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Basic Problem

• The cell is full of stuff: Proteins,
ions, fats, etc.

• The cell membrane is
semipermeable, and these
substances create osmotic
pressures, sucking water into
the cell.

• The cell membrane is like soap
film, has no structural strength
to resist bursting.
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Basic Solution

• Carefully regulate the intracellular ionic concentrations so
that there are no net osmotic pressures.

• As a result, the major ions (Na+, K+, Cl− and Ca++) have
different intracellular and extracellular concentrations.

• Consequently, there is an electrical potential difference
across the cell membrane, the membrane potential.
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• transmembrane diffusion - carbon dioxide, oxygen

• transporters - glucose, sodium-calcium exchanger

• pores - water

• ion-selective, gated channels - sodium, potassium, calcium

• ATPase exchangers - sodium-potassium ATPase, SERCA
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How Things Move

Most molecules move by a random walk:
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Fick’s law: When there are a large number of these molecules,
their motion can be described by
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How Things Move

Most molecules move by a random walk:
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Fick’s law: When there are a large number of these molecules,
their motion can be described by

J = − D
∂C

∂x

molecular flux, diffusion coefficient, concentration gradient.
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Conservation Law

Conservation:
∂C

∂t
+

∂J

∂x
= 0

leading to the Diffusion Equation
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Basic Consequences - I

Diffusion in a tube fed by a reservoir

C(x, t) = f(
x2

Dt
)
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Basic Consequences - II

Diffusion time:t = x2

D
for hydrogen (D = 10−5cm2/s).

x t Example

10 nm 100 ns cell membrane

1 µm 1 ms mitochondrion

10 µm 100 ms mammalian cell

100 µm 10 s diameter of muscle fiber

250 µm 60 s radius of squid giant axon

1 mm 16.7 min half-thickness of frog sartorius muscle

2 mm 1.1h half-thickness of lens in the eye

5 mm 6.9 h radius of mature ovarian follicle

2 cm 2.6 d thickness of ventricular myocardium

1 m 31.7 yrs length of sciatic nerve
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Basic Consequences - Ohm’s Law

Diffusion across a membrane

J = AD

L
(C1 − C2)
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Flux changes as things like C1, C2 and L change.
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Quorum Sensing

Quorum sensing: The ability of bacteria to respond to their
population size. Question: How do bacteria conduct a census?

E
A

Solution: Autoinducer (HSL)- a freely diffusing chemical with
auto-catalytic (positive feedback) production.
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Quorum Sensing-II
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Quorum Sensing-II

E
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Quorum Sensing-III

Extracellular Autoinducer E:

E

A

dE

dt
= − kEE + δ(A− E)

Math Physiology – p.12/24



University of Utah
Mathematical Biology

theImagine 
Possibilities

Quorum Sensing-III
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Quorum Sensing-III

Extracellular Autoinducer E:

E

A

(1− ρ) (
dE

dt
+ KEE) = ρ δ(A− E)

rate of change of E, degradation rate, diffusive source,
density dependence.
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Quorum Sensing-IV
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Carrier Mediated Diffusion
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J = Jmax

Se − Si

(Se + Ke)(Si + Ki)
.
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Ion Movement

Ions move according to the Nernst-Planck equation

J = −D(∇C +
Fz

RT
∇φ)

Consequently, at equilibrium

VN = Vi − Ve =
RT

zF
ln

(

[C]e
[C]i

)

i

Ve Vi

extracellular intracellular

[C] [C]e

This is called the Nernst Potential or Reversal Potential.
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Ion Current Models

The two most popular ion current models

Iion = g(V − VN ) Linear Model

Iion = P
F 2

RT
V

(

[C]i − [C]e exp(−zV F

RT
)

1− exp(−zV F

RT

)

, GHK Model

Both of these have the same reversal potential, as they must.
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Sodium-Potassium ATPase
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Osmotic Pressure and Flux

rQ = P1 − P2 − π1 + π2

πi = kTCi

osmolite

P P
1 2

C C1 2
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Volume Control; Pump-Leak Model

Na+ is pumped out, K+ is pumped in, Cl− moves passively, negatively
charged macromolecules are trapped in the cell.
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Balance

• Inside and outside are both electrically neutral,
macromolecules have negative charge zx.

qw(Ni+Ki−Ci)+zxqX = qw(Ne+Ke−Ce) = 0, (charge balance)

• Total amount of osmolyte is the same on each side.

Ni + Ki + Ci +
X

w
= Ne + Ke + Ce (osmotic balance)
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The Solution

The resulting system of algebraic equations is readily solved
5
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• If the pump stops, the cell bursts, as expected.

• The minimal volume gives approximately correct membrane
potential (although there are MANY deficiencies with this
model.) Math Physiology – p.21/24
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• How do organism (e.g., T. Californicus living in tidal basins)
adjust to dramatic environmental changes?

• How do plants in arid, salty regions, prevent dehydration?
(They make proline)

• How do fish (e.g., salmon) adjust to both freshwater and salt
water?

• What happens to a cell and its environment when there is
ischemia (loss of ATP)?

• How do cell in high salt environments (epithelial cell in
kidney) maintain constant volume?

Math Physiology – p.22/24
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