Introduction to Mathematical Physiology
I - Biochemical Reactions

J. P. Keener

Mathematics Department
University of Utah
The Dilemma of Modern Biology

- The amount of data being collected is staggering. Knowing what to do with the data is in its infancy.
- The parts list is nearly complete. How the parts work together to determine function is essentially unknown.
The Dilemma of Modern Biology

- The amount of data being collected is staggering. Knowing what to do with the data is in its infancy.
- The parts list is nearly complete. How the parts work together to determine function is essentially unknown.

How can mathematics help?

- The search for general principles; organizing and describing the data in more comprehensible ways.
- The search for emergent properties; identifying features of a collection of components that is not a feature of the individual components that make up the collection.
A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:
A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

- to divide -
A few words about words

A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

• to **divide** - find the ratio of two numbers (Mathematician)
A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

- to divide - replicate the contents of a cell and split into two (Biologist)
A few words about words

A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

- to divide - replicate the contents of a cell and split into two (Biologist)
- to differentiate -
A few words about words

A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

• to divide - replicate the contents of a cell and split into two (Biologist)

• to differentiate - find the slope of a function (Mathematician)
A few words about words

A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

- to divide - replicate the contents of a cell and split into two (Biologist)
- to differentiate - change the function of a cell (Biologist)
A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

- to **divide** - replicate the contents of a cell and split into two (Biologist)
- to **differentiate** - change the function of a cell (Biologist)
- a **PDE** -
A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

- to **divide** - replicate the contents of a cell and split into two (Biologist)
- to **differentiate** - change the function of a cell (Biologist)
- a **PDE** - Partial Differential Equation (Mathematician)
A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

- to **divide** - replicate the contents of a cell and split into two (Biologist)
- to **differentiate** - change the function of a cell (Biologist)
- a **PDE** - Phosphodiesterase (Biologist)
A big difficulty in communication between Mathematicians and Biologists is because of different vocabulary.

Examples:

- to divide - replicate the contents of a cell and split into two (Biologist)
- to differentiate - change the function of a cell (Biologist)
- a PDE - Phosphodiesterase (Biologist)

And so it goes with words like germs and fiber bundles (topologist or microbiologist), cells (numerical analyst or physiologist), complex (analysts or molecular biologists), domains (functional analysts or biochemists), and rings (algebraists or protein structure chemists).
Quick Overview of Biology

- The study of biological processes is over many space and time scales (roughly 10^{16}):
Quick Overview of Biology

- The study of biological processes is over many space and time scales (roughly 10^{16}):
 - Space scales: Genes \rightarrow proteins \rightarrow networks \rightarrow cells \rightarrow tissues and organs \rightarrow organism \rightarrow communities \rightarrow ecosystems
Quick Overview of Biology

- The study of biological processes is over many space and time scales (roughly 10^{16}):
 - Space scales: Genes \rightarrow proteins \rightarrow networks \rightarrow cells \rightarrow tissues and organs \rightarrow organism \rightarrow communities \rightarrow ecosystems
 - Time scales: protein conformational changes \rightarrow protein folding \rightarrow action potentials \rightarrow hormone secretion \rightarrow protein translation \rightarrow cell cycle \rightarrow circadian rhythms \rightarrow human disease processes \rightarrow population changes \rightarrow evolutionary scale adaptation
Kinds of Math I Have Used

- Discrete Math - graph theory, finite state automata, combinatorics
Kinds of Math I Have Used

- Discrete Math - graph theory, finite state automata, combinatorics
- Linear algebra

What about Galois Theory? – p.5/28
Kinds of Math I Have Used

- Discrete Math - graph theory, finite state automata, combinatorics
- Linear algebra
- Probability and stochastic processes
Kinds of Math I Have Used

- Discrete Math - graph theory, finite state automata, combinatorics
- Linear algebra
- Probability and stochastic processes
- ODE’s, PDE’s, Delay DE’s, Integro-Differential Equations, ...
Kinds of Math I Have Used

• Discrete Math - graph theory, finite state automata, combinatorics
• Linear algebra
• Probability and stochastic processes
• ODE’s, PDE’s, Delay DE’s, Integro-Differential Equations, ...
• Numerical Analysis
Kinds of Math I Have Used

- Discrete Math - graph theory, finite state automata, combinatorics
- Linear algebra
- Probability and stochastic processes
- ODE’s, PDE’s, Delay DE’s, Integro-Differential Equations, ...
- Numerical Analysis
- Topology - knots and scrolls, topological invariants
Kinds of Math I Have Used

- Discrete Math - graph theory, finite state automata, combinatorics
- Linear algebra
- Probability and stochastic processes
- ODE’s, PDE’s, Delay DE’s, Integro-Differential Equations, ...
- Numerical Analysis
- Topology - knots and scrolls, topological invariants
- Algebraic Geometry, Projective geometry
Some Biological Challenges

- DNA - information content and information processing;
Some Biological Challenges

- DNA - information content and information processing;
- Proteins - folding, enzyme function;
Some Biological Challenges

- DNA - information content and information processing;
- Proteins - folding, enzyme function;
- Cell - How do cells move, contract, excrete, reproduce, signal, make decisions, regulate energy consumption, differentiate, etc.?
Some Biological Challenges

- DNA - information content and information processing;
- Proteins - folding, enzyme function;
- Cell - How do cells move, contract, excrete, reproduce, signal, make decisions, regulate energy consumption, differentiate, etc.?
- Multicellularity - organs, tissues, organisms, morphogenesis
Some Biological Challenges

- DNA - information content and information processing;
- Proteins - folding, enzyme function;
- Cell - How do cells move, contract, excrete, reproduce, signal, make decisions, regulate energy consumption, differentiate, etc.?
- Multicellularity - organs, tissues, organisms, morphogenesis
- Human physiology - health and medicine, drugs, physiological systems (circulation, immunology, neural systems).
Some Biological Challenges

- DNA - information content and information processing;
- Proteins - folding, enzyme function;
- Cell - How do cells move, contract, excrete, reproduce, signal, make decisions, regulate energy consumption, differentiate, etc.?
- Multicellularity - organs, tissues, organisms, morphogenesis
- Human physiology - health and medicine, drugs, physiological systems (circulation, immunology, neural systems).
- Populations and ecosystems - biodiversity, extinction, invasions
Places Math is Needed

- To provide quantitative theories for how biological processes work.
Places Math is Needed

• To provide quantitative theories for how biological processes work.
• Moving across spatial and temporal scales - What details to include or ignore, understanding emergent behaviors.
Places Math is Needed

- To provide quantitative theories for how biological processes work.
- Moving across spatial and temporal scales - What details to include or ignore, understanding emergent behaviors.
- Understanding stochasticity - Is it noise or is it real?
Places Math is Needed

- To provide **quantitative** theories for how biological processes work.
- Moving across spatial and temporal scales - What details to include or ignore, understanding emergent behaviors.
- Understanding stochasticity - Is it noise or is it real?
- The challenge of complex systems (e.g., the nature of robustness), to discover general principles underlying biological complexity.
Places Math is Needed

- To provide quantitative theories for how biological processes work.
- Moving across spatial and temporal scales - What details to include or ignore, understanding emergent behaviors.
- Understanding stochasticity - Is it noise or is it real?
- The challenge of complex systems (e.g., the nature of robustness), to discover general principles underlying biological complexity.
- Data handling and data mining - Extracting information and finding patterns when you don’t know what to look for, to organize and describe the data in more comprehensible ways.
Places Math is Needed

- To provide **quantitative** theories for how biological processes work.
- Moving across spatial and temporal scales - What details to include or ignore, understanding emergent behaviors.
- Understanding stochasticity - Is it noise or is it real?
- The challenge of complex systems (e.g., the nature of robustness), to discover general principles underlying biological complexity.
- Data handling and data mining - Extracting information and finding patterns when you don’t know what to look for, to organize and describe the data in more comprehensible ways.
- Imaging and Visualization (Medical imaging, protein structure, etc.)
Resources for Undergraduates

- Edelstein-Keshet (1988)
- Segel (1984)
- Mackey & Glass (1988)
- Ellner & Guckenheimer (2006)
- Hoppensteadt & Peskin (1992)
- Fall, Marland, Wagner, & Tyson (2002)
- Keener & Sneyd (1998)
Biology is characterized by change. A major goal of modeling is to quantify how things change.

Fundamental Conservation Law:

\[\frac{d}{dt} (\text{stuff in } \Omega) = \text{rate of transport} + \text{rate of production} \]

In math-speak:

\[\frac{d}{dt} \int_{\Omega} u dV = \int_{\partial \Omega} J \cdot n ds + \int_{\Omega} f dv \]

where \(u \) is the density of the measured quantity, \(J \) is the flux of \(u \) across the boundary of \(\Omega \), \(f \) is the production rate density, and \(\Omega \) is the domain under consideration (a cell, a room, a city, etc.).

Remark: Most of the work is determining \(J \) and \(f \)!
Basic Chemical Reactions

\[A \xrightarrow{k} B \]

then

\[\frac{da}{dt} = -ka = -\frac{db}{dt}. \]

With back reactions,

\[A \xleftrightarrow{k} B \]

then

\[\frac{da}{dt} = -k_+ a + k_- b = -\frac{db}{dt}. \]

At steady state,

\[a = a_0 \frac{k_-}{k_- + k_+}. \]
Bimolecular Chemical Reactions

A + C $\xrightarrow{k} B$

then

$$\frac{da}{dt} = -kca = -\frac{db}{dt}$$

(the "law" of mass action).

With back reactions,

$$A + C \xleftarrow{} B$$

$$\frac{da}{dt} = -k_+ca + k_-b = -\frac{db}{dt}.$$

In steady state, $-k_+ca + k_-b = 0$ and $a + b = a_0$, so that

$$a = \frac{k_-a_0}{k_+c + k_-} = \frac{K_{eq}a_0}{K_{eq} + c}.$$

Remark: c can be viewed as controlling the amount of a.

Why is Math Biology so hard? – p.11/28
Example: Oxygen and Carbon Dioxide Transport

Problem: If oxygen and carbon dioxide move into and out of the blood by diffusion, their concentrations cannot be very high (and no large organisms could exist.)

\[\text{Problem solved: Chemical reactions that help enormously:} \]

\[\text{CO}_2 \text{ + H}_2 \text{O} \rightarrow \text{HCO}_3^- + 2\text{H}^+ + 2\text{O}_2 \]

Hydrogen competes with oxygen for hemoglobin binding.

Why is Math Biology so hard? – p.12/28
Example: Oxygen and Carbon Dioxide Transport

Problem: If oxygen and carbon dioxide move into and out of the blood by diffusion, their concentrations cannot be very high (and no large organisms could exist.)

Problem solved: Chemical reactions that help enormously:

\[CO_2 (+H_2O) \overset{\rightleftharpoons}{\underset{\text{in Lungs}}{\text{In Tissue}}} HCO_3^- + H^- \]

\[Hb + 4O_2 \overset{\rightleftharpoons}{\underset{\text{in Lungs}}{\text{In Tissue}}} Hb(O_2)^4 \]
Example: Oxygen and Carbon Dioxide Transport

Problem: If oxygen and carbon dioxide move into and out of the blood by diffusion, their concentrations cannot be very high (and no large organisms could exist.)

\[
\begin{align*}
CO_2 & \leftrightarrow HCO_3^- + H^- \\
Hb + 4O_2 & \leftrightarrow Hb(O_2)_4
\end{align*}
\]

Problem solved: Chemical reactions that help enormously:

Hydrogen competes with oxygen for hemoglobin binding.
Example II: Polymerization

\[A_n + A_1 \leftrightarrow A_{n+1} \]

\[\frac{da_n}{dt} = k_- a_{n+1} - k_+ a_n a_1 - k_- a_n + k_+ a_{n-1} a_1 \]

Question: If the total amount of monomer is fixed, what is the steady state distribution of polymer lengths?

Remark: Regulation of polymerization and depolymerization is fundamental to many cell processes such as cell division, cell motility, etc.
Enzyme Kinetics

\[S + E \xrightleftharpoons{\kappa_2} C \xrightarrow{\kappa_2} P + E \]

\[
\frac{ds}{dt} = k_- c - k_+ se \\
\frac{de}{dt} = k_- c - k_+ se + k_2 c = -\frac{dc}{dt} \\
\frac{dp}{dt} = k_2 c
\]

Use that \(e + c = e_0 \), so that

\[
\frac{ds}{dt} = k_-(e_0 - e) - k_+ se \\
\frac{de}{dt} = -k_+ se + (k_- + k_2)(e_0 - e)
\]

Why is Math Biology so hard? – p.14/28
The QSS Approximation

Assume that the equation for e is "fast", and so in quasi-equilibrium. Then,

$$(k_- + k_2)(e_0 - e) - k_+se = 0$$

or

$$e = \frac{(k_- + k_2)e_0}{k_- + k_2 + k_+ s} = e_0 \frac{K_m}{s + K_m} \text{ (the qss approximation)}$$

Furthermore, the "slow reaction" is

$$\frac{dp}{dt} = -\frac{ds}{dt} = k_2c = k_2e_0 \frac{s}{K_m + s}$$

This is called the Michaelis-Menten reaction rate, and is used routinely (without checking the underlying hypotheses).

Remark: An understanding of how to do fast-slow reductions is crucial!
1) Enzyme activity can be inhibited (or poisoned). For example,

\[\begin{align*}
S + E & \rightleftharpoons C \xrightarrow{k_2} P + E \\
I + E & \rightleftharpoons C_2
\end{align*} \]

Then,

\[\frac{dp}{dt} = -\frac{ds}{dt} = k_2 e_0 \frac{s}{s + K_m (1 + \frac{i}{K_i})} \]

2) Enzymes can have more than one binding site, and these can "cooperate".

\[\begin{align*}
S + E & \rightleftharpoons C_1 \xrightarrow{k_2} P + E \\
S + C_1 & \rightleftharpoons C_2 \xrightarrow{k_4} P + E
\end{align*} \]

\[\frac{dp}{dt} = -\frac{ds}{dt} = V_{max} \frac{s^2}{K_m^2 + s^2} \]
Introductory Biochemistry

- DNA, nucleotides, complementarity, codons, genes, promoters, repressors, polymerase, PCR
- mRNA, tRNA, amino acids, proteins
- ATP, ATPase, hydrolysis, phosphorylation, kinase, phosphatase
Biochemical Regulation

polymerase binding site
"start"
regulator region

Repressor bound

Polymerase bound

DNA → mRNA → E → trp

R* → R
P* → P

E
The Tryptophan Repressor

\[\frac{dM}{dt} = k_m P - k_{-m} M, \]
\[\frac{dE}{dt} = k_e M - k_{-e} E, \]
\[\frac{dR^*}{dt} = k_R T^2 R - k_{-R} R^*, \quad R + R^* = R_0 \]
\[\frac{dP}{dt} = k_{on} R^* P - k_{off} (1 - P) \]
\[\frac{dT}{dt} = k_T E - k_{-T} T - 2 \frac{dR^*}{dt} \]
Steady State Analysis

\[E(T) = \frac{k_e}{k_{-e}} \frac{k_m}{k_{-m}} \frac{k_{on}}{k_{off}} R^*(T) + 1 = k_{-T} T, \]

\[R^*(T) = \frac{k_R T^2 R_0}{k_R T^2 + k_{-R}} \]

Simple example of Negative Feedback.
The Lac Operon

CAP binding site

RNA-polmerase binding site

start site

-operator

lac gene

+ glucose
+ lactose

operon off
(CAP not bound)

+ glucose
- lactose

operon off
(repressor bound)
(CAP not bound)

- glucose
- lactose

operon off
(repressor bound)

- glucose
+ lactose

operon on
The Lac Operon

- lactose
- outside the cell
- glucose
- lac permease
- lac operon
- repressor
- CAP
- cAMP
- +
- -
- lactose
- allolactose
Lac Operon

\[
\begin{align*}
\frac{dM}{dt} &= \alpha_M \frac{1 + K_1 A^2}{K + K_1 A^2} - \gamma_M M, \\
\frac{dP}{dt} &= \alpha_P M - \gamma_P P, \\
\frac{dB}{dt} &= \alpha_B M - \gamma_B B, \\
\frac{dL}{dt} &= \alpha_L P \frac{L_e}{K_{Le} + L_e} - \alpha_A B \frac{L}{K_L + L} - \gamma_L L, \\
\frac{dA}{dt} &= \alpha_A B \frac{L}{K_L + L} - \beta_A B \frac{A}{K_A + A} - \gamma_A A.
\end{align*}
\]
Lac Operon - Simplified System

(P and B is qss, L instantly converted to A)

\[
\frac{dM}{dt} = \alpha_M \frac{1 + K_1 A^2}{K + K_1 A^2} - \gamma_M M,
\]
\[
\frac{dA}{dt} = \alpha_L \frac{\alpha_P}{\gamma_P} M \frac{L_e}{K_{Le} + L_e} - \beta_A \frac{\alpha_B}{\gamma_B} M \frac{A}{K_A + A} - \gamma_A A.
\]
Lac Operon - Simplified System

\[
\frac{dM}{dt} = \alpha_M \frac{1 + K_1 A^2}{K + K_1 A^2} - \gamma_M M, \\
\frac{dA}{dt} = \alpha_L \frac{\alpha_P}{\gamma_P} M \frac{L_e}{K_L e + L_e} - \beta_A \frac{\alpha_B}{\gamma_B} M \frac{A}{K_A + A} - \gamma_A A.
\]
Lac Operon - Simplified System

(P and B is qss, L instantly converted to A)

\[
\frac{dM}{dt} = \alpha_M \frac{1 + K_1A^2}{K + K_1A^2} - \gamma_M M, \\
\frac{dA}{dt} = \alpha_L \frac{\alpha_P}{\gamma_P} M \frac{L_e}{K_{Le} + L_e} - \beta_A \frac{\alpha_B}{\gamma_B} M \frac{A}{K_A + A} - \gamma_A A.
\]

Large \(L_e \)
Lac Operon - Bifurcation Diagram
Circadian Rhythms

(Tyson, Hong, Thron, and Novak, Biophys J, 1999)
Circadian Rhythms

\[
\frac{dM}{dt} = \frac{v_m}{1 + \left(\frac{P_2}{A}\right)^2} - k_m M
\]

\[
\frac{dP}{dt} = v_p M - \frac{k_1 P_1 + 2k_2 P_2}{J + P} - k_3 P
\]

where \(q = \frac{2}{1 + \sqrt{1 + 8KP}} \), \(P_1 = qP \), \(P_2 = \frac{1}{2}(1 - q)P \).
Other Interesting Oscillatory Networks

Glycolytic Oscillations (K&S 1998)

Cell Cycle (K&S 1998)