

Length Regulation of Flagellar Hooks and Filaments in Salmonella

J. P. Keener

Department of Mathematics
University of Utah

Introduction

- Step 1: Basal Body
- Step 2: Hook (FIgE secretion)
- Step 3: Filament (FliC secretion)

- Step 1: Basal Body
- Step 2: Hook (FigE secretion)
- Step 3: Filament (FliC secretion)

- Step 1: Basal Body
- Step 2: Hook (FlgE secretion)
- Step 3: Filament (FliC secretion)

- Step 1: Basal Body
- Step 2: Hook (FlgE secretion)
- Step 3: Filament (FliC secretion)

- How are the switches between steps coordinated?
- How is the hook length regulated (55 \pm 6 nm)?
- How is the length of the filament "measured"?

Proteins of Flagellar Assembly

Hook is built by FlgE secretion.

- Hook is built by FlgE secretion.
- Flik is the "hook length regulatory" protein.

- Hook is built by FlgE secretion.
- Flik is the "hook length regulatory" protein.
 - Flik is secreted only during hook production.

- Hook is built by FlgE secretion.
- Flik is the "hook length regulatory" protein.
 - Flik is secreted only during hook production.
 - Mutants of Flik produce long hooks; overproduction of Flik gives shorter hooks.

- Hook is built by FlgE secretion.
- Flik is the "hook length regulatory" protein.
 - Flik is secreted only during hook production.
 - Mutants of Flik produce long hooks; overproduction of Flik gives shorter hooks.
 - Lengthening Flik gives longer hooks.

- Hook is built by FlgE secretion.
- Flik is the "hook length regulatory" protein.
 - Flik is secreted only during hook production.
 - Mutants of Flik produce long hooks; overproduction of Flik gives shorter hooks.
 - Lengthening Flik gives longer hooks.
 - 5-10 molecules of FliK are secreted per hook (115-120 molecules of FlgE).

Hook Length Data

 Secreted molecules are chaperoned to prevent folding.

- Secreted molecules are chaperoned to prevent folding.
- Flil is an ATPase

- Secreted molecules are chaperoned to prevent folding.
- Flil is an ATPase
- FIhB is the gatekeeper recognizing the N terminus of secretants.

Step 3

- Secreted molecules are chaperoned to prevent folding.
- Flil is an ATPase
- FIhB is the gatekeeper recognizing the N terminus of secretants.
- once inside, molecular movement is by diffusion.

Secretion Control

Secretion is regulated by FIhB

- During hook formation, only FlgE and FliK can be secreted.
- After hook is complete, FlgE and FliK are no longer secreted, but other molecules can be secreted (those needed for filament growth.)
- The switch occurs when the C-terminus of FlhB is cleaved by FlK.

Question: Why is the switch in FlhB length dependent?

Hypothesis: How Hook Length is determined

- The Infrequent Molecular Ruler Mechanism. Flik is secreted once in a while to test the length of the hook.
- The probability of FlhB cleavage is length dependent.

Binding Probability

Suppose the probability of FlhB cleavage by FliK is a function of length $P_c(L)$. Then, the probability of cleavage at time t, P(t), is determined by

$$\frac{dP}{dt} = \alpha r(L)P_c(L)(1-P)$$

where r(L) is the secretion rate, α is the fraction of secreted molecules that are FliK, and

$$\frac{dL}{dt} = \beta r(L)\Delta$$

where $\beta = 1 - \alpha$ fraction of secreted FlgE molecules, Δ length increment per FlgE molecule.

Binding Probability

It follows that

$$\frac{dP}{dL} = \frac{\alpha}{\beta \Delta} P_c(L) (1 - P)$$

or

$$-\ln(1 - P(L)) = \kappa \int_0^L P_c(L)dL$$

Check the Data

Check the Data

$$-\ln(1 - P(L)) = \kappa \int_0^L P_c(L)dL?$$

Hypothesis: How Hook Length is determined

- The Infrequent Molecular Ruler Mechanism.
- The probability of FlhB cleavage is length dependent. What is the mechanism that determines $P_c(L)$?

Hypothesis: Flik binds to FlhB during translocation to cause switching of secretion target by cleaving a recognition sequence.

 Flik molecules move through the growing tube by diffusion.

- Flik molecules move through the growing tube by diffusion.
- They remain unfolded before and during secretion, but begin to fold as they exit the tube.

- Flik molecules move through the growing tube by diffusion.
- They remain unfolded before and during secretion, but begin to fold as they exit the tube.
- Folding on exit prevents back diffusion, giving a brownian ratchet effect.

- Flik molecules move through the growing tube by diffusion.
- They remain unfolded before and during secretion, but begin to fold as they exit the tube.
- Folding on exit prevents back diffusion, giving a brownian ratchet effect.
- For short hooks, folding prevents FlhB cleavage.

- Flik molecules move through the growing tube by diffusion.
- They remain unfolded before and during secretion, but begin to fold as they exit the tube.
- Folding on exit prevents back diffusion, giving a brownian ratchet effect.
- For short hooks, folding prevents FlhB cleavage.
- For long hooks, movement solely by diffusion allows more time for cleavage.

Stochastic Model

Follow the position x(t) of the C-terminus using the stochastic langevin differential equation

$$\nu dx = F(x)dt + \sqrt{2k_bT\nu}dW,$$

where F(x) represents the folding force acting on the unfolded FliK molecule, W(t) is brownian white noise.

Fokker-Planck Equation

Let P(x,t) be the probability density of being at position x at time t with FlhB uncleaved, and Q(t) be the probability of being cleaved by time t. Then

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x}(F(x)P) + D\frac{\partial^2 P}{\partial x^2} - g(x)P,$$

and

$$\frac{dQ}{dt} = \int_{a}^{b} g(x)P(x,t)dx.$$

where g(x) is the rate of FlhB cleavage at position x.

Probability of Cleavage

To determine the probability of cleavage $\pi_c(x)$ starting from position x, solve

$$D\frac{d^2\pi_c}{dx^2} + F(x)\frac{d\pi_c}{dx} - g(x)\pi_c = 0$$

subject to $\pi'_b(a) = 0$ and $\pi_b(b) = 1$. Then $P_c(L) = \pi_c(a)$.

Results

Difficulties

• There is no direct experimental evidence either for or against this proposed length measurement mechanism.

II - Flagellar Length Detection

 Flagella grow at a velocity that decreases as they get longer.

II - Flagellar Length Detection

- Flagella grow at a velocity that decreases as they get longer.
- If a flagellum is broken off, it will regrow at the same velocity as when it first grew.

II - Flagellar Length Detection

- Flagella grow at a velocity that decreases as they get longer.
- If a flagellum is broken off, it will regrow at the same velocity as when it first grew.

Question: How does the bacterium measure flagellar length?

How Do Flagella Grow?

Step 1: Secretion

Step 2: Diffusion

Step 3: Polymerization

How Do Flagella Grow?

Step 1: Secretion

Step 2: Diffusion

Step 3: Polymerization

How Do Flagella Grow?

Step 1: Secretion

Step 2: Diffusion

Step 3: Polymerization

Modelling Flagellar Growth

Step 2: Diffusion

Important Fact: Filament is a narrow hollow tube, so movement (diffusion) is single file.

Let p(x,t) be the probability that a molecule is at position x at

time t. Then,

$$\frac{\partial p}{\partial t} + \frac{\partial J}{\partial x} = 0$$

where

$$J = -D\frac{\partial p}{\partial x}.$$

Remark: $\frac{J}{l}$ = flux in molecules per unit time.

Step 1: Secretion

Step 3

Step 1: Secretion

Step 3

$$\frac{dP}{dt} =$$

Step 1: Secretion

$$\frac{dP}{dt} = \boxed{K_{on}(1-P)}$$
 on rate,

Step 1: Secretion

$$\frac{dP}{dt} = K_{on}(1-P) - k_{off}P$$
 on rate, off rate,

Step 1: Secretion

Let P(t) be the probability that ATP-ase is bound

Step 4 Blocked

$$\frac{dP}{dt} = K_{on}(1-P) - k_{off}(1-p(0,t))P$$

on rate, off rate, restricted if blocked by another molecule in the tube.

Step 1: Secretion

Let P(t) be the probability that ATP-ase is bound

Step 4 Blocked

$$\frac{dP}{dt} = K_{on}(1-P) - k_{off}(1-p(0,t))P$$

on rate, off rate, restricted if blocked by another molecule in the tube. Thus,

$$\frac{J}{l} = k_{off}(1 - p(0, t))P$$
 at $x = 0$ (A Robin boundary condition).

Rate of Polymerization

Stage 3: Polymerization

$$\frac{J}{l} = k_p p$$

at the polymerizing end x = L.

Then, the growth velocity is

$$\frac{dL}{dt} = \beta \frac{J}{l} \equiv V$$

where β =length of filament per monomer (0.5nm/monomer) \cdots a moving boundary problem.

Diffusion Model

After some work, it can be shown that

$$\lambda = \frac{1}{j} - \frac{K_a}{1 - j} - K_b$$

where
$$j = \frac{J}{lK_{on}}$$
, $\lambda = \frac{lLK_{on}}{D}$, $K_a = \frac{K_{on}}{k_{off}}$, $K_b = \frac{K_{on}}{k_p}$.

A good approximation $J \approx \frac{1}{K_J + \frac{L}{D}} \approx \frac{D}{L}$ for large L

Introducing FlgM and σ^{28} :

Introducing FlgM and σ^{28} :

Class 1

Introducing FlgM and σ^{28} :

Class 1
$$ightarrow$$
 Class 2 $\left\{ egin{array}{ll} \sigma^{28} \\ FlgE \\ FlgKL \\ FlgM \\ FliK \end{array} \right.$

Introducing FlgM and σ^{28} :

$$\begin{array}{c} \left\{\begin{array}{c} \sigma^{28} \\ \text{FlgE} \\ \text{FlgKL} \end{array}\right\} \stackrel{E\sigma^{28}}{\rightarrow} \text{Class 3} \left\{\begin{array}{c} \text{FliC} \\ \text{FliD} \\ \text{FlgM} \end{array}\right\}$$

• FIgM inhibits σ^{28} activity;

- FigM inhibits σ^{28} activity;
- Therefore, during stage 3, FlgM inhibits its own production (negative feedback);

- FIgM inhibits σ^{28} activity;
- Therefore, during stage 3, FlgM inhibits its own production (negative feedback);
- And, FlgM inhibits the production of Flagellin (FliC).

FlgM- σ^{28} *Secretion Dynamics*

 FlgM is not secreted during hook growth.

FlgM- σ^{28} *Secretion Dynamics*

- FlgM is not secreted during hook growth.
- FlgM is secreted during filament growth.

FlgM- σ^{28} *Secretion Dynamics*

- FlgM is not secreted during hook growth.
- FlgM is secreted during filament growth.

So, how fast is FIgM secreted, and why does it matter?

Tracking Concentrations

FigM (M):

$$\frac{dM}{dt}$$
 = rate of production – rate of secretion

Flagellin (FliC) (F):

$$\frac{dF}{dt}$$
 = rate of production – rate of secretion

Filament Length (L):

$$\frac{dL}{dt} = \beta * \text{rate of FliC secretion}$$

Tracking Concentrations

FigM (M):

$$\frac{dM}{dt} = \frac{K_*}{K_M + M} - \alpha \frac{M}{F + M} J$$

Flagellin (FliC) (F):

$$\frac{dF}{dt} = \frac{K_*}{K_M + M} - \alpha \frac{F}{F + M} J$$

Filament Length (L):

$$\frac{dL}{dt} = \beta \frac{F}{M+F} J$$

with $J=rac{1}{K_J+rac{L}{D}}$ (which is length dependent!) .

Filament Growth

 Before secretion begins FlgM concentration is large. When secretion begins, FlgM concentration drops, producing FliC and more FlgM.

Filament Growth

- Before secretion begins FlgM concentration is large. When secretion begins, FlgM concentration drops, producing FliC and more FlgM.
- As the filament grows, secretion slows, FlgM concentration increases, shutting off FliC and FlgM production.

Filament Growth

- Before secretion begins FlgM concentration is large. When secretion begins, FlgM concentration drops, producing FliC and more FlgM.
- As the filament grows, secretion slows, FlgM concentration increases, shutting off FliC and FlgM production.
- If filament is suddenly shortened, secretion suddenly increases, reinitiating the growth phase.

Observations

 Because the flux is inversely proportional to length, the amount of FlgM in the cell is a direct measure of the length of the filament.

Observations

- Because the flux is inversely proportional to length, the amount of FlgM in the cell is a direct measure of the length of the filament.
- Because of negative feedback, the cell "knows" to produce FliC only when it is needed.

Acknowledgments

Help came from

- Kelly Hughes, U of Washington
- Bob Guy, U of Utah
- Tom Robbins, U of Utah

No computers were harmed by Microsoft products during the production or presentation of this talk.

The End