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Introduction

Biology is characterized by change. A major goal of modeling is
to quantify how things change.

Fundamental Conservation Law:
d
dt

(stuff in Ω) = rate of transport + rate of production

In math-speak:

d
dt

∫
Ω udV =

∫
∂Ω J · nds +

∫
Ω fdv

J
Flux

production

f(u)

Ω

where u is the density of the measured quantity, J is the flux of u

across the boundary of Ω, f is the production rate density, and Ω

is the domain under consideration (a cell, a room, a city, etc.)
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Basic Chemical Reactions

A
k
→ B

then
da
dt

= −ka = −db
dt

.

With back reactions,

A
→

← B

then
da
dt

= −k+a + k−b = −db
dt

.

At steady state,

a = a0
k
−

k
−

+k+
.
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Bimolecular Chemical Reactions

A + C
k
→ B

then
da
dt

= −kca = −db
dt

(the "law" of mass action).

With back reactions,

A + C
→

← B

da
dt

= −k+ca + k−b = −db
dt

.

In steady state, −k+ca + k−b = 0 and a + b = a0, so that

a = k
−

a0

k+c+k
−

=
Keqa0

Keq+c
.

Remark: c can be viewed as controlling the amount of a.

Dynamical Systems - I – p.4/19



University of Utah
Mathematical Biology

theImagine 
Possibilities Example:Oxygen and Carbon

Dioxide Transport

Problem: If oxygen and carbon dioxide move into and out of the
blood by diffusion, their concentrations cannot be very high (and
no large organisms could exist.)

CO

COO CO2O222

O
2 2

In Tissue In Lungs

CO2 O2

Problem solved: Chemical reactions that help enormously:

CO2(+H2O)
→

← HCO+
3 + H− Hb + 4O2

→

← Hb(O2)
4

Hydrogen competes with oxygen for hemoglobin binding.
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O
2

4HbH

O2

O 2

CO 2

CO2CO2 O

2

2

HbO 4
−

HCO3
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Example II: Polymerization

monomern−mer

An + A1
→

← An+1

dan

dt
= k−an+1 − k+ana1

Question: If the total amount of monomer is fixed, what is the
steady state distribution of polymer lengths?
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Enzyme Kinetics

S + E
→

← C
k2
→ P + E

ds
dt

= k−c− k+se

de
dt

= k−c− k+se + k2c = −dc
dt

dp
dt

= k2c

Use that e + c = e0, so that
ds
dt

= k−(e0 − e)− k+se

de
dt

= −k+se + (k− + k2)(e0 − e)
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The QSS Approximation

Assume that the equation for e is "fast", and so in
quasi-equilibrium. Then,

(k− + k2)(e0 − e)− k+se = 0

or

e = (k
−

+k2)e0

k
−

+k2+k+s
= e0

Km

s+Km
(the qss approximation)

Furthermore, the "slow reaction" is

dp
dt

= −ds
dt

= k2c = k2e0
s

Km+s

max

K s
m

V

This is called the Michaelis-Menten reaction rate, and is used
routinely (without checking the underlying hypotheses).
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Enzyme Interactions

1) Enzyme activity can be inhibited (or poisoned). For example,

S + E
→

← C
k2
→ P + E I + E

→

← C2

Then,
dp
dt

= −ds
dt

= k2e0
s

s+Km(1+ i
Ki

)

2) Enzymes can have more than one binding site, and these can
"cooperate".

S + E
→

← C1
k2
→ P + E S + C1

→

← C2
k4
→ P + E

dp
dt

= −ds
dt

= Vmax
s2

K2
m+s2

max

K s
m

V
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Example:SIR

Consider an infectious disease with dynamics

S
ksI
→ I

ki
→ R

(R = permanent immunity - or death)
Equations are

ds
dt

= −kssi

di
dt

= kssi− kii

Nullclines for I ( dI
dt

= 0)
i = 0 and s = ki

ks

s s

i

k /ki

Conclusion: Epidemic can occur only if S0 > ki

ks
.

Last time I checked, death is permanent. – p.10/19
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Example:SIRS

Suppose immunity is not permanent:

S
I
→ I

ki
→ R

kr
→ S

Equations are
ds
dt

= −kssi+krr

di
dt

= kssi− kii

r + s + i = n is fixed
Nullclines for I (dI

dt
= 0)

i = 0 and s = ki

ks

Nullcline for S ( dS
dt

= 0)

s = kr(N−i)
ksi+kr

N s

i

k /ksi

Conclusion: For N > ki

ks
, disease is endemic.
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Example: Quorum Sensing

Quorum sensing: The ability of a bacterial colony to sense its
size and regulate its activity in response.
Examples: Vibrio fisheri, P. aeruginosa

P. Aeruginosa:

• Major cause of hospital infection in the US.

• Major cause of death in intubated Cystic Fibrosis patients.

• In planktonic form, they are non-toxic, but in biofilm they are
highly toxic and well-protected by the polymer gel in which
they reside. However, they do not become toxic until the
colony is of sufficient size, i.e., quorum sensing.
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Biochemistry of Quorum Sensing

LasR

rsaL

LasI

RsaL

LasR

rhlR

RhlR

RhlR

RhlI

rhlI

3−oxo−C12−HSL

lasI

lasR

C4−HSL

GacA

Vfr

A

A
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Modeling Biochemical Reactions

Bimolecular reaction A + R←→ P

LasR

3−oxo−C12−HSL

A

A

LasR

dP

dt
= k+AR− k−P

Production of mRNA P
−→ l

LasR A lasI

dl

dt
=

VmaxP

Kl + P
− k

−ll

Enzyme production l → L
LasIlasI

dL

dt
= kll −KLL
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Full system of ODE’s

dP
dt

= kRARA− kP P

dR
dt

= −kRARA + kP P − kRR + k1r,

dA
dt

= −kRARA + kP P + k2L− kAA,

dL
dt

= k3l − klL,

dS
dt

= k4s− kSS,

ds
dt

= Vs
P

KS+P
− kss,

dr
dt

= Vr
P

Kr+P
− krr + r0,

dl
dt

= Vl
P

Kl+P
1

KS+S
− kll + l0

rsaL

LasI

RsaL

A

A

3−oxo−C12−HSL

lasI

lasR

LasR

LasR
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Diffusion

E

A

dA

dt
= F (A,R, P ) + δ(E −A)

dE

dt
= − kEE + δ(A− E)
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Diffusion
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Diffusion

E

A

dA

dt
= F (A,R, P ) + δ(E −A)

(1− ρ) (
dE

dt
+ KEE) = ρ δ(A− E)

rate of change, production or degradation rate, diffusive
exchange, density dependence.
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Model Reduction and Analysis

Apply QSS reduction:

dA

dt
= F (A) + δ(E −A), (1− ρ)(

dE

dt
+ kEE) = ρδ(A−E)
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Two Variable Phase Portrait
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Summary

• Changing quantities are tracked by following the
production/destruction rates and their influx/efflux rates;

• Because reactions can occur on many different time scales,
quasi-steady state approximations are often quite useful;

• For two variable systems, much can be learned from the
"phase portrait".
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