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Introduction

Biology is characterized by change. A major goal of modeling is
to quantify how things change.

Fundamental Conservation Law:

%(Stuff in ) = rate of transport + rate of production

In math-speak:

production

flw

%fgudV:fagJ-nds+fodv

Q

where u is the density of the measured quantity, .J is the flux of u
across the boundary of €2, f is the production rate density, and (2
IS the domain under consideration (a cell, a room, a city, etc.)
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Basic Chemical Reactions

then
With back reactions,

then

d — _kia+kb=—-2L
At steady state,

_ ki
a—aok_+k+.
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Bimolecular Chemical Reactions

A+CcE B
then
9 — _kea=—92 (the "law" of mass action).
With back reactions,
A+C<B
Z—? = —kyica+k_b= —%.

In steady state, —k,ca+ k_b=0and a+ b = ag, SO that

Remark: ¢ can be viewed as controlling the amount of a.
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Example:Oxygen and Carbon
Dioxide Transport
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Problem: If oxygen and carbon dioxide move into and out of the
blood by diffusion, their concentrations cannot be very high (and
no Iarge organlsms could exist.)

EEEEY

In Tissue In Lungs
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Problem: If oxygen and carbon dioxide move into and out of the
blood by diffusion, their concentrations cannot be very high (and

no large organisms could exist.)
0 C02 02 o,

2

\ 4

In Tissue In Lungs

Problem solved: Chemical reactions that help enormously:
COy(+H30) «— HCOS + H~  Hb+ 405 — Hb(O9)?

. Dynamical Systems - | — p.5/19



Example:Oxygen and Carbon
Dioxide Transport

Y

Mathematical Biology
University of Utah

Problem: If oxygen and carbon dioxide move into and out of the
blood by diffusion, their concentrations cannot be very high (and
no large organisms could exist.)

0 CO, O, Co,

2

In Tissue In Lungs

Problem solved: Chemical reactions that help enormously:
COy(+H30) «— HCOS + H~  Hb+ 405 — Hb(O9)?

Hydrogen competes with oxygen for hemoglobin binding.
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Example Il: Polymerization
oo o - "

monomer

Question: If the total amount of monomer is fixed, what is the
steady state distribution of polymer lengths?
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S+EZSC®RpyE

ds __ .

7 =k_c—kyse
de _ [ ¢ _ k. se 4 koc = —4c
at — - + 20— Tt

dp __
%—k’QC

Use that e + ¢ = ¢, SO that

4 — k_(eg —e) — kyse

de = —kyse+ (k- + k2)(eo — e)

Enzyme Kinetics
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The QSS Approximation

Assume that the equation for e is "fast", and so in
quasi-equilibrium. Then,

(k— +ko)(eg —e) —kyse=0

or

(k——+k2)eo K,
k_+ko+kis s+Km

Furthermore, the "slow reaction" is

Vma
dp _  ds __ _ S
—t——%—k'QC—k?eOKm_l_s V
| |

This is called the Michaelis-Menten reaction rate, and is used
routinely (without checking the underlying hypotheses).

e = = €g (the gss approximation)
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Enzyme Interactions

1) Enzyme activity can be inhibited (or poisoned). For example,
S+ESCBPrE I+EZSC

Then,

2) Enzymes can have more than one binding site, and these can
"cooperate”.

S+EZ0, 2 P+E S+, o0, MPyE
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Example:SIR
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Consider an infectious disease with dynamics
skl kR
(R = permanent immunity - or death)

Equations are

ds _ :
7 = —ksst

di : :
g5 = kssi — kgt

Nullclines for I (2 = 0)

l Last time | checked, death is permanent. — p.10/19
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Consider an infectious disease with dynamics
skl kR
(R = permanent immunity - or death)

Equations are

ds _ :
7 = —ksst

di : :
g5 = kssi — kgt

Example:SIR

A .
: ar _ 1 I
Nullclines for I (3, = 0) -
i=0ands=" FooooX
kﬁ(s s>

Last time | checked, death is permanent. — p.10/19
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Consider an infectious disease with dynamics
skl kR
(R = permanent immunity - or death)

Equations are

ds _ :
E — kSSZ

di : :
g5 = kssi — kgt

Nullclines for I (4 =
i =0and s

=2

¥

Example:SIR

X

|
|
|
L
ki/kS S

Conclusion: Epidemic can occur only if Sp > .

Last time | checked, death is permanent. — p.10/19
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Example:SIRS

Suppose immunity is not permanent:
sLrrphg
Equations are

d .
d_i — —k382+krr
di : :
gr = kssi — kg

r+s+1=nis fixed

i dal
Nullclines for I (3, = 0) y |
i=0ands =" Y -
Nullcline for S (42 = 0) N
s — kr(N—1) 1\? lg/lkss>
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Suppose immunity is not permanent:
sLrrphg
Equations are

d .
d_i — —k382+krr
di : :
gr = kssi — kg

r+s+1=nis fixed

- dl _
Nullclines for I (3, = 0) 1 |
i=0ands =% o
Nullcline for S (45 — 0) b X
NN el
r(N—1 . .
$ = Tyithy Kk N

l Dynamical Systems - | —p.11/19



Y

I Example:SIRS
Suppose immunity is not permanent:
sLrrphg
Equations are
% = —kssi+k,r
U — fysi— ki
r+s+1=nis fixed
: dl _
Nullclines for I (3, = 0) " |
i=0and s = & -l
Nullcline for § (45 — 0) NN
ullcline ork (](Vd_t_)_ \\?\. _
r —1 - S
= Tesithr BN
k.

N

Conclusion: For N > L disease is endemic.
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Example: Quorum Sensing

Quorum sensing: The ability of a bacterial colony to sense its
size and regulate its activity in response.
Examples: Vibrio fisheri, P aeruginosa

P Aeruginosa:.
* Major cause of hospital infection in the US.

* Major cause of death in intubated Cystic Fibrosis patients.

* |n planktonic form, they are non-toxic, but in biofilm they are
highly toxic and well-protected by the polymer gel in which
they reside. However, they do not become toxic until the
colony is of sufficient size, i.e., quorum sensing.
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Biochemistry of Quorum Sensing

7
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Modeling Biochemical Reactions
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3-0x0—-C12-HSL

Cwey W
Bimolecular reaction A + R «+—— P \ /
o
dP
—=k.AR—k_P
dt +
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3-0x0—-C12-HSL

>
Bimolecular reaction A + R «— P v/
(ol

dP

— =k, AR—k_P

dt — 7
Production of mMRNA P CaOB -

dl Vmaacp

dt K +P Fil
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Modeling Biochemical Reactions

3—oxo— C12-HSL

| | Ly
Bimolecular reaction A + R «+— P \ /
dP
— =k . AR—k_P
.~ "
Production of mRNA Ny ) ol
dl Voraz P
— = — k_l
dt K, +P l
Enzyme production ! — L ol " -
dL
— =kl — K7 L
7 l L
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ar
dt

cé_l;% = —kpaRA+ kpP — kpR + ki,

= kraRA — kpP

% — _kRARA + k’PP -+ k'QL — kAA7

o — fal — Ky L,

9> = kys — kg, N

ds __ P
a %—KS+P kss, \

Full system of ODE’s

3—0ox0—-C12-HSL -
/ lasl

% =Vermrp — ke + 10, ..<

dl
dt — VlKlJrPK +S — kil + 1o

rsaL

Dynamical Systems - | — p.15/19



Diffusion

I Dynamical Systems - | —p.16/19



Diffusion

rate of change,
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dA

— =|F(A,R.P) |+ 6(E— 4)

dE
dt

rate of change, production or degradation rate,

= —|kgL |+ 6(A—-E)

Diffusion
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Diffusion
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da_ F(A,R,P) +|6(E— A)

dt
dE
— = — kgFE 0(A—FE
dt sE +]0 )
rate of change, production or degradation rate, diffusive

exchange,

l Dynamical Systems - | — p.16/19



Mathematical Biology
University of Utah

dA
dt

(1—p)

(

=0
P,

db

dt

+ KgFE) =

0

Diffusion

~ = F(A,R,P) + §(E— A)

5(A— E)

rate of change, production or degradation rate, diffusive
exchange, density dependence.
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Model Reduction and Analysis

Apply QSS reduction:
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dA

dt
db

dt

Two Variable Phase Portrait

F(A)+6(E—A), F=A- %F(A)

p 1—0p
—kpE+—3A—FE A= kp +1)E
E +1_p( ) (p5 B+ 1)
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* Changing quantities are tracked by following the
production/destruction rates and their influx/efflux rates;
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Summary

* Changing quantities are tracked by following the
production/destruction rates and their influx/efflux rates;

* Because reactions can occur on many different time scales,
guasi-steady state approximations are often quite useful;
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Summary

* Changing quantities are tracked by following the
production/destruction rates and their influx/efflux rates;

* Because reactions can occur on many different time scales,
guasi-steady state approximations are often quite useful;

* For two variable systems, much can be learned from the
"phase portrait".
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