## Exercises for Module 1

1. A monomer (represented by  $A_1$ ) polymerizes to form polymer of length n, (denoted  $A_n$ ) via the reaction scheme

$$A_n + A_1 \stackrel{\rightarrow}{\leftarrow} A_{n+1} \tag{1}$$

- (a) Use the law of mass action to write a system of differential equations for the dynamics of  $A_n$ . What is the equation governing the dynamics of  $A_1$ ? Check to be sure that  $\sum_n n \frac{dA_n}{dt} = 0$ .
- (b) Assuming that  $\sum_{n} nA_n = A_0$ , find the steady state distribution of polymer lengths.
- 2. Use the law of mass action to find differential equations governing  $S_{jk}$  for the reaction scheme



Use that  $S_{00} + S_{01} + S_{10} + S_{11} = 1$ .

- (a) Suppose the "top" and "bottom" reactions are independent from the "left" and "right" reactions. Assume that  $S_{10} = mh$ ,  $S_{00} = (1 m)h$ ,  $S_{11} = m(1 h)$ ,  $S_{01} = (1 m)(1 h)$ . Find the differential equations governing the dynamics of m and h.
- (b) Assume that the top and bottom reactions are fast compared to the left and right reactions. Use the quasi-steady state assumption to find  $S_{01}$  in terms of  $h = S_{00} + S_{01}$  and find the equation governing the dynamics of h. (This problem is the most difficult in this set. For help, look at Keener and Sneyd, Mathematical Physiology.)
- 3. Sketch the phase portrait for the system of differential equations

$$\frac{d\phi}{dt} = A\phi(1-\phi)(\phi-a) - h + I_0, \qquad \frac{dh}{dt} = \epsilon(\phi-\gamma h)$$
(2)

where all parameters are positive,  $0 < a < \frac{1}{2}$  and  $\epsilon \ll 1$ . What qualitatively different kinds of phase portraits are possible (there are 3)?

Write a simple Matlab code to simulate the solution of this equation (Use A = 10, a = 0.1,  $\epsilon = 0.1$  for starters). Find parameter values for each of the qualitatively different behaviors.

## 1 Solutions

1. (a) The differential equations are

$$\frac{dA_n}{dt} = k_+ A_{n-1} A_1 - k_+ A_n A_1 + k_- A_{n+1} - k_- A_n \tag{3}$$

for  $n \geq 2$  and

$$\frac{dA_1}{dt} = -2k_+A_1^2 + 2k_-A_2 + \sum_{n=3}^{\infty} k_-A_n - \sum_{n=2}^{\infty} k_+A_nA_1$$
(4)

To check this, note that

$$\sum_{n=2}^{\infty} n \frac{dA_n}{dt} = \sum_{n=2}^{\infty} n(k_+ A_{n-1}A_1 - k_+ A_n A_1 + k_- A_{n+1} - k_- A_n)$$

$$= \sum_{n=2}^{\infty} nk_+ A_{n-1}A_1 - \sum_{n=2}^{\infty} nk_+ A_n A_1 + \sum_{n=2}^{\infty} nk_- A_{n+1} - \sum_{n=2}^{\infty} nk_- A_n$$

$$= \sum_{n=1}^{\infty} (n+1)k_+ A_n A_1 - \sum_{n=2}^{\infty} nk_+ A_n A_1 + \sum_{n=3}^{\infty} (n-1)k_- A_n - \sum_{n=2}^{\infty} nk_- A_n$$

$$= 2k_+ A_1^2 + \sum_{n=2}^{\infty} k_+ A_n A_1 - \sum_{n=3}^{\infty} k_- A_n - 2k_- A_2$$
(5)

so that  $\sum_{n=1}^{\infty} n \frac{dA_n}{dt} = 0.$ 

(b) To find the steady state solution, notice that the equation (3) in steady state  $(\frac{dA_n}{dt} = 0)$  is a linear difference equation (with  $A_1$  fixed). Therefore, for  $n \ge 2$ ,  $A_n = \alpha \mu^n$ , where

$$k_{+}A_{1} - k_{-}\mu - \mu(k_{+}A_{1} - k_{-}\mu) = 0$$
(6)

so that  $\mu = \frac{k_+A_1}{k_-}$ . Notice that for consistency,  $A_1 = \alpha \mu$  so that  $\alpha = \frac{k_-}{k_+}$ . Now to find  $A_1$  we only need to solve the equation  $\sum_{n=2}^{\infty} A_n + A_1 = A_0$ . However,

$$\sum_{n=2}^{\infty} nA_n = \alpha \sum_{n=2}^{\infty} n\mu^n \tag{7}$$

$$= \alpha \sum_{n=2}^{\infty} n\mu^n = \alpha \left(\frac{1}{(1-\mu)^2} - \mu\right)$$
(8)

This leaves us with a single equation for  $\mu$ 

$$\frac{k_{-}\mu}{k_{+}}\frac{1}{(1-\mu)^{2}} = A_{0}.$$
(9)