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Examples of Excitable Media

B-Z reagent

CICR (Calcium Induced Calcium Release)
Nerve cells

cardiac cells, muscle cells

Slime mold (dictystelium discoideum)

* Forest Fires

Features of Excitability

* Threshold Behavior

¥y

Refractory  Recovering

* Refractoriness

* Recovery
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Action Potential

Intracellular Calcium

T-Tubule

3Na

T-Tubule

Myofilaments
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L JN‘ CX Extracellular Space
* Cytosol
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Sarcoplasmic Reticulum
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RYR SERCA .
(Calcium stores)
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J INnex

L Extracellular Space
dC * Cytosol
U % p— J RYR —_ J S ERC A —I— J L —_— J N CX * (Intracellular Space)
Sarcoplasmic Reticulum
JRYR  JsErca

(Calcium stores)
with
Jry r Ryanodine Receptor - calcium regulated calcium channel,
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Calcium Handling

L JN‘ CX Extracellular Space
* Cytosol
dc Y

U % p— J RYR b J S ERC A —'— J L — J N CX * (Intracellular Space)

Sarcoplasmic Reticulum

J J.
RYR SERCA .
(Calcium stores)

with

Jry r Ryanodine Receptor - calcium regulated calcium channel,
Jsrroa Sarco- and Endoplasmic Reticulum Calcium ATPase,
Jr, L-type voltage regulated calcium channel,
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Calcium Handling

L JN‘ CX Extracellular Space
* Cytosol
dc Y

U % p— J RYR b J S ERC A —'— J L — J N C’X * (Intracellular Space)

Sarcoplasmic Reticulum

J J.
RYR SERCA .
(Calcium stores)

with

Jry r Ryanodine Receptor - calcium regulated calcium channel,
Jsrroa Sarco- and Endoplasmic Reticulum Calcium ATPase,
Jr, L-type voltage regulated calcium channel,

Jnox sodium(Na™t)- Calcium eXchanger .

Challenge: Determine the flux terms.
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Ryanodine Receptors
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Ryanodine Receptors

Flux through ryanodine receptor is diffusive,

JRYR = gma:cPo(C — Csr)
where P, = S, is the open probability. To determine P,, we
must find S1o:

dSlo = k1cSoo + k—9511 — k—1510 — k2cS10

and so on.
Ca++
So - ™ Sp
K "fast" A
++ N N ++
Ca —% —% Ca
Y o Y
q Ca -
0] 11
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Observation

If the binding sites are independent (no cooperativity), then
SlO — mh, S()O — (1 — m)h, 511 — m(l — h), S()l = (1 — m)(l — h),
where

= dm(c) (1 —m) — pm(c)m, 9 = gp(c)(1 — h) —(c)h.
Furthermore, m is a fast variable, so can be taken to be in gss,

m = Mmeo(C).

Consequently,....
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dc
% - (gmaxpo T Je?“)(ce o C) B JSERCA’
dh

= (01— 1) = un(h,

where
2 % 5 10 15 20 2 30
J = V & _ time (s)
SERCA maxr K242 - |
P, = h3f(c)
o < rio::\\o
04 ‘:\?\ ----------------
B SV it S
c(uM)
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1 1 1 1
K Cl Ca WNa  Extracellular Space O,
x I l Ca
wi!
:. . a lJlJl CFFI:: I'inn ¢'=¢:_ql
Intracellular Space . N
®
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Membrane Electrical Activity

1 1 1 L
K Cl Ca WNa  Extracellular Space O,
x I l Na Ca
:. . @ LM| %ﬁi H Cm m Iinn ¢' ¢: ql
Intracellular Space . N
¢1'

Transmembrane potential ¢ is regulated by transmembrane ionic
currents and capacitive currents:
Cm% + Iion(¢7 w) = I;, where % — g(¢, ’UJ), w € R"

(Reminder: This is a conservation equation.)
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Examples include:

* Neuron - Hodgkin-Huxley model

* Purkinje fiber - Noble

* Cardiac cells - Beeler-Reuter, Luo-Rudy, Winslow-Jafri, Bers

* Two Variable Models - reduced HH, FitzHugh-Nagumo,
Mitchell-Schaeffer, Morris-Lecar, McKean, etc.)
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The Hodgkin-Huxley Equations

I I

o
I

a (l)e

Extracellular Space

G, 1 0=0-9

ion

s <« 7

Intracellular Space

0

1

dV
Cm%"‘ Inae + Ix + h =0,
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The Hodgkin-Huxley Equations

I I

o
I

a (l)e

Extracellular Space

s <« 7

G 1, 07008
Intracellular Space
q)i
dVv
C’meL Ina |+ Ik + [, =0,

with sodium current Iya,,
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The Hodgkin-Huxley Equations

I I I
K 1 Na (l)e
T I l Extracellular Space
. . . Cm T I ion q) B q)l - ng
Intracellular Space
q)i
dVv
C’meL Ina [+ Ik |+ h =0,

with sodium current In,, potassium current Ix,
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The Hodgkin-Huxley Equations

I I

K 1 INa ¢
T I l Extracellular Space |
I =, 0=0ee
Intracellular Space ;
Cmé—‘t/nL Ina | F| Ik |+ L | =0,
with sodium current Iy,, potassium current Ik, and leak

current 1.
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lonic Currents

lonic currents are typically of the form

I'= g(o,t) ©(¢)
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lonic Currents

lonic currents are typically of the form

I'=|g9(¢,t)| 2(¢)

where g(¢, 1) is the total number of open channels,
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lonic Currents

lonic currents are typically of the form

I={g(¢.t)|®(¢)

where ¢(¢, 1) is the total number of open channels, and ®(¢) is
the I-¢ relationship for a single channel.
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Hodgkin and Huxley found that

]k — gkn4(¢ — ¢K)7 ]Na — gNamgh(¢ _ ¢Na)7

where

0.0 = I i T T i 0—= ' I : i

0 20 40 60 80 100 0 40 80
Potential (mV) Potential (mV)
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Potential (mV)

80 —
60 —
40 —
20 —

-20 -

Conductance (mmho/cm?)

35 —
30 —
25 —
20 —
15 —
10 —
5

0

15

20

Gating variables

I
10
time (ms)

15

20

1.0 —

0.8 —

0.6 —

0.4 -

0.2 -

0.0 -

Action Potential Dynamics

O —
m_

10 15 20
time (ms)
0.8

0.71

0.67

0.5¢

0.3r

0.2r

0.1

o
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Two Variable Reduction of HH Eqgns

Set m = moo(¢), and set h +n ~ N = 0.85.
This reduces to a two variable system

d
Cd_f = grn* (¢ — dK) + GNamS, (¢)(N —n) (¢ — dna) + Gi(¢ — é1),
d

Tn(gb)d—"; = Noo(9) — 1.

0.0 -

\%
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Two Variable Models

Following is a brief summary of two variable models of excitable
media. The models described here are all of the form

dv

— = v,w) + 1

dw (v, w)

— = g(v,w

dt ’

Typically, v is a “fast” variable, while w is a “slow” variable.
W A g(v,w) =0
f(u,w)=0\ wr """""""“A
V_(w) Vo(w) Vi(w)
Ws /|-= \\=v
. / Dynamical Systems for Biology — p.16/25
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Cubic FitzHugh-Nagumo

The model that started the whole business uses a cubic
polynomial (a variant of the van der Pol equation).

Fv,w) = Av(v—a)(l —v)— w,
Gv,w) = €(v—yw).

with 0 < o < £, and e “small”.
(Remark: This model is used these days only by
mathematicians.)
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Mitchell-Schaeffer-Karma

= 1- f(v)a
m(?}) =4 v, O<ov<l1 , Th = Topen T (Tclose - Topen)f(v)
\ I, wv>1 f(v) = (1 + tanh(k(v — vgate)),
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F(v,w)

G(v,w)

Moo (V)

¢ cosh/( 5

— tanh(
2

40

20

ok

-20

—40}-

1lv—wv3

vV — V1

),

V2

This model was devised for barnacle muscle fiber.

—9eaMoo (V)(V = Vea) = grw(v — v) — gi(v — 1) + Lapp

) (Weo (v) — w),

Woo (V) = (1 + tanh(
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Morris-Lecar

v — v3)
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McKean

McKean suggested two piecewise linear models with
F(v,w)= f(v) —wand G(v,w) = e(v — yw). For the first,

4 08
—v v<% .
flv) =2 v—a %<v<—1450‘ s A
_ 14a .
\ 1—wo v > 5 \

where 0 < a < 3.
The second model suggested by McKean had

f('u)—{ —v vV < &
1

-V V>

ftv)

. and v = 0. . .
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Features of Excitable Systems

Threshold Behavior, Refractoriness
Alternans
Wenckebach Patterns
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From last time:

* Changing quantities are tracked by following the
production/destruction rates and their influx/efflux rates;
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For excitable systems:

* Changing quantities are tracked by following their
influx/efflux rates;

l Pretty much the same as before! — p.25/25
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