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The Fundamental Problem

1) All living organisms make decisions (when to divide, when to

differentiate, when to destroy, when to repair, when to grow,

when to die)

• What information is available and how is it assessed?

• How is that information transduced into chemistry?

2) In order to operate efficiently, machines (cellular components)

must be built to precise specifications.

• How are those specifications set?

• How are the decisions made to determine regarding

manufacture? (When to make what and how much to

make?)
To grow or not to grow, that is the question. – p.2/40
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Injectosomes

s

Type III Secretion System - Injectosome

To be toxic, or not? – p.3/40
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Flagellar Motors
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Control of Flagellar Growth

The motor is built in a precise step-by-step fashion.

• Step 1: Basal Body

• Step 2: Hook (FlgE secretion)

• Step 3: Filament (FliC secretion)

Basal Body

Regulation of Flagella – p.5/40
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Control of Flagellar Growth

The motor is built in a precise step-by-step fashion.

• Step 1: Basal Body

• Step 2: Hook (FlgE secretion)

• Step 3: Filament (FliC secretion)

FliC

Hook−filament
junction

Hook

Filament

Basal Body

Click to see movies

Questions for this talk:

1. How is construction and number of flagella regulated?

2. How is the hook length determined (55 ±6 nm)?

3. How are the switches between steps coordinated?
Regulation of Flagella – p.5/40
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Bistability

• In a genetically identically

population, some bacteria

develop flagella while

others do not - bistability

• For this image, salmonella

were modified with a GFP

following the fliC promoter.

(Brighter means higher FliC

flagellar protein expression

level. ) Source: Jenna Noll

Regulation of Flagella – p.6/40
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Proteins of Flagellar Assembly

Regulation of Flagella – p.7/40
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Q1:Regulation of construction and

Number
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Regulation of Flagella – p.8/40
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Class 1

F:YdivF

F:DNA

FliT FliD Hbb σ28 FlgM FliZ

FliT:FliD :FlgM28σ

FliT 28σ

FliC

YdiV ydiv

Class 2

Class 3

Class 1

FliD

FliT:FliD

FliT

F:FliT

• FlhD4C2, the master

operon, is made in class 1;

• FlhD4C2 is a transcription

factor for class 2

production.

Regulation of Flagella – p.9/40
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Class 2

F:YdivF
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FliD

FliT:FliD
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• Class 2 includes HBB and

regulatory proteins.

• σ28 (FliA) and FlgM are

produced in class 2.

• FlgM binds to σ28 to

sequester it, keeping it

inactive.

Regulation of Flagella – p.10/40
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Class 3
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• σ28 is the transcription

factor for class 3

production.

• FlgM is secreted from the

cell when HBBs are

complete.

• Flagellar (FliC) and

chemosensory proteins

are made in class 3.

Regulation of Flagella – p.11/40
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Nutritional Response

foodF
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• A regulatory protein, YdiV,

is increased in poor

nutritional conditions,

decreased in good

nutritional conditions.

• YdiV binds to FlhD4C2 to

sequester it, and promotes

its unbinding from DNA and

degradation;

Regulation of Flagella – p.12/40
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Bistability - I
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• FliZ is a class 2 and class

3 protein;

• FliZ inhibits YdiV at the

transcriptional level

• giving a class 2 positive

feedback loop.

Regulation of Flagella – p.13/40
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Bistability - II
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Class 1

FliD

FliT:FliD

FliT
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• FlgM is secreted from the

cell when HBBs are

complete;

• σ28 produces FliZ which

further inhibits YdiV

• giving a class 3 positive

feedback loop.

Regulation of Flagella – p.14/40
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Flagellar Number Control

F:YdivF

F:DNA

FliT FliD Hbb σ28 FlgM FliZ

FliT:FliD :FlgM28σ

FliT 28σ

FliC

YdiV ydiv

Class 2

Class 3

Class 1

FliD

FliT:FliD

FliT

F:FliT

• FliD and FliT are both

class 2 and class 3.

• FliD binds to FliT to se-

quester it.

Regulation of Flagella – p.15/40
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Flagellar Number Control-2

F:FliT F
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• FliD is secreted from the

cell when HBBs are

complete.

• FliT binds to FlhD4C2 to se-

quester it, and promotes its

degradation.

Regulation of Flagella – p.16/40
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A Mathematical Model

A mathematical model shows

• Stochastic Switch-like behavior to turn on HBB production

(bistability)
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A Mathematical Model

A mathematical model shows

• Stochastic Switch-like behavior to turn on HBB production

(bistability)

• Gradual buildup of FliT to turn off HBB production
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A Mathematical Model

A mathematical model shows

• Stochastic Switch-like behavior to turn on HBB production

(bistability)

• Gradual buildup of FliT to turn off HBB production

• Robust number of flagella = 0 or > 1
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Q2: Hook Length Regulation

• Hook is built by FlgE secretion.

Regulation of Flagella – p.18/40
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Q2: Hook Length Regulation

• Hook is built by FlgE secretion.

• FliK is the "hook length regulatory" protein.

• FliK is secreted only during hook production.

• Mutants of FliK produce long hooks; overproduction of

FliK gives shorter hooks.

• Lengthening FliK gives longer hooks.

• 5-10 molecules of FliK are secreted per hook (115-120

molecules of FlgE).

Regulation of Flagella – p.18/40
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Hook Length Data
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The Secretion Machinery

• Secreted molecules are

chaperoned to prevent

folding.

Step 1

FliI

FliJ

C
ring

MS ring

CM FlhA FlhB

C

N

FliH

components
membrane

Regulation of Flagella – p.20/40
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The Secretion Machinery

• Secreted molecules are

chaperoned to prevent

folding.

• FliI is an ATPase

FliJ

Step 2
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The Secretion Machinery

• Secreted molecules are

chaperoned to prevent

folding.

• FliI is an ATPase

• FlhB is the gatekeeper

recognizing the N

terminus of secretants.

N

C

Step 3

C
ring

MS ring

CM FlhA FlhB

FliJ

ATP ADP+Pi

FliH

membrane
components

FliI
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The Secretion Machinery

• Secreted molecules are

chaperoned to prevent

folding.

• FliI is an ATPase

• FlhB is the gatekeeper

recognizing the N

terminus of secretants.

• once inside, molecular

movement is by diffu-

sion.

C

Step 4

FliJ

N

C
ring

MS ring

CM FlhA FlhB

membrane
components

FliI

FliH

Regulation of Flagella – p.20/40
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Secretion Control

Secretion is regulated by FlhB

• During hook formation, only FlgE and FliK can be secreted.

• After hook is complete, FlgE and FliK are no longer

secreted, but other molecules can be secreted (those

needed for filament growth.)

• The switch occurs when the C-terminus of FlhB is cleaved

by FliK.

Question: Why is the switch in FlhB length dependent?

Regulation of Flagella – p.21/40
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Hypothesis: How Hook Length is

determined

• The Infrequent Molecular Ruler Mechanism. FliK is

secreted once in a while to test the length of the hook.

• The probability of FlhB cleavage is length dependent.

Regulation of Flagella – p.22/40
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Binding Probability

Suppose the probability of FlhB cleavage by FliK is a function of

length Pc(L). Then, the probability of cleavage on or before time

t, P (t), is determined by

dP

dt
= αr(L)Pc(L)(1− P ),

where r(L) is the secretion rate, α is the fraction of secreted

molecules that are FliK, and

dL

dt
= βr(L)∆,

where β = 1− α fraction of secreted FlgE molecules, ∆ length

increment per FlgE molecule.

Regulation of Flagella – p.23/40
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Binding Probability

It follows that
dP

dL
=

α

β∆
Pc(L)(1− P ),

or

− ln(1− P (L)) = κ

∫ L

0

Pc(L)dL.

Observation: The only difference between mutant strains should

be in the parameter κ = α
β∆

.

Regulation of Flagella – p.24/40
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Check the Data
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Check the Data
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∫ L

0
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Regulation of Flagella – p.26/40



University of Utah
Mathematical Biology

theImagine 
Possibilities

Use the Data

to estimate Pc(L):

Pc(L) =
1

κ(1− P )
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Test #2: 3 Cultures
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3: FliK induced at 45 min

Question: Can 3 be predicted from 1 and 2?

Regulation of Flagella – p.28/40
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Test #2

Suppose that FliK becomes available only after the hook is

length L0. How long will the completed hook be?

dP

dL
= βPc(L)(1− P ).

with P (L|L0) = 0 so that

P (L|L0) = 1− exp(−κ

∫ L

L0

Pc(L)dL).

To see how this formula can be used:

Regulation of Flagella – p.29/40
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Step 1: Analysis of WT Data

1) Determine Pc(L) from WT data
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Step 2: Analysis of Polyhook Data

2) Determine distribution of polyhooks Pp(L) (i.e., hooks grown

with no hook length control gives a measure of when hooks

started growing - in a growing culture, not all hooks are initiated

at the same time.)
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Step 3: Predict Lengths after FliK

induction

Pi(L) = P (L|0) Pp(L
∗) +

∫ L

0

P (L|L0) P
′

p(L0 + L∗) dL0.

hooks of length ≤ L , hooks started after FliK induction ,

hooks of length L0 at the time of FliK induction

where P (L|L0) = 1− exp(−κ
∫ L

L0
Pc(L)dL).
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Hypothesis: How Hook Length is

determined

• The Infrequent Molecular Ruler Mechanism.

• The probability of FlhB cleavage is length dependent. What

is the mechanism that determines Pc(L)?

Regulation of Flagella – p.33/40
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Secretion Model

Hypothesis: FliK binds to FlhB during translocation to cause

switching of secretion target by cleaving a recognition sequence.

• FliK molecules move through the growing

tube by diffusion.

L

x

0

Regulation of Flagella – p.34/40
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Secretion Model

Hypothesis: FliK binds to FlhB during translocation to cause

switching of secretion target by cleaving a recognition sequence.

• FliK molecules move through the growing

tube by diffusion.

• They remain unfolded before and during

secretion, but begin to fold as they exit the
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Secretion Model

Hypothesis: FliK binds to FlhB during translocation to cause

switching of secretion target by cleaving a recognition sequence.

• FliK molecules move through the growing

tube by diffusion.

• They remain unfolded before and during

secretion, but begin to fold as they exit the

tube.

• Folding on exit prevents back diffusion,

giving a brownian ratchet effect.

• For short hooks, folding prevents FlhB

cleavage.

0

L
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Secretion Model

Hypothesis: FliK binds to FlhB during translocation to cause

switching of secretion target by cleaving a recognition sequence.

• FliK molecules move through the growing

tube by diffusion.

• They remain unfolded before and during

secretion, but begin to fold as they exit the

tube.

• Folding on exit prevents back diffusion,

giving a brownian ratchet effect.

• For short hooks, folding prevents FlhB

cleavage.

• For long hooks, movement solely by diffu-

sion allows more time for cleavage.
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Stochastic Model

Follow the position x(t) of the C-terminus us-

ing the stochastic langevin differential equa-

tion

νdx = F (x)dt+
√

2kbTνdW,

where F (x) represents the folding force act-

ing on the unfolded FliK molecule, W (t) is

brownian white noise.

L

x

0

Regulation of Flagella – p.35/40



University of Utah
Mathematical Biology

theImagine 
Possibilities

Fokker-Planck Equation

Let P (x, t) be the probability density of being at position x at

time t with FlhB uncleaved, and Q(t) be the probability of being

cleaved by time t. Then

∂P

∂t
= −

∂

∂x
(F (x)P ) +D

∂2P

∂x2
− g(x)P,

and
dQ

dt
=

∫ b

a

g(x)P (x, t)dx.

where g(x) is the rate of FlhB

cleavage at position x.

g(x)

0 L x

Regulation of Flagella – p.36/40



University of Utah
Mathematical Biology

theImagine 
Possibilities

Probability of Cleavage

To determine the probability of cleavage πc(x) starting from

position x (the splitting probability), solve

D
d2πc

dx2
+ F (x)

dπc

dx
− g(x)πc = −g(x)

subject to π′

c(a) = 0 and πc(b) = 0. Then Pc(L) = πc(a).

Pc(L)

L

gives excellent agreement with curve generated from data.
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Results
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Overall Summary

What is the fundamental principle uncovered here?

Answer: Cells are able to count and measure using appropriate

positive and negative feedback chemical reactions.

• The rate at which molecules are secreted gives information

about how many secretors there are. This can be used to

count and regulate the number of flagella.

• The rate at which molecules move (i.e., diffusion) contains

information about their size. When appropriately coupled

with chemical reactions this allows a measurement to be

made leading to a decision about size.
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