These oscillations are resistant to
perturbations, because the limit cycle will be regained
regardless of initial conditions, starting from the vicinity of
the unstable state (Fig. 1c) or from outside the asymptotic,
closed trajectory (Fig. 1d). Limit-cycle oscillations thus 
represent an example of non-equilibrium self-organization
and can therefore be viewed as temporal dissipative 
structures9. The oscillations are characterized by their
amplitude and by their period. A bifurcation diagram can be
constructed by plotting the amplitude of the oscillations of a
given variable and the steady state (stable or unstable) as a
function of a control parameter (see Box 1).

Evolution towards a limit cycle is not the only possible
behaviour when a steady state becomes unstable in a 
spatially homogeneous system. The system may evolve
towards another stable steady state (when such a state
exists). The most common case of multiple steady states,
referred to as bistability, is of two stable steady states 
separated by an unstable one. This phenomenon is
thought to be important in differentiation10, and was
shown recently to have a role in early Xenopus
development11. When spatial inhomogeneities develop,
instabilities may lead to the emergence of spatial or 
spatiotemporal dissipative structures9. These can take the
form of propagating concentration waves, which are
closely related to oscillations.
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Understanding the molecular mechanism of oscillations requires
clarifying the chain of events that cause each variable of the system to
periodically rise and fall. Elucidation of the underlying mechanism
largely reduces to identifying the feedback processes that lie at the core of
the oscillations. The latter may originate from positive (Fig. 1a) or 
negative (Fig. 1b) feedback, or from a mixture of both. The interplay
between a large number of variables coupled through multiple 
regulatory interactions makes it difficult, if not impossible, to fully grasp
the dynamics of oscillatory behaviour without resorting to modelling
and computer simulations.

In addressing the molecular mechanism of a biological rhythm,
the typical programme of computational biology consists of the 
following steps. First, the key variables of the phenomenon are 
identified, together with the nature of their interactions that form the
relevant feedback loops. Second, differential equations describing
the time evolution of the system are constructed. In spatially homo-
geneous conditions, these take the form of ordinary differential
equations, whereas in the presence of diffusion, partial differential
equations are used to describe the system’s spatiotemporal evolution.
Third, the steady state(s) admitted by these equations are determined
analytically or by numerical integration. 

The fourth step probes the stability properties of the steady
state(s). This is generally done by using linear stability analysis. The
principle of this analysis9 is to determine the evolution of infinitesimal
perturbations away from the steady state: the steady state is stable
when such perturbations decay in time, and unstable otherwise.
When parameter values correspond to an unstable steady state,

numerical integration of the evolution equations should confirm that
in the course of time the system leaves the steady state to evolve either
to another, stable steady state or to sustained limit-cycle oscillations. 

Using this approach, the fifth step is to determine the domains of
occurrence of sustained oscillations in parameter space. Numerical
solution of the kinetic equations then allows the construction of
bifurcation diagrams that show how the period and amplitude vary
as a function of the various parameters. Bifurcation diagrams may
also be generated by means of programs (such as AUTO, developed
by Doedel12) which are based on continuation methods. Finally, the
theoretical predictions of the model, obtained by numerical 
simulations based on available parameter values, or else on values
taken in a physiological range, are compared with experimental
observations. This programme possesses its own dynamics: when the
model predictions do not agree with experiments, or when new
behaviours are discovered, the model must be modified accordingly.

Calcium oscillations
The three best-known examples of biochemical oscillations were
found during the decade 1965 to 19753,13,14. These include the peroxi-
dase reaction, glycolytic oscillations in yeast and muscle, and the 
pulsatile release of cyclic AMP (cAMP) signals in Dictyostelium
amoebae (see below). Another decade passed before the develop-
ment of Ca2+ fluorescent probes led to the discovery of oscillations in
intracellular Ca2+. Oscillations in cytosolic Ca2+ have since been
found in a variety of cells where they can arise spontaneously, or after
stimulation by hormones or neurotransmitters. Their period can
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Figure 1 Sustained oscillations can occur in models based
on positive or negative feedback. a, Typical oscillations
obtained in models based on positive feedback. The
particular oscillations shown are obtained in a two–variable
model for the product-activated phosphofructokinase
reaction responsible for glycolytic oscillations3,81. 
Y represents the reaction product, and X represents the
substrate of the enzyme. Similar oscillations are obtained in
models for Ca2+ oscillations based on Ca2+-induced Ca2+

release3,17 or cAMP oscillations in Dictyostelium
amoebae3,28. In the case of Ca2+ oscillations, Y denotes
cytosolic Ca2+, whereas X represents the Ca2+ content of
intracellular stores. For cAMP oscillations in Dictyostelium,
which rely on a mixture of positive and negative feedback
(see text), X represents the fraction of active (non-
desensitized) cAMP receptor, and Y represents the level of
extracellular cAMP. b, Oscillations obtained in a five-
variable model based on negative feedback for the
circadian rhythmic variation of the PER protein (Y ) and its
mRNA (X ) in Drosophila3,50. c, Limit cycle in the phase
plane (X, Y ), corresponding to the oscillations shown in a.
Initial conditions are such that the limit cycle here is
reached from a point located in the vicinity of the unstable
steady state. d, Limit cycle corresponding to the oscillations
shown in b. Initial conditions are such that the limit cycle
here is reached from outside. The arrows on the phase plane trajectory in c and d
indicate the direction of movement along the limit cycle. Over a period, oscillations in a
and b can be broken down into phases 1–3 and 1–2, respectively (see text and below).
As in Fig. 3, actual scales for variables X and Y and governing kinetic equations are
given in the original references indicated in the figure legends. Curves were obtained by
numerical integration of these equations, using the Berkeley Madonna software. In both
a and b, the rise in Y, brought about by the rise in X, leads to a drop in X. This drop is
followed by a decrease in Y that eventually allows for the next rise in X. Thus, although
the regulatory interactions are of opposite nature, the phase relationship between the
variables is similar. One feature, however, differs between the two situations. In the
case of positive feedback (a), the time lag associated with phase 3 results in the
pulsatile nature of the oscillations: sharp peaks, or spikes, are generated at regular
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intervals. Phase 3 corresponds to the pacemaker potential that brings electrically
excitable cells up to the depolarization threshold beyond which an action potential is
generated. This pulsatility is generally not seen in models based on negative feedback
(b), which lack phase 3. However, negative feedback can also produce spikes at
regular intervals when the oscillatory mechanism involves the passage through
thresholds (such a situation producing oscillations resembling those of a is
encountered in a model of a phosphorylation cascade for the mitotic oscillator in
amphibian embryonic cells3,72). In both a and b, the driving force behind sustained
oscillations is found in the phase of increase of variable X, which does not require any
positive feedback. In the different examples considered here, it suffices that the rise in
X is brought about by some constitutive process such as substrate replenishment,
receptor resensitization, refilling of Ca2+ stores or gene transcription.
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range from seconds to minutes, depending on the cell type15. These
oscillations are often accompanied by propagation of intracellular or
intercellular Ca2+ waves. The significance of Ca2+ oscillations and
waves stems from the crucial importance of this ion in the control of
many key cellular processes15.

In cells that use Ca2+ as second messenger, binding of an external
signal to a cell-membrane receptor activates phospholipase C (PLC),
which in turn synthesizes inositol 1,4,5-trisphosphate (InsP3). This
metabolite then binds to an InsP3 receptor located on the membrane
of internal Ca2+ stores (endoplasmic or sarcoplasmic reticulum) and
thereby triggers the release of Ca2+ into the cytoplasm of the cell15. A
conspicuous feature of Ca2+ release is that it is self-amplified: cyto-
plasmic Ca2+ triggers the release of Ca2+ from intracellular stores, a
process known as Ca2+-induced Ca2+ release (CICR).

A first model for cytosolic Ca2+ oscillations was based16 on the
activation of PLC by Ca2+. Although this positive feedback regulation
has been observed in some cell types, it seems that a more general
feedback process underlying oscillations is CICR itself. The effect of
CICR positive feedback is antagonized by several regulatory process-
es (see below). A simple two-variable model for signal-induced Ca2+

oscillations based on CICR accounts17 for sustained oscillations of
cytosolic Ca2+. These oscillations occur between two critical values of
the stimulus intensity, for example, two critical levels of the hormon-
al signal (see figure in Box 1). Below the lower critical value, a low
steady-state level of cytosolic Ca2+ is established; above the larger 
critical value, the system evolves towards a higher, stable steady-state
level of cytosolic Ca2+. The model predicts that the frequency of Ca2+

oscillations rises with the degree of stimulation, as observed experi-
mentally. In this minimal model the level of intracellular InsP3 is
treated as a control parameter reflecting the degree of external stimu-
lation. More complex models for Ca2+ oscillations are based on more
detailed descriptions of InsP3-receptor kinetics18, but still attribute to
CICR a primary role in the origin of repetitive Ca2+ spiking.

Mathematical models for Ca2+ signalling have developed in two
additional directions. First, waves of intra- or intercellular Ca2+ have
been modelled by incorporating the diffusion of cytosolic Ca2+ or the
passage of Ca2+ or InsP3 from cell to cell through gap junctions19–22.
Although most models for Ca2+ waves are deterministic, stochastic
simulations were used to clarify the nature of local increases of
cytosolic Ca2+ known as blips or puffs, which are thought to trigger
the onset of waves15,23. Second, computational biology enables one to
probe mechanisms for encoding Ca2+ spikes in terms of their 
frequency. A variety of physiological responses are controlled by the
frequency and waveform of Ca2+ oscillations, such as gene expression
during development24. Among the processes that could underlie 
such frequency encoding are protein (de)phosphorylation by a 
Ca2+-dependent kinase (phosphatase)17, or the Ca2+-dependence of
calmodulin-kinase II25. A recent study combining experimental and
modelling approaches showed the possibility of frequency encoding
of Ca2+ spikes by interplay with cAMP signalling26.

Pulsatile signalling in intercellular communication
Although intracellular information can be encoded in the frequency
of signal-induced Ca2+ spikes, some extracellular signals can 
themselves be produced in a pulsatile manner. Examples of pulsatile
intercellular communication include episodic hormone secretion
and pulsatile signals of cAMP in the slime mould Dictyostelium 
discoideum. After starvation, these amoebae undergo a transition
from a unicellular to a multicellular phase of their life cycle. By a
chemotactic response to cAMP signals, as many as 105 amoebae 
collect around cells behaving as aggregation centres. These centres
release cAMP with a period of about 5 minutes; surrounding cells
relay the chemotactic signal towards the periphery of the aggregation
field. Relay and oscillations of cAMP result in the formation of 
concentric or spiral waves of aggregating cells27.

Models help to clarify the mechanism of cAMP oscillations in 
Dictyostelium28,29, which involves both positive and negative feedback.

Binding of extracellular cAMP to a cell-surface receptor leads to the acti-
vation of adenylate cyclase, which catalyses the synthesis of intracellular
cAMP. Transport of cAMP into the extracellular medium creates a 
positive feedback loop that drives a rapid rise in cAMP synthesis (phase
1 in Fig. 1a). For sustained oscillations to occur, this rise in cAMP must
be self-limiting, so that cAMP first levels off before decreasing to its min-
imum level (phase 2). Models confirm28 that negative feedback attribut-
able to cAMP-induced receptor desensitization through reversible
phosphorylation can have such a role in limiting self-amplification.
Once the levels of intra- and extracellular cAMP are sufficiently low,
dephosphorylation can resensitize the receptor. The ensuing build-up
of extracellular cAMP (phase 3) progressively brings it to the threshold
above which self-amplification triggers a new pulse.

Numerical simulations indicate that relay of cAMP pulses 
represents a different mode of dynamic behaviour, closely related to
oscillations. Just before autonomous oscillations break out, cells in a
stable steady state can amplify suprathreshold variations in 
extracellular cAMP in a pulsatory manner28,29. Thus, relay and oscil-
lations of cAMP are produced by a unique mechanism in adjacent
domains in parameter space. The two types of dynamic behaviour are
analogous to the excitable or pacemaker behaviour of nerve cells.

Theoretical models shed light on additional aspects of pulsatile
cAMP signalling in Dictyostelium. First, like Ca2+ spikes, cAMP pulses
are frequency encoded. Only pulses delivered at 5-min intervals are
capable of accelerating slime-mould development after starvation.
Simulations indicate that frequency encoding is based on reversible
receptor desensitization28. The kinetics of receptor resensitization
dictates the interval between successive pulses required for a maxi-
mum relay response. 

Second, cAMP oscillations in Dictyosteliumprovide a prototype for
the ontogenesis of biological rhythms. The amoebae become capable
of relaying extracellular cAMP pulses only a few hours after the 
beginning of starvation, before acquiring the property of autonomous
oscillations. Models show that these developmental transitions can be
brought about by the continuous increase in certain biochemical 
parameters such as the activities of adenylate cyclase or phosphodi-
esterase, the enzyme that degrades cAMP. In parameter space these
biochemical changes define a developmental path that successively
crosses domains corresponding to different types of dynamic 
behaviour, from no relay to relay, and finally to oscillations3. 

Third, models are being used to probe the mechanisms underly-
ing the formation of concentric or spiral waves of cAMP responsible
for the spatiotemporal patterns observed during aggregation.
Among the factors shown to be important in the transition between
the two types of waves are extracellular phosphodiesterase activity30

and desynchronization of cells that follow the developmental path
after starvation31. Models based on the same feedback mechanism
also account for the propagation of planar and scroll waves within the
multicellular slug formed by the amoebae after aggregation32.

Pulsatile cAMP signalling in Dictyostelium is closely related with
pulsatile hormone secretion in higher organisms. It is now clear that
most hormones are secreted in a pulsatile rather than continuous 
manner33 and that the temporal pattern of a hormone is often as
important as its concentration in the blood34. The best examples of
pulsatile hormone signals are those of gonadotropin-releasing 
hormone (GnRH) secreted by the hypothalamus with a periodicity
of 1 h in humans and rhesus monkey35, growth hormone (GH)
secreted with a period of 3 to 5 h36, and insulin secreted by pancreatic
b-cells with a period close to 13 min in humans37. In the cases of
GnRH and GH — the effect is less clear-cut for insulin — the 
frequency of the pulses governs the physiological efficacy of hormone
stimulation35,36.

A general model for a two-state receptor subjected to periodic 
ligand variations shows that frequency encoding of hormone pulses
may rely on reversible desensitization in target cells, as it does for
cAMP pulses in Dictyostelium38,39. The mechanism of GnRH pulsatil-
ity is still unknown and provides a challenge for both experiments
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and theory. The basis of pulsatile GH secretion has been studied by a
modelling approach40. In b-cells, pulsatile insulin release could 
originate from insulin feedback on glucose transport into the 
cells41 or from oscillatory membrane activity driven by glycolytic
oscillations37. Together with these metabolic oscillations, mem-
brane-potential bursting and Ca2+ oscillations in b-cells illustrate the
multiplicity of rhythms that can be encountered in a given cell type.

Circadian rhythms 
The most ubiquitous biological rhythms are those that occur with a
period close to 24 h and that allow organisms to adapt to periodic
variations in the terrestrial environment. Experimental advances
during the past decade have clarified the molecular bases of these 
circadian rhythms, first in Drosophila and Neurospora, and more
recently in cyanobacteria, plants and mammals42–44. In all cases inves-
tigated so far, it appears that circadian rhythms originate from the
negative feedback exerted by a protein on the expression of its gene45.

Before details on the molecular mechanism of circadian rhythms
began to be uncovered, theoretical models borrowed from physics
were used to investigate their dynamic properties. The relative 
simplicity of these models explains why their use continues to this
day. Thus the Van der Pol equations, derived for an electrical oscilla-
tor, served for modelling the response of human circadian 
oscillations to light46 and to account for experimental observations
on increased fitness due to resonance of the circadian clock with the
external light–dark cycle in cyanobacteria47. The earliest model 
predicting oscillations due to negative feedback on gene expression
was proposed by Goodwin48, at a time when the part played by such a
regulatory mechanism in the origin of circadian rhythms was not yet
known. Models of this type are still being used in studies of circadian
oscillations, for example in Neurospora49.

Molecular models for circadian rhythms were proposed50 initially
for circadian oscillations of the period (PER) protein and its mRNA in

Drosophila, the first organism for which detailed information on the
oscillatory mechanism became available45 (the PER protein behaves as
a transcriptional regulator capable of influencing the expression of a
variety of genes besides its own gene, per). The case of circadian
rhythms in Drosophila illustrates how the need to incorporate experi-
mental advances leads to a progressive increase in the complexity of
theoretical models. A first model50 governed by a set of five kinetic
equations is shown in Fig. 2a; it is based on the negative control exerted
by the PER protein on the expression of per. Numerical simulations
show that for appropriate parameter values, the steady state becomes
unstable and limit-cycle oscillations appear (Fig. 1b, d). 

This early model did not account for the effect of light on the 
circadian system. Experiments subsequently showed that a second
protein, timeless or TIM, forms a complex with PER, and that light
acts by inducing TIM degradation43. An extended, ten-variable
model was then proposed51, in which the negative regulation is exert-
ed by the PER–TIM complex (Fig. 2b). This model produces essen-
tially the same result, sustained oscillations in continuous darkness.
In addition, it accounts for the behaviour of mutants and explicitly
incorporates the effect of light on the TIM degradation rate. Thereby
the model can account for the entrainment of the oscillations by
light–dark cycles and for the phase shifts induced by light pulses51. A
closely related model incorporating the formation of a PER–TIM
complex has been proposed for Drosophila circadian rhythms52.

Theoretical models for circadian rhythms in Drosophila bear on the
mechanism of circadian oscillations in mammals, where homologues
of the per gene exist and negative autoregulation of gene expression is
also found44. However, in mammals, the role of TIM as a partner for PER
is played by the cryptochrome (CRY) protein, and light acts by inducing
gene expression rather than protein degradation as in Drosophila44. A
further analogy between Drosophila and mammals is that the negative
feedback on gene expression is indirect: the PER–TIM or PER–CRY
complexes exert their repressive effect by binding to a complex of two
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Plotting the maximum and minimum of the oscillations of a given
variable as a function of a control parameter allows the construction of a
‘bifurcation diagram’ showing where the system changes its dynamical
properties. A common type of bifurcation diagram is depicted in the
figure opposite for the case of intracellular Ca2+ oscillations. Below a
critical value, the system reaches a stable steady state, while at the
critical value the steady state becomes unstable and a stable limit cycle
begins to grow, surrounding the unstable steady state (the critical value
at which the limit cycle appears corresponds to a Hopf bifurcation). The
amplitude of the limit cycle increases and passes through a maximum
as the value of the control parameter increases. Finally, above a second,
higher critical value, sustained oscillations disappear and the system
again evolves towards a new stable steady state. This bifurcation
diagram illustrates an important property of sustained oscillations,
namely that they occur within a certain parameter range often bounded
by two critical values.

The scheme in figure opposite represents the simplest type of
bifurcation diagram for the onset of sustained oscillations. More
complex bifurcation diagrams are obtained when multiple attractors
(that is, stable steady states or stable oscillations) coexist in a certain
range of parameter values. Thus a stable steady state and a stable
limit cycle, corresponding to sustained oscillations, may coexist,
separated by an unstable limit cycle. Such a situation is referred to as
hard excitation. Other modes of attractor multiplicity include the
coexistence between two stable steady states (bistability) or between
two stable limit cycles (birhythmicity). Each of the stable attractors
possesses its basin of attraction, which includes all initial conditions,
in phase space, from which the system evolves towards this
particular attractor.

Box 1 Figure Schematic bifurcation diagram showing the domain and amplitude of
intracellular Ca2+ oscillations as a function of the degree of external stimulation b,
which is used as control parameter. Sustained Ca2+ oscillations occur in a range of
stimulation between the two critical b-values denoted bc1 and bc2. The maximum
and minimum of cytosolic Ca2+ oscillations are plotted as a function of b in this
range, in which the dashed line refers to the unstable steady state. On the left and
right sides of the oscillatory domain, the system evolves to a stable steady state
(solid line) corresponding to a low and high level of cytosolic Ca2+, respectively. In the
situation described, a unique steady state corresponds to a given value of b; the
precise value of the steady state depends on b. The bifurcation diagram is obtained
in a two-variable model17 for Ca2+ oscillations based on Ca2+-induced Ca2+ release
(see ref. 17 for a nonschematic version of the diagram).
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proteins, CLOCK–CYC or CLOCK–BMAL1 in the fly53 and in 
mammals54, respectively. These proteins activate per and tim (or cry)
gene expression. Thus negative feedback occurs by counteracting the
effect of gene activators. Additional feedback loops are present, such as
the negative feedback exerted by CLOCK or BMAL1 on the expression
of their genes. These controls, which are mediated by other gene 
products44,55, are also removed upon formation of the complex with the
PER–TIM or PER–CRY dimers53,54.

What are the dynamical consequences of these additional regula-
tory loops and of the indirect path of the negative feedback on gene

expression? Addressing these issues requires further extension of the
model. Such an extended model has been proposed for Drosophila56,57

and is currently being studied for mammals58. The model for the 
circadian clock mechanism in mammals is schematized in Fig. 2c.
The presence of additional mRNA and protein species, as well as of
multiple complexes formed between the various clock proteins,
complicates the model. The time evolution of this extended model is
governed by a system of 16 kinetic equations. Sustained or damped
oscillations can occur in this model for parameter values correspond-
ing to continuous darkness. As observed in the experiments on the
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Figure 2 Molecular models of increasing complexity considered for circadian
oscillations. a, Model for circadian oscillations in Drosophila based on negative
autoregulation of the per gene by its protein product PER3,50. The model incorporates
gene transcription into per mRNA, transport of per mRNA into the cytosol as well as
mRNA degradation, synthesis of the PER protein at a rate proportional to the per mRNA
level, reversible phosphorylation and degradation of PER, as well as transport of PER
into the nucleus where it represses the transcription of the per gene. The model is
described by a set of five kinetic equations3,50. b, Model for circadian oscillations in
Drosophila incorporating the formation of a complex between the PER and TIM
proteins51. The model is described by a set of ten kinetic equations51. c, Model for
circadian oscillations in mammals incorporating indirect, negative autoregulation 

of the Per and Cry genes through binding of the PER–CRY dimer to the complex 
formed between the two activating proteins CLOCK and BMAL1. Also considered is the
negative feedback exerted by the latter proteins on the expression of their genes.
Synthesis, reversible phosphorylation, and degradation of the various proteins are 
taken into account. The model is described by a set of 16 kinetic equations58. For
appropriate parameter values, all three models admit sustained circadian oscillations 
in conditions corresponding to continuous darkness. The effect of light is taken into
account in the models in b and c by incorporating light-induced TIM degradation or
light-induced Per expression, respectively. Further extensions of the model shown in c
for the mammalian clock are needed to incorporate the recently discovered role of the
Rev-erba and Dec genes55,89.
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mammalian clock, Bmal1 mRNA oscillates in opposite phase with
respect to Per and Cry mRNAs44. Entrainment by the external
light–dark cycle can be captured by the model if it incorporates the
light-induced increase in the rate of Per expression. Numerical simu-
lations show that, upon entrainment, a slight change in parameters,
such as the maximum rate of PER phosphorylation, suffices to shift
the peak in Per mRNA with respect to the onset of the light phase by
several hours. This lability could explain why the phase of circadian
oscillations in mammals varies in peripheral tissues with respect to
the phase of the central pacemaker located in the suprachiasmatic
nuclei within the hypothalamus44.

The results obtained with the model for the mammalian circadian
clock provide cues for circadian rhythm sleep disorders in humans59.
Thus permanent phase shifts in light–dark conditions could account for
the familial advanced sleep phase syndrome that has been attributed to
PER hypophosphorylation60, and for the delayed sleep phase syndrome,
which is also related to PER61. For some parameter values the model fails
to allow entrainment by 24-h light–dark cycles. This result could account
for the non-24-h sleep–wake syndrome in which the phase of the
sleep–wake pattern varies continuously with respect to the light–dark
cycle, that is, the patient free-runs in light–dark conditions59.

Computational biology can provide surprisingly counterintu-
itive insights. A case in point is the puzzling observation that 
circadian rhythms in continuous darkness can sometimes be 
suppressed by a single pulse of light and restored by a second such
pulse. Winfree2 proposed the first theoretical explanation for this
long-term suppression. He hypothesized that the limit cycle in each
oscillating cell surrounds an unstable steady state. The light pulse
would act as a critical perturbation that would bring the clock to the
singularity, that is, the steady state. Because the steady state is unsta-
ble, each cell would eventually return to the limit cycle, but the 
population would be spread out over the entire cycle so that the cells
would be desynchronized and no global rhythm would be seen. 

An alternative explanation is based on the coexistence of sustained
oscillations with a stable steady state. Such coexistence has been
observed62, albeit in a restricted domain in parameter space, in the

model for circadian rhythms in Drosophilabased on negative autoregu-
lation by the PER–TIM complex (Fig. 2b). In such a situation, the effect
of the light pulse is to bring the clock mechanism into the basin of attrac-
tion of the stable steady state in each oscillating cell, so that the rhythm is
suppressed. A second light pulse then brings the system back to the limit
cycle’s basin of attraction corresponding to circadian oscillations62.
Without a computational model it is impossible to predict the 
coexistence between a stable steady state and a stable rhythm.

I have discussed only deterministic models for cellular rhythms so
far. Do the models remain valid when the numbers of molecules
involved are small, as may occur in cellular conditions? In the 
presence of small amounts of mRNA or protein molecules, the effect
of molecular noise on circadian rhythms may become significant and
may compromise the emergence of coherent periodic oscillations63.
The way to assess the influence of molecular noise is to resort to 
stochastic simulations (see review in this issue by Rao and colleagues,
pages 231–237). In applying this approach to the models for circadi-
an rhythms schematized in Fig. 2a, b, we must first break down the 
different reactions into elementary steps. 

The temporal dynamics of the system is determined numerically by
allowing the various reaction steps to occur randomly, with a frequency
measured by their probability of occurrence. These stochastic simula-
tions show that the dynamic behaviour predicted by the corresponding
deterministic equations remains valid as long as the maximum num-
bers of mRNA and protein molecules involved in the circadian clock
mechanism are of the order of a few tens and hundreds, respectively64.
The larger the numbers of molecules, the smaller the noise due to 
random fluctuations. In the presence of molecular noise, the trajectory
in the phase space transforms into a cloud of points surrounding the
deterministic limit cycle (Fig. 3). Stochastic simulations confirm the
existence of bifurcation values of the control parameters bounding a
domain in which sustained oscillations occur64. Only when the maxi-
mum numbers of molecules of mRNA and protein become smaller than
a few tens does noise begin to obliterate the circadian rhythm. Mecha-
nisms enhancing resistance to noise in genetic oscillators have been
investigated in a recent theoretical study65.

From simple to complex oscillatory behaviour 
Computational biology clarifies the mechanisms responsible for the
transition from simple to complex oscillatory phenomena in 
biochemical and cellular systems3,66. Bursting represents one type of
complex oscillations that is particularly common in neurobiology.
An active phase of spike generation is followed by a quiescent phase,
after which a new active phase begins. Mathematical models throw
light on the conditions that generate these complex periodic oscilla-
tions67. Chaos is a common mode of complex oscillatory behaviour
that has been studied intensively in physical, chemical and biological 
systems3,68,69. In phase space, chaotic oscillations correspond to the
evolution towards a so-called strange attractor. These irregular 
oscillations are characterized by their sensitivity to initial conditions,
which accounts for the unpredictable nature of chaotic dynamics. Yet
another type of complex oscillatory behaviour involves the 
coexistence of multiple attractors. When a stable steady state and a 
stable limit cycle coexist (as in the case of suppression of circadian
rhythm discussed above), they conspire to produce what is 
called hard excitation. Two stable limit cycles may also coexist, 
separated by an unstable cycle. This phenomenon, referred to as
birhythmicity3,66, is the oscillatory counterpart of bistability in which
two stable steady states, separated by an unstable state, coexist.
Birhythmicity was predicted by numerical simulations before being
observed experimentally3.

The study of models indicates the existence of two main routes to
complex oscillatory phenomena. The first relies on forcing a system
that displays simple periodic oscillations by a periodic input69. In an
appropriate range of input frequency and amplitude, one can often
observe the transition from simple to complex oscillatory behaviour
such as bursting and chaos. For other frequencies and amplitudes of
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Figure 3 Effect of molecular noise on circadian oscillations. Stochastic simulations of
the model of Fig. 2a yield oscillations that correspond, in the phase plane (X, Y ), to the
evolution to a noisy limit cycle. The latter takes the form of a cloud of points
surrounding the deterministic limit cycle (white solid curve) obtained in the absence of
molecular noise (data redrawn from Fig. 3a in ref. 64). Variables X (per mRNA) and Y
(nuclear form of the PER protein) are expressed as numbers of molecules or
concentrations in stochastic and deterministic simulations, respectively. In the
stochastic simulations illustrated, X and Y vary in the range between 0 and 200
molecules and 20 and 800 molecules, respectively64. Arrows indicate the direction of
movement along the deterministic or stochastic limit cycle.
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the forcing, entrainment or quasiperiodic oscillations occur. 
Circadian rhythms are subjected to periodic forcing naturally by
light–dark cycles, and numerical simulations of a model for the 
circadian clock indicate that entrainment, quasiperiodic oscillations
and chaos may occur, depending on the magnitude of the periodic
changes induced by the light–dark cycle in the light-sensitive 
parameter66. The waveform of the forcing is also important, as the
domain of entrainment enlarges at the expense of chaos when the
input transforms from a square wave into a sinusoidal forcing66.

Complex oscillations can also occur in autonomous systems that
operate in a constant environment. The study of models for a variety
of cellular oscillations shows that complex oscillatory phenomena
may arise through the interplay between several instability-generat-
ing mechanisms, each of which is capable of producing sustained
oscillations3,66. The case of Ca2+ signalling is particularly revealing,
because of the multiplicity of feedback mechanisms that could
potentially be involved in the onset of oscillations. Thus, among the
many nonlinear processes that could take part in an instability-
generating loop are: (1) Ca2+-induced Ca2+ release; (2) desensitiza-
tion of the InsP3 receptor; (3) bell-shaped dependence of the InsP3

receptor on Ca2+, which reflects its activation and inhibition at 
different Ca2+ levels; (4) capacitative Ca2+ entry; (5) PLC or/and 
InsP3 3-kinase activation by Ca2+; (6) control of Ca2+ by mitochon-
dria; (7) G-protein regulation by Ca2+; and (8) coupling of the 
membrane potential to cytosolic Ca2+. Several models in which at
least two of these regulatory processes are coupled were shown to
admit birhythmicity, bursting or chaotic oscillations22,66,70,71.

Concluding remarks
Given the rapid accumulation of new data on gene, protein and 
cellular networks, it is increasingly clear that computational biology
will be crucial in making sense of the puzzle of cellular regulatory
interactions. Models and simulations are particularly valuable for
exploring the dynamic phenomena associated with these 
regulations. Such an approach has long been applied to the study of
biological rhythms, from the periodic activity of nerve and cardiac
cells to population oscillations in ecology. I have focused here on the
computational biology of some of the main oscillatory phenomena
that arise at the cellular level. Additional examples of cellular 
oscillatory processes that have been studied by means of theoretical
models abound. A most important one is the eukaryotic cell cycle.
Models indicate that mitosis in amphibian embryonic cells is driven
by a limit-cycle oscillator that produces the repetitive activation of
the cyclin-dependent kinase cdk1 (refs 72, 73). The interplay between
oscillations and bistability has been addressed in detailed molecular
models for the cell cycles of yeast and somatic cells, which are more
complex owing to the existence of checkpoints74,75.

At the genetic level, models show that regulatory interactions
between genes can result in multiple steady states or oscillations. The
two types of phenomena have recently been demonstrated in 
synthetic genetic networks reconstituted in bacteria (refs 76, 77; and
see review in this issue by Hasty and colleagues, pages 224–230). 
Circadian rhythms are a fertile field for applying computational biol-
ogy to the study of oscillations associated with genetic regulation.
Also related to the regulation of gene expression are the oscillations in
the activity of the tumour suppressor p53, which have been studied
both experimentally and by means of a model78. A segmentation
clock involving Notch signalling is responsible for periodic somite
formation79. Oscillatory nucleocytoplasmic shuttling of the Msn2
transcription factor, with a period of several minutes, has recently
been observed in yeast and studied theoretically80.

Glycolytic oscillations represent the prototype of periodic behav-
iour associated with enzyme regulation3,13,14. Early models for 
glycolytic oscillations were centred around the reaction catalysed by
phosphofructokinase, and took into account the allosteric and regu-
latory properties of this product-activated enzyme3,14,81. More
detailed models82–84 take into account the full set of glycolytic enzyme

reactions. In these models, the primary role played by phospho-
fructokinase in the instability-generating mechanism is somewhat
blurred. This example illustrates the two main approaches followed
in computational biology. The first is based on minimal models — a
complex system is decomposed into simpler modules85, each of
which can be modelled by simple equations. Once these are under-
stood, they are assembled into increasingly complex networks that
can exhibit collective properties not apparent in the modules’ 
behaviour. The second relies on large-scale models that aim at 
incorporating from the outset all known details about the variables
and processes of interest. This approach may someday lead to the
construction of an electronic cell in silico, although that day remains
far off. With models as with maps, I believe that an intermediate scale
will often prove most fruitful.

The comparison of theoretical predictions with experimental
results calls for more quantitative data in molecular and cell 
biology86. The advent of new tools should facilitate the collection of
more quantitative data on the dynamics of cellular processes. Such
data will complement qualitative studies on the nature of interac-
tions in cellular regulatory networks.

Clarification of the molecular mechanisms underlying oscilla-
tions is but one application of computational biology to the study of
cellular rhythms. As discussed in this review, models are also used to
address the function of these rhythms, which is often related to their
frequency encoding, and a variety of related phenomena such as
propagating waves and complex oscillations. The link between intra-
cellular oscillations and the propagation of intra- or intercellular
waves is well illustrated by Ca2+ signalling in many cell types and by
cAMP signalling in Dictyostelium amoebae. Recent observations on
the occurrence of intracellular waves in activated leukocytes87

provide a challenge for modelling studies. This spatiotemporal 
phenomenon seems to be linked with the occurrence of metabolic
oscillations, the nature of which are unclear. The modelling approach
has been applied to account for the transition from simple to 
complex oscillatory behaviour in the peroxidase reaction68 and in the
Ca2+ signalling system22,66,70,71. The observation of a transition to
chaos in the glycolytic cycle in yeast cell cultures88 remains to be 
studied in a similar manner.

Models for cellular rhythms illustrate the roles and advantages of
computational biology. First and foremost, modelling takes over
when pure intuition reaches its limits. This situation commonly 
arises when studying cellular processes that involve a large number of
variables coupled through multiple regulatory interactions. Here
one cannot make reliable predictions on the basis of verbal reasoning.
But mathematical models can show the precise parameter ranges that
give rise to sustained oscillations. Models also help clarify the molec-
ular mechanisms of these oscillations. Indeed, simulations allow
rapid determination of the qualitative and quantitative effects of each
parameter, and thereby can help to identify key parameters that have
the most profound effect on the system’s dynamics. Testing various
models permits swift exploration of different mechanisms over a
large range of conditions. One of the main roles of models will be to
provide a unified conceptual framework to account for experimental
observations and to generate testable predictions. 

From a more global perspective, which represents one of the
strengths of the theoretical approach, the common mathematical
structure of models underlines the links between similar dynamic
phenomena occurring in widely different biological settings, from
genetic to metabolic and neural networks, and from cell to animal
populations. ■■
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