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Introduction

• A major cause of death is due to heart failure, for example,
due to a heart attack and development of a fatal arrhythmia.
The direct cause of fatal cardiac arrhythmias is still not
completely known, however, in many cases the cause can be
traced to a failure of the cardiac action potential to propagate
correctly.
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• Remarkably, the propagation of action potentials is still not
completely understood in spite of many years of investigation.



Introduction The Cable Equation The Bidomain Equations Data that defy explanation 1-D Cable revisited 3D Tissue revisited

Introduction

• A major cause of death is due to heart failure, for example,
due to a heart attack and development of a fatal arrhythmia.
The direct cause of fatal cardiac arrhythmias is still not
completely known, however, in many cases the cause can be
traced to a failure of the cardiac action potential to propagate
correctly.

• Remarkably, the propagation of action potentials is still not
completely understood in spite of many years of investigation.

• The purpose of this talk is to describe some of the unresolved
issues and the attempt to use mathematical models to
understand these issues.
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Conduction system of the heart

• Electrical signal (an action potential) originates in the SA node.

• The signal propagates across the atria (2D sheet), through the AV node,
along Purkinje fibers (1D cables), and throughout the ventricles (3D
tissue).
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Modeling Membrane Electrical Activity

• Membrane separates extracellular and intracellular space with potentials
φe and φi , and transmembrane potential φ = φi − φe .

• Transmembrane potential φ is regulated by transmembrane ionic currents

and capacitive currents:

Cm

dφ

dt
+ Iion(φ, w) = Iin where

dw

dt
= g(φ, w), w ∈ Rn
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Examples Include

• Neuron - Hodgkin-Huxley model

• Purkinje fiber - Noble

• Cardiac cells - Beeler-Reuter, Luo-Rudy, Winslow-Jafri, Bers

• Two Variable Models - reduced HH, FitzHugh-Nagumo,
Mitchell-Schaeffer, Morris-Lecar, etc.)

C
dφ

dt
= ḡNam

3
∞(φ)(N − n)(φ − φNa) + ḡK n

4(φ − φK ) + ḡl (φ − φL),

τn(φ)
dn

dt
= n∞(φ) − n.

Threshold Behavior, Refractoriness
Alternans
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Spatially Extended Excitable Media - Axons and Fibers
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• Membrane separates extracellular and intracellular space with potentials
φe and φi , and transmembrane potential φ = φi − φe .

• These potentials drive currents,

Ii = −
1

ri

dφi

dx
, Ie = −

1

re

dφe

dx
.

where re and ri are resistances per unit length.

• Total current iT = Ie + Ii is conserved,

iT = − 1

ri

dφi

dx
− 1

re

dφe

dx
.
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The Cable Equation
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Transmembrane current is balanced

Cm

∂φ

∂t
+ Iion = It = −

∂Ii

∂x
=

∂Ie

∂x
.

Combining everything gives

Cm

∂φ

∂t
=

∂

∂x

(

1

ri + re

∂φ

∂x

)

− Iion

This equation is referred to as the cable equation.
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Action Potential Upstroke - Fronts
For all ion models, the upstroke (leading edge or front) is governed to a good

approximation by the bistable equation

∂u

∂t
= D

∂2u

∂x2
+ f (u)

with f (0) = f (a) = f (1) = 0, 0 < a < 1.

• There is a unique traveling wave solution u = U(x − ct),

• The solution is stable up to phase shifts,

• The speed scales as c = c0

√
D,

• U is a homoclinic trajectory of U ′′ + c0U
′ + f (U) = 0
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Modelling Cardiac Tissue
The Bidomain Model:
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Modelling Cardiac Tissue
The Bidomain Model:

• At each point of the cardiac domain there are two comingled regions, the
extracellular and the intracellular domains with potentials φe and φi , and
transmembrane potential φ = φi − φe .
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• At each point of the cardiac domain there are two comingled regions, the
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transmembrane potential φ = φi − φe .

• These potentials drive currents, ie = −σe∇φe , ii = −σi∇φi , where σe

and σi are conductivity tensors.
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Modelling Cardiac Tissue
The Bidomain Model:

• At each point of the cardiac domain there are two comingled regions, the
extracellular and the intracellular domains with potentials φe and φi , and
transmembrane potential φ = φi − φe .

• These potentials drive currents, ie = −σe∇φe , ii = −σi∇φi , where σe

and σi are conductivity tensors.

• Total current is
iT = ie + ii = −σe∇φe − σi∇φi .

• Total current is conserved:

∇ · (σi∇φi + σe∇φe) = 0
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Modelling Cardiac Tissue
The Bidomain Model:

• At each point of the cardiac domain there are two comingled regions, the
extracellular and the intracellular domains with potentials φe and φi , and
transmembrane potential φ = φi − φe .

• These potentials drive currents, ie = −σe∇φe , ii = −σi∇φi , where σe

and σi are conductivity tensors.

• Total current is
iT = ie + ii = −σe∇φe − σi∇φi .

• Total current is conserved:

∇ · (σi∇φi + σe∇φe) = 0

• Transmembrane current is balanced:

χ(Cm

∂φ

∂t
+ Iion) = ∇ · (σi∇φi )
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Comments

• The bidomain model is derived using homogenization theory;
σi and σe are effective conductivities and the equations are
spatially homogeneous.

• Plane wave velocities scale like
√

σiσe

σi+σe

• So far, no one can explain the 3:1 conduction anisotropy ratio,
compared to 6:1 cell size.
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More Observations

Cardiac tissue is highly inhomogeneous, leading to the question of the validity
of spatially homogeneous models.

Cardiac Cells

gap junctions

For example, reduced gap junctional coupling can lead to propagation failure.

Suppose cells are isopotential

dvn

dt
= f (vn) + d(vn−1 − 2vn + vn−1)

Discrete Cells
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Some interesting data

Question: Why did exactly the same mutation lead to such different results in

different laboratories?
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Some interesting data

Question: Why does the size of extracellular space lead to changes in
conduction velocity and anisotropy ratio? Nothing in the bidomain model
explains this.
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Cardiac Structure

• Gap junctional coupling is only
end-to-end. There is no side-to-side
coupling.

• Extracellular space is highly
inhomogeneous.

• Sodium Ion channels are not

uniformly distributed on the cell
membrane.

Could these be important (and not captured by the bidomain model)?
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1-D Fiber Reexamined

As before, do a careful balance of currents, however,

• Cells are discrete, isopotential, coupled by gap junctions.

• Extracellular space includes narrow junctional clefts; extracellular space is
not isopotential

• Sodium channels are not uniformly distributed.

W(x)

Ωj

Ωe

Ωk

дΩj junctional cleft

gap junction
g
jk

φ
i

j

φ
e

φ
i

k

Cm iK iNa il
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Some interesting results
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Surprise, Surprise (contrary to Cable Theory):

Because of ephaptic coupling

• Propagation velocity is less sensitive to changes in gap junctional
coupling;
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Surprise, Surprise (contrary to Cable Theory):

Because of ephaptic coupling

• Propagation velocity is less sensitive to changes in gap junctional
coupling;

• The width of junctional space matters;
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Surprise, Surprise (contrary to Cable Theory):

Because of ephaptic coupling

• Propagation velocity is less sensitive to changes in gap junctional
coupling;

• The width of junctional space matters;

• The distribution of ion channels matters.
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3-D Tissue Model
• Intracellular space (rather than extracellular space) is isopotential

• Extracellular space is comprised of thin 2-D sheets - not isopotential

• Gap junctional coupling is only end-to-end

Normal Propagation High Ce Low Ce
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Some interesting Observations
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• Propagation in transverse direction is much faster than predicted by
bidomain model, because of side-to-side ephaptic coupling.
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Summary and Conclusion

• Propagation in cardiac tissue is much more complicated than cable theory
or the bidomain model suggest;

• There is a substantial amount of ephaptic couping, due to the spatially
inhomogeneous extracellular potential, and the microdomain effects of
junctional spaces;

• The mathematical understanding of these features is still incomplete.
Homogenization completely fails to account for these effects.
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