

Diffusion, and How it is Used or How Stupid Organisms Do Math

J. P. Keener

Department of Mathematics University of Utah

$$J = -D \quad \frac{\partial C}{\partial x}$$

$$J = -D \quad \frac{\partial C}{\partial x}$$

molecular flux,

$$J = -D \frac{\partial C}{\partial x}$$

molecular flux, diffusion coefficient,

$$J = -D \left| \frac{\partial C}{\partial x} \right|$$

molecular flux, diffusion coefficient, concentration gradient.

$$J = -D \left| \frac{\partial C}{\partial x} \right|$$

molecular flux, diffusion coefficient, concentration gradient. Conservation:

$$\frac{\partial C}{\partial t} + \frac{\partial J}{\partial x} = 0$$

$$J = -D \left| \frac{\partial C}{\partial x} \right|$$

molecular flux, diffusion coefficient, concentration gradient. Conservation:

$$\frac{\partial C}{\partial t} + \frac{\partial J}{\partial x} = 0$$

leading to the **Diffusion Equation**

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right).$$

Basic Consequences - I

Diffusion in a tube fed by a reservoir

$$C(x,t) = f(\frac{x^2}{Dt})$$

Diffusion time: $t = \frac{x^2}{D}$ for hydrogen ($D = 10^{-5}$ cm ² /s).		
x	t	Example
10 nm	100 ns	cell membrane
1 μm	1 ms	mitochondrion
10 $\mu { m m}$	100 ms	mammalian cell
100 μ m	10 s	diameter of muscle fiber
250 μ m	60 s	radius of squid giant axon
1 mm	16.7 min	half-thickness of frog sartorius muscle
2 mm	1.1h	half-thickness of lens in the eye
5 mm	6.9 h	radius of mature ovarian follicle
2 cm	2.6 d	thickness of ventricular myocardium
1 m	31.7 yrs	length of sciatic nerve

Basic Consequences - II

Diffusion across a membrane

$$J = \frac{AD}{L}(C_1 - C_2)$$

then

$$\frac{d}{dt}(V_1C_1) = \frac{AD}{L}(C_2 - C_1), \qquad V_1C_1 + V_2C_2 = (V_1 + V_2)C_0$$

Problem: If glucose only moves down its gradient, there must always be more glucose in the blood than in cells, or else cells will lose their glucose.

For this system,

$$J = J_{max} \frac{g_e - g_i}{(g_e + K)(\frac{g_i}{K} + 1)}$$

Problem: If glucose only moves down its gradient, there must always be more glucose in the blood than in cells, or else cells will lose their glucose.

Solution: Immediately phosphorylate internal glucose, setting $g_i = 0$ so that

$$J = J_{max} \frac{g_e}{g_e + K}$$

Oxygen and Carbon Dioxide Transport

Problem: If oxygen and carbon dioxide move into and out of the blood by diffusion, their concentrations cannot be very high (and no large organisms could exist.)

In Lungs

Oxygen and Carbon Dioxide Transport

Problem: If oxygen and carbon dioxide move into and out of the blood by diffusion, their concentrations cannot be very high (and no large organisms could exist.)

In Tissue

 $O_{2} \qquad CO_{2}$

In Lungs

Chemical reactions that help enormously:

 $CO_2 + H_2O \stackrel{\rightarrow}{\leftarrow} HCO_3^+ + H^- \qquad Hb + 4O_2 \stackrel{\rightarrow}{\leftarrow} Hb(O_2)^4$

Oxygen and Carbon Dioxide Transport

Problem: If oxygen and carbon dioxide move into and out of the blood by diffusion, their concentrations cannot be very high (and no large organisms could exist.)

In Tissue

 $O_2 CO_2$ $O_2 CO_2$ $O_2 CO_2$ $HbO_2^4 HCO_3$

In Lungs

Chemical reactions that help enormously:

 $CO_2 + H_2O \stackrel{\rightarrow}{\leftarrow} HCO_3^+ + H^- \qquad Hb + 4O_2 \stackrel{\rightarrow}{\leftarrow} Hb(O_2)^4$

Hydrogen competes with oxygen for hemoglobin binding.

Diffusion, and How it is UsedorHow Stupid Organisms Do Math – p.7/19

Quorum sensing: The ability of bacteria to respond to their population size. Question: How do bacteria conduct a census?

Quorum sensing: The ability of bacteria to respond to their population size. Question: How do bacteria conduct a census?

Solution: Autoinducer (HSL)- a freely diffusing chemical with auto-catalytic (positive feedback) production.

$$\frac{dA}{dt} = F(A) + \delta(E - A)$$

$$\frac{dA}{dt} = F(A) + \delta(E - A)$$

rate of change of A,

$$\frac{dA}{dt} = F(A) + \delta(E - A)$$

production of *A*, production rate,

$$\frac{dA}{dt} = F(A) + \delta(E - A)$$

production of A, production rate, diffusive loss.

.

Quorum Sensing-III

Extracellular Autoinducer *E*:

$$\frac{dE}{dt} = -k_E E + \delta(A-E)$$

Extracellular Autoinducer *E*:

$$\frac{dE}{dt} = -k_E E + \delta(A - E)$$

rate of change of E,

Extracellular Autoinducer *E*:

$$\frac{dE}{dt} = -k_E E + \delta(A - E)$$

rate of change of E, degradation rate,

Extracellular Autoinducer *E*:

$$\frac{dE}{dt} = -k_E E + \delta(A-E)$$

rate of change of E, degradation rate, diffusive source,

.

Extracellular Autoinducer *E*:

$$(1-\rho)\left(\frac{dE}{dt} + K_E E\right) = \rho \delta(A-E)$$

rate of change of E, degradation rate, diffusive source, density dependence.

Length Detection

Observations

• Flagella grow at a velocity that decreases as they get longer.

Observations

- Flagella grow at a velocity that decreases as they get longer.
- If a flagellum is cut off, it will regrow at the same velocity as when it first grew.

- Flagella grow at a velocity that decreases as they get longer.
- If a flagellum is cut off, it will regrow at the same velocity as when it first grew.

Question: How does the bacterium "know" how long its flagella are?

Stage 1: Secretion of Flagellin (FliC)

Stage 1: Secretion of Flagellin (FliC)

Stage 1: Secretion of Flagellin (FliC)

Step 3

Stage 1: Secretion of Flagellin (FliC)

Stage 2: Diffusion and polymerization

A good approximation

$$J \approx \frac{1}{K_J + \frac{L}{D}} \approx \frac{D}{L}$$
 for large L (length dependence!)

The protein FIgM has three important properties:

- It is secreted during filament growth;
- It inhibits its own production (negative feedback);
- It inhibits the production of Flagellin.

Tracking Concentrations

FlgM (M): $\frac{dM}{dt} = \text{rate of production} - \text{rate of secretion}$ Flagellin (F): $\frac{dF}{dt} = \text{rate of production} - \text{rate of secretion}$ Filament Length (L):

$$\frac{dL}{dt} = \beta \frac{F}{M+F} J$$

Tracking Concentrations

FlgM (M):

$$\frac{dM}{dt} = \frac{K_*}{K_M + M} - \alpha \frac{F}{F + M}J$$

Flagellin (F):

$$\frac{dF}{dt} = \frac{K_*}{K_M + M} - \alpha \frac{M}{F + M}J$$

Filament Length (*L*):

$$\frac{dL}{dt} = \beta \frac{F}{M+F} J$$

with

$$J=rac{1}{K_J+rac{L}{D}}$$
iffusion, and How it is UsedorHow Stupid Organisms Do Math – p.17/19

• FIgM concentration is initially large. When secretion begins, FIgM concentration drops, producing FliC and more FIgM.

- FIgM concentration is initially large. When secretion begins, FIgM concentration drops, producing FIiC and more FIgM.
- As filament length grows, secretion slows, FlgM concentration increases, shutting off FliC and FlgM production.

- FIgM concentration is initially large. When secretion begins, FIgM concentration drops, producing FliC and more FIgM.
- As filament length grows, secretion slows, FlgM concentration increases, shutting off FliC and FlgM production.
- If filament is suddenly shortened, secretion suddenly increases, reinitiating the grow phase and How it is UsedorHow Stupid Organisms Do Math p.18/19

Collaborators

- Jack Dockery, Montana State University (quorum sensing)
 Notes
 - Funding for research provided by a grant from the NSF.
 - No Microsoft products were used or harmed during the production of this talk.

The End