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Examples of Excitable Media

• B-Z reagent

• CICR (Calcium Induced Calcium Release)

• Nerve cells

• cardiac cells, muscle cells

• Slime mold (dictystelium discoideum)

• Forest Fires

Features of Excitability

• Threshold Behavior

• Refractoriness RefractoryResting Excited Recovering

• Recovery What about flush toilets? – p.2/25
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Intracellular Calcium
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University of Utah
Mathematical Biology

theImagine 
Possibilities

Calcium Handling

v dc
dt

= JRY R − JSERCA + JL − JNCX (Intracellular Space)

(Calcium stores)

J J

J J

 L NCX

RYR SERCA

Extracellular Space

Cytosol

Sarcoplasmic Reticulum

with
JRY R Ryanodine Receptor - calcium regulated calcium channel,
JSERCA Sarco- and Endoplasmic Reticulum Calcium ATPase,
JL L-type voltage regulated calcium channel,
JNCX sodium(Na++)- Calcium eXchanger .

Challenge: Determine the flux terms.

Dynamical Systems for Biology – p.4/25
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Ryanodine Receptors

Ca

� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �

	 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 	


 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 


� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

                        

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �

++

Ca++

++
Ca

++
Ca

Dynamical Systems for Biology – p.5/25



University of Utah
Mathematical Biology

theImagine 
Possibilities

Ryanodine Receptors

Flux through ryanodine receptor is diffusive,

JRY R = gmaxPo(c− csr)

where Po = S3
10 is the open probability. To determine Po, we

must find S10:
dS10

dt
= k1cS00 + k−2S11 − k−1S10 − k2cS10

and so on.
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Observation

If the binding sites are independent (no cooperativity), then

S10 = mh, S00 = (1−m)h, S11 = m(1− h), S01 = (1−m)(1− h),

where
dm
dt

= φm(c)(1 −m) − ψm(c)m, dh
dt

= φh(c)(1 − h) − ψ(c)h.
Furthermore, m is a fast variable, so can be taken to be in qss,
m = m∞(c).

Consequently,....

Dynamical Systems for Biology – p.7/25
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Calcium Dynamics

dc

dt
= (gmaxPo + Jer)(ce − c) − JSERCA,

dh

dt
= φh(c)(1 − h) − ψh(c)h,

where
JSERCA = Vmax

c2

K2
s +c2

,

Po = h3f(c)
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Membrane Electrical Activity

Transmembrane potential φ is regulated by transmembrane ionic
currents and capacitive currents:
Cm

dφ
dt

+ Iion(φ,w) = Iin where dw
dt

= g(φ,w), w ∈ Rn

(Reminder: This is a conservation equation.)

Dynamical Systems for Biology – p.9/25
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Examples

Examples include:

• Neuron - Hodgkin-Huxley model

• Purkinje fiber - Noble

• Cardiac cells - Beeler-Reuter, Luo-Rudy, Winslow-Jafri, Bers

• Two Variable Models - reduced HH, FitzHugh-Nagumo,
Mitchell-Schaeffer, Morris-Lecar, McKean, etc.)

Dynamical Systems for Biology – p.10/25
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The Hodgkin-Huxley Equations

K

Cm I
ion

φ

φ

φ = φ − φ

e

i

i  e

Extracellular Space

Intracellular Space

I
Na

I
l

I

Cm

dV

dt
+ INa + IK + Il = 0,

with sodium current INa, potassium current IK, and leak
current Il.
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Ionic Currents

Ionic currents are typically of the form

I = g(φ, t) Φ(φ)

where g(φ, t) is the total number of open channels, and Φ(φ) is
the I-φ relationship for a single channel.

Dynamical Systems for Biology – p.12/25
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Currents

Hodgkin and Huxley found that

Ik = gkn
4(φ− φK), INa = gNam

3h(φ− φNa),

where

τu(φ)
du

dt
= u∞(φ) − u, u = m,n, h
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Action Potential Dynamics
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Two Variable Reduction of HH Eqns

Set m = m∞(φ), and set h+ n ≈ N = 0.85.
This reduces to a two variable system

C
dφ

dt
= ḡKn4(φ − φK) + ḡNam3

∞
(φ)(N − n)(φ − φNa) + ḡl(φ − φL),

τn(φ)
dn

dt
= n∞(φ) − n.
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Two Variable Models

Following is a brief summary of two variable models of excitable

media. The models described here are all of the form

dv

dt
= f(v, w) + I

dw

dt
= g(v, w)

Typically, v is a “fast” variable, while w is a “slow” variable.

v

w

V-(w) V0(w) V+(w)

f(u,w) = 0

g(v,w) = 0

W*

W*
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Cubic FitzHugh-Nagumo

The model that started the whole business uses a cubic

polynomial (a variant of the van der Pol equation).

F (v, w) = Av(v − α)(1 − v) − w,

G(v, w) = ε(v − γw).

with 0 < α < 1
2 , and ε “small”.

(Remark: This model is used these days only by
mathematicians.)

Dynamical Systems for Biology – p.17/25
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FitzHugh-Nagumo Equations
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Mitchell-Schaeffer-Karma

Cm
dv

dt
= gNahm

2(VNa − v) + gK(VK − v),

τh
dh

dt
= h∞(v) − h

where

m(v) =



















0, v < 0

v, 0 < v < 1

1, v > 1

,

h∞ = 1 − f(v),

τh = τopen + (τclose − τopen)f(v)

f(v) = 1
2(1 + tanh(κ(v − vgate)),

Dynamical Systems for Biology – p.19/25
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MSK Phase Portrait
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Morris-Lecar

This model was devised for barnacle muscle fiber.

F (v, w) = −gcam∞(v)(v − vca) − gkw(v − vk) − gl(v − vl) + Iapp

G(v, w) = φ cosh(
1

2

v − v3

v4

)(w∞(v) − w),

m∞(v) =
1

2
+

1

2
tanh(

v − v1

v2

), w∞(v) = (1 + tanh(
v − v3)

2v4

)).
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McKean

McKean suggested two piecewise linear models with
F (v, w) = f(v) − w and G(v, w) = ε(v − γw). For the first,

f(v) =

8

>

>

<

>

>

:

−v v < α
2

v − α α
2

< v < 1+α
2

1 − v v > 1+α
2
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where 0 < α < 1
2 .

The second model suggested by McKean had

f(v) =

8

<

:

−v v < α

1 − v v > α
(-8)
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and γ = 0.
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Features of Excitable Systems

Threshold Behavior, Refractoriness
Alternans
Wenckebach Patterns
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Summary

From last time:

• Changing quantities are tracked by following the
production/destruction rates and their influx/efflux rates;

• Because reactions can occur on many different time scales,
quasi-steady state approximations are often quite useful;

• For two variable systems, much can be learned from the
"phase portrait".

In case you forgot. – p.24/25
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