
Homework Exercises for Mathematics 6780 - Spring 2020

Remark: Solutions may include maple files or matlab files.

Assignment 1: (due March 17, 2020)

1. In the real world trimolecular reactions are rare, although trimerizations are not.
Consider the following trimerization reaction in which three monomers of A com-
bine to form the trimer C,

A+A
k1

−→
←−
k−1

B,

A+ B
k2

−→
←−
k−2

C.

(a) Use the law of mass action to find the rate of production of the trimer C.
(b) Suppose k−1 ≫ k−2, k2A. Use the appropriate quasi-steady state approxima-

tion to find the rates of production of A and C, and show that the rate of
production of C is proportional to [A]3. Explain in words why this is so.

Solution
(a) Using the law of mass action, we find

da

dt
= 2k−1b− 2k1a

2 + k−2c− k2ab, (1)
db

dt
= k1a

2 − k−1b+ k−2c− k2ab, (2)
dc

dt
= k2ab− k−2c, (3)

where a = [A], b = [B], and c = [C].
(b) QSS Approach:

If k−1 is large compared to other rate constants, then b equilibrates rapidly
(as an exponential) to its quasi-steady state,

b =
k1a

2 + k−2c

k−1 + k2a
. (4)

If we substitute this quasi-steady state approximation into the equations
governing c and a, we find

dc

dt
=

k2k1a
3 − k−2k−1c

k−1 + k2a
,

da

dt
= −3

dc

dt
. (5)

If k−1 ≫ k2a, this further reduces to

dc

dt
=

k2k1
k−1

a3 − k−2c. (6)
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Here, the rate at which the reaction takes place is represented by a cubic
term because, since k−1 is large, the dimer B comes apart quickly unless it is
stabilized by a collision with a third monomer of A.

Fast-Equilibrium Approach:
k−1 large implies A + A

k1
−→←−
k−1

B is almost in equilibrium. Thus, the fast equi-
librium approximation is

b =
k1a

2

k−1
. (7)

The new slow variable equation is

d

dt
(a+ 2b) = −3k2ab+ 3k−2c, (8)

which makes the resulting system

da

dt
=

−3k2k1
k−1

a3 + 3k−2c

1 + 4 k1
k−1

a
(9)

dc

dt
=

k1k2
k−1

a3 − k−2c. (10)

2. The length of microtubules changes by a process called treadmilling, in which
monomer is added to one end of the microtubule and taken off at the other end.
To model this process, suppose that monomer A1 is self-polymerizing in that it
can form dimer A2 via

A1 +A1
k+−→A2. (11)

Furthermore, suppose A1 can polymerize an n-polymer An at one end making an
n+ 1-polymer An+1

A1 +An
k+−→An+1. (12)

Finally, degradation can occur one monomer at a time from the opposite end at
rate k−. Find the steady state distribution of polymer lengths after an initial
amount of monomer A0 has fully polymerized.
Solution
The differential equations describing the dynamics are

da1
dt

= −2k+a
2
1 + 2k−a2 + k−

∞∑
j=3

aj − k+a1

∞∑
j=2

aj, (13)

and
dan
dt

= k+an−1a1 − k+ana1 − k−an + k−an+1, (14)

for n ≥ 2. The quantity A0 =
∑∞

j=1 jaj is conserved by these equations.
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Table 1: Data for Problem 3.
Substrate Reaction

Concentration (mM) Velocity (mM/s)
0.1 0.04
0.2 0.08
0.5 0.17
1.0 0.24
2.0 0.32
3.5 0.39
5.0 0.42

In steady state, the system for n ≥ 2 is a linear system of equations with solution

an = αλn, (15)

with λ = k+a1
k−

. Of course, it must be that λ < 1 for this solution to be physically
meaningful. To determine α, we substitute this solution into Equation 14 with

n = 2 and find that α = k−
k+

. since
∞∑
j=2

αλn = α

(
1

1− λ
− 1− λ

)
, it follows that

the total amount of monomer is

A0 =
k2
−a1

(k+a1 − k−)2
, (16)

which in turn implies that

a1 =
A0

2κ2
(1 + 2κ−

√
1 + 4κ), (17)

where κ = k+A0

k−
.

3. An enzyme-substrate system is believed to proceed at a Michaelis- Menten rate.
Data for the (initial) rate of reaction at different concentrations is shown in Table
1.
(a) Plot the data V vs. s. Is there evidence that this is a Michaelis-Menten type

reaction?
(b) Plot V vs. V/s. Is this data well approximated by a straight line?
(c) Use linear regression to estimate Km and Vmax. Compare the data to the

Michaelis-Menten rate function using these parameters. Does this provide a
reasonable fit to the data?

Solution
(c) Rewrite the equation V = Vmaxs

Km+s
as

Vmax −
V

s
Km = V. (18)
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Figure 1:

For each experiment, there is one such equation, so with seven data points
we have the linear system of equations

A

(
Vmax

Km

)
=



1.0 −0.40
1.0 −0.40
1.0 −0.34
1.0 −0.24
1.0 −0.16
1.0 −0.11
1.0 −0.08


(

Vmax

Km

)
=



0.04
0.08
0.17
0.24
0.32
0.39
0.42


= b. (19)

To find the linear regression solution (also called the least-squares solution)
of this system, solve the normal equations

ATA

(
Vmax

Km

)
= AT b, (20)

which in this case is the 2× 2 system(
7.0000 −1.7354
−1.7354 0.5383

)(
Vmax

Km

)
=

(
1.6600
−0.2933

)
, (21)

having the solution Vmax = 0.5084, Km = 1.0942. A plot of the line y =
Vmax −Kmx is shown with data points in Fig. 1, and a plot of the reaction
velocity with data points is shown in Fig. 2. This solution can be found by
running the Matlab code ex_Burk.m.

4. Suppose the maximum velocity of a chemical reaction is known to be 1 mM/s,
and the measured velocity V of the reaction at different concentrations s is shown
in Table 2.
(a) Plot the data V vs. s. Is there evidence that this is a Hill type reaction?
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Figure 2: Michaelis-Menten growth curve for data of Problem 3.

Table 2: Data for Problem 4.
Substrate Reaction

Concentration (mM) Velocity (mM/s)
0.2 0.01
0.5 0.06
1.0 0.27
1.5 0.50
2.0 0.67
2.5 0.78
3.5 0.89
4.0 0.92
4.5 0.94
5.0 0.95
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(b) Plot ln( V
Vmax−V ) vs. ln(s). Is this approximately a straight line, and if so,

what is its slope?
(c) Use linear regression to estimate Km and the Hill exponent n. Compare the

data to the Hill rate function with these parameters. Does this provide a
reasonable fit to the data?

Solution
(c) Rewrite the equation V = Vmaxsn

Kn
m+sn

as

−n lnKm + n ln s = ln

(
V

Vmax − V

)
, (22)

and view n and −n lnKn as unknown variables. For each experiment, there
is one such equation, so with ten data points we have the linear system of
equations

A

(
−n lnKm

n

)
=



1.0 −1.6094
1.0 −0.6931
1.0 0
1.0 0.4055
1.0 0.6931
1.0 0.9163
1.0 1.2528
1.0 1.3863
1.0 1.5041
1.0 1.6094



(
−n lnKm

n

)
=



−4.5951
−2.7515
−0.9946

0
0.7082
1.2657
2.0907
2.4423
2.7515
2.9444


= b.

(23)
To find the linear regression solution of this system, solve the normal equa-
tions

ATA

(
−n lnKm

n

)
= AT b, (24)

which in this case is the 2× 2 system(
10.0000 5.4649
5.4649 12.8990

)(
−n lnKm

n

)
=

(
3.8616
25.8358

)
, (25)

having the solution n = 2.4, Km = 1.47. A plot of the line y = n ln s−n lnKm

is shown with data points in Fig. 3, and a plot of the reaction velocity with
data points is shown in Fig. 4. This solution can be found by running the
Matlab code ex_Hill.m.

5. ATP is known to inhibit its own dephosphorylation. One possible way for this to
occur is if ATP binds with the enzyme, holding it in an inactive state, via

S1 + E
k4

−→
←−
k−4

S1E.
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Figure 4: Hill curve for data of Problem 4.

(a) Add this reaction to the Sel’kov model for glycolysis and derive the corre-
sponding equations governing glycolysis of the form

dσ1

dτ
= ν − f(σ1, σ2), (26)

dσ2

dτ
= αf(σ1, σ2)− ησ2. (27)

Explain from the model why this additional reaction is inhibitory.
(b) Give an analysis of these equations using xpp. In particular, modify the

file selkov.ode and find phase portraits of periodic solutions as well as the
bifurcation diagram, similar to Fig. 1.9 in the text.

Solution
The addended Sel’kov model with s1 = [S1], s2 = [S2], e = [E], c1 = [ESγ

2 ],
c2 = [S1ESγ

2 ],and c3 = [S1E] is

ds1
dt

= −k1s1c1 + k−1c2 − k4s1e+ k−4c3 + v1 (28)
ds2
dt

= −γk3s
γ
2e+ k−3γc1 + k2c2 − v2s2 (29)

dc1
dt

= −k1s1c1 + k−1c2 + k2c2 + k3es
γ
2 − k−3c1 (30)
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dc2
dt

= k1s1c1 − k−1c2 − k2c2 (31)
dc3
dt

= k4s1e− k−4c3 (32)

with conservation equation

e = e0 − c1 − c2 − c3. (33)

Nondimensionalizing this using σ1 = k1s1
k2+k−1

, σ2 =
(

k3
k−3

)1/γ

s2, x = c1/e0, y =

c2/e0, z = c3/e0, and t = k−1+k2
e0k1k2

τ gives

dσ1

dτ
= −k−1 + k2

k2
σ1x+

k−1
k2

y − k4(k−1 + k2)

k1k2
σ1(1− x− y − z) +

k−4
k2

z + ν(34)

dσ2

dτ
= α

[
y − γk−3

k2
σγ
2 (1− x− y − z) +

γk−3
k2

x

]
− ησ2 (35)

ϵ
dx

dτ
= −σ1x+ y +

k−3
k−1 + k2

(σγ
2 (1− x− y − z)− x) (36)

ϵ
dy

dτ
= σ1x− y (37)

ϵ
dz

dτ
=

k4
k1

σ1(1− x− y − z)− k−4
k−1 + k2

z, (38)

where ϵ = e0k1k2
(k−1+k2)2

, ν = v1
k2e0

, α = k−1+k2
k1

(
k3
k−3

)1/γ

, and η = v2(k−1+k2)
e0k1k2

. In
quasi-steady state

x =
σγ
2

1 + σγ
2 + βσ1 + σ1σ

γ
2

(39)

y =
σ1σ

γ
2

1 + σγ
2 + βσ1 + σ1σ

γ
2

(40)

z =
βσ1

1 + σγ
2 + βσ1 + σ1σ

γ
2

, (41)

where β = (k−1+k2)k4
k1k−4

. Thus,

dσ1

dτ
= ν − f(σ1, σ2) (42)

dσ2

dτ
= αf(σ1, σ2)− ησ2, (43)

where
f(σ1, σ2) =

σ1σ
γ
2

1 + σγ
2 + βσ1 + σ1σ

γ
2

. (44)

A typical phase portrait is shown in Fig. 5.
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6. (a) Suppose a semi-infinite tube with cross-sectional area A initially has only
water, and that the concentration of a chemical species (with diffusion coef-
ficient D), in a large bath at the end of the tube has fixed concentration C0.
Find the total number of molecules in the tube at time t.
Solution

N = 2C0A

√
TD

π
. (45)

(b) The following data were used by Segel, Chet and Henis (1977) to estimate
the diffusion coefficient for bacteria. With the external concentration C0 at
7 × 107ml−1, at times t = 2, 5, 10, 12.5, 15, and 20 minutes, they counted
N of 1,800, 3,700, 4,800, 5,500, 6,700, and 8,000 bacteria, respectively, in a
capillary of length 32 mm with 1 µl total capacity. In addition, with external
concentrations C0 of 2.5, 4.6, 5.0, and 12.0 ×107 bacteria per milliliter, counts
of 1,350, 2,300, 3,400, and 6,200 were found at t = 10 minutes. Estimate D.

Solution
According to the formula (??)

D =
πN2

4C2
0A

2T
. (46)

the ratio N2

T
should be a constant. In fact, this number varies between 1.6× 106

and 3.2×106, giving an estimate of D =0.4-0.9 ×10−4cm2/s. For the second data
set, with T fixed, the estimate is D =0.3-0.6×10−4cm2/s.

7. Almost immediately upon entering a cell, glucose is phosphorylated in the first
reaction step of glycolysis. How does this rapid and nearly unidirectional reaction
affect the transmembrane flux of glucose (Find an expression for glucose flux that
incorporates this reaction.) How is this reaction affected by the concentration of
ATP?
Solution

J =
(se − si)kk+k−

(2k2
+sesi + 2(se + si)(k + k−)k+ + 4k−k + 2k2

−)
(47)

where

0 = 2kasi(k
2
+sesi + kk+se + kk+si + k−k+se + k−k+si + 2kk− + k2

−)

+kk−k+(si − se) (48)

We can solve this for ka as a function of si. Set Se = k+se, Si = k+si, to get

0 = 2kaSi(SiSe + (k + k−)(Se + Si) + 2kk− + k2
−)

+k+kk−(Si − Se) (49)

The important observation is that si → 0 as ka → ∞.

10



0 5 10 15 20

k
a

0

0.2

0.4

0.6

0.8

1

s
i

0 5 10 15 20

k
a

0

0.05

0.1

0.15

0.2

J

Figure 6: A: Plot of si as a function of ka and B: Plot of J as a function of ka, with
se = k = k− = k+ = 1.

8. A 1.5 oz bag of potato chips (a typical single serving) contains about 200 mg of
Na+. When eaten and absorbed into the body, how many osmoles does this bag
of potato chips represent?
Solution
The gram molecular weight of sodium is 23, while the gram molecular weight of
chloride is 35.5. Therefore 200 grams of sodium is 8.7 moles of sodium. since
salt has equal amounts of sodium and chloride, 200 grams of sodium gives 17.4
osmoles.

9. (a) Consider a vertical tube with a cross-sectional area of 1 cm2. The bottom of
the tube is closed with a semi-permeable membrane and 1 gram of sugar is
placed in the tube. The membrane-closed end of the tube is then put into
an inexhaustible supply of pure water at T = 300K. What will be the height
of the water in the tube at equilibrium? (The weight of a sugar molecule is
3× 10−22 gm, and the density of water is 1 gm/cm3).

(b) Two columns with cross-sectional area 1 cm2 are initially filled to a height of
one meter with water at T = 300◦K. Suppose 0.001 gm of sugar is dissolved in
one of the two columns. How high will the sugary column be when equilibrium
is reached?

(c) Suppose in the previous question 1 gm of sugar is dissolved in one of the two
columns. What is the equilibrium height of the two columns?

Solution
(a) The units of RcT are 103Jm−3 = 103Nm−2 = 103Pa.

If ρgh = 25atm = 2.533× 106N m−2, then h = 256.6 m.
since a gram of sugar has 1

3
× 1022 molecules, nkT

ρgA
= 14.12m2. The column

will have height 3.76m.
(b) h1 =

h0

2
+ 1

2

√
h2
0 +

2nkT
ρgA

= 1.007m.
(c) There is not enough water to balance the osmotic pressure.

10. Suppose the Na+ Nernst potential of a cell is 56 mV, its resting potential is −70
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mV, and the extracellular Ca++ concentration is 1 mM. At what intracellular
Ca++ concentration is the flux of a three-for-one Na+–Ca++ exchanger zero?
(Use that RT/F = 25.8 mV at 27◦C.)
Solution:
From the text, equilibrium is when

ci
ce

=
n3
i

n3
e

e
FV
RT (50)

The Nernst potential is VNa =
RT
F

ln
(

ne

ni

)
, so that

ne

ni

= e
FVNa
RT (51)

so that
ci
ce

= e
F (V−3VNa)

RT = 9.8× 10−5 ≈ 1× 10−4. (52)

Thus, with ce = 1mM, ci = 0.1µM.
11. Intestinal epithelial cells have a glucose–Na+ symport that transports one Na+ ion

and one glucose molecule from the intestine into the cell. Model this transport
process. Is the transport of glucose aided or hindered by the cell’s negative
membrane potential?
Solution
The flux is of the form

J = K(genee
−FVNa

RT − gini) (53)

Clearly, the flux is enhanced by the negative membrane potential.

12



Assignment 2 (due April 7, 2020)

1. Explore the behavior of the reduced Hodgkin-Huxley model (you may use the
code hhred.ode).
(a) For what values of applied current are there oscillatory solutions? Produce

phase portraits for several different parameter values showing the different
types of possible behaviors, and use xppaut to produce a bifurcation diagram.

(b) For what values of the potassium Nernst potential are there oscillatory so-
lutions? Produce a bifurcation diagram with potassium Nernst potential as
bifurcation parameter.

Solution
The bifurcation diagram is shown on the left panel of Fig.7 and a phase portrait
for I0 = 91.8, showing periodic limit cycle solution is shown on the right panel.
There are two Hopf bifurcation points, at I0 = 8.817 and I0 = 372.6.
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Figure 7: Left: The bifurcation diagram for the Reduced HH equations and Right: a phase
portrait for I0 = 91.8, showing a periodic limit cycle solution.

2. Morris and Lecar (1981) proposed the following two-variable model of membrane
potential for a barnacle muscle fiber:

Cm
dV

dT
+ Iion(V,W ) = Iapp, (54)

dW

dT
= ϕΛ(V )[W∞(V )−W ], (55)

where V = membrane potential, W = fraction of open κ+ channels, T = time,
Cm = membrane capacitance, Iapp = externally applied current, ϕ = maximum
rate for closing κ+ channels, and

Iion(V,W ) = gCaM∞(V )(V − V 0
Ca) + gKW (V − V 0

K) + gL(V − V 0
L ), (56)

M∞(V ) =
1

2

(
1 + tanh

(
V − V1

V2

))
, (57)
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Cm = 20 µF/cm2 Iapp = 0.06 mA/cm2

gCa = 4.4 mS/cm2 gK = 8 mS/cm2

gL = 2 mS/cm2 ϕ = 0.04 ms−1

V1 = −1.2 mV V2 = 18 mV

V3 = 2 V4 = 30 mV

V 0
Ca = 120 mV V 0

K = −84 mV

VL = −60 mV

Table 3: Typical parameter values for the Morris–Lecar model.

W∞(V ) =
1

2

(
1 + tanh

(
V − V3

V4

))
, (58)

Λ(V ) = cosh

(
V − V3

2V4

)
. (59)

Typical parameter values for these equations are shown in Table 3.
(a) Make a phase portrait for the Morris–Lecar equations. Plot the nullclines and

show some typical trajectories, demonstrating that the model is excitable.
(b) For what range of applied current is this system oscillatory? Use XPP to

find the bifurcation diagram and determine the types of bifurcations. (You
can use the file ML.ode to get started.)

Solution
(a) A phase portrait for Iapp = 137 showing a periodic limit cycle solution is

shown in Fig.8.
(b) There are Hopf bifurcations at Iapp = 94 and Iapp = 212, shown in the

bifurcation diagram in Fig.9.
3. The Hodgkin-Huxley equations are

Cm
dv

dt
= −ḡKn

4(v − vK)− ḡNam
3h(v − vNa)− ḡL(v − vL) + Iapp, (60)

dm

dt
= αm(1−m)− βmm, (61)

dn

dt
= αn(1− n)− βnn, (62)

dh

dt
= αh(1− h)− βhh, (63)

with the functions αj and βj, in units of (ms)−1,

αm = 0.1
25− v

exp
(
25−v
10

)
− 1

, (64)
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Figure 8: A phase portrait for Iapp = 137, showing periodic limit cycle solution.

βm = 4 exp

(
−v

18

)
, (65)

αh = 0.07 exp

(
−v

20

)
, (66)

βh =
1

exp(30−v
10

) + 1
, (67)

αn = 0.01
10− v

exp(10−v
10

)− 1
, (68)

βn = 0.125 exp

(
−v

80

)
. (69)

For these expressions, the potential v is the deviation from rest, measured in
units of mV, current density is in units of µA/cm2, conductances are in units of
mS/cm2, and capacitance is in units of µF/cm2. The remaining parameters are

ḡNa = 120, ḡK = 36, ḡL = 0.3, Cm = 1, (70)

and with shifted equilibrium potentials

vNa = 115, vK = −12, vL = 10.6. (71)

(a) Simulate these equations with current input Iapp = 0. What are the steady
state values for all variables?

(b) Starting with all variables at steady state, apply a piecewise constant current
that is nonzero for 0.5 ms. Plot the voltage response for several different
values of Iapp. Identify the threshold value of Iapp.

(c) For what range of constant applied current is this system oscillatory? Use
XPP to find the bifurcation diagram and determine the types of bifurcations.
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Solution
(a) The steady solution is V = 0, n = 0.3177, m = 0.053, h = 0.596.
(b) With Iapp < 13.3 the response is subthreshold while with Iapp > 13.4 the

response is superthreshold, as depicted in Fig.10.
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Figure 10: V as a function of t for the HH equations following a stimulus of length 0.5 ms
with amplitude Iapp = 13.3 (dashed) and Iapp = 13.4 (solid).

(c) There are Hopf bifurcations at Iapp = 9.78 and Iapp = 154.4. The bifurcation
diagram is shown in Fig.11.
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Figure 11: The bifurcation diagram for the HH equations.

Assignment 3: (due April 29, 2020)

1. One of the earliest models of Ca++ oscillations was the two-pool model of Gold-
beter, Dupont and Berridge (1990). They assumed that IP3 causes an influx, r,
of Ca++ into the cell and that this influx causes additional release of Ca++ from
the ER via an IP3-independent mechanism. Thus,

dc

dt
= r − kc− f(c, ce), (72)

dce
dt

= f(c, ce), (73)

f(c, ce) = Juptake − Jrelease − kfce, (74)

where

Juptake =
V1c

n

Kn
1 + cn

, (75)

Jrelease =

(
V2c

m
e

Km
2 + cme

)(
cp

Kp
3 + cp

)
. (76)

Here, kfce is a leak from the ER into the cytoplasm. Typical parameter values
are given in Table 4. (All the concentrations in this model are with respect to
the total cell volume, and thus there is no need for the correction factor γ to take
into account the difference in the ER and cytoplasmic volumes.)
(a) Nondimensionalize these equations. How many non-dimensional parameters

are there?
(b) Show that in a closed cell (i.e., one without any interaction with the extra-

cellular environment) the two-pool model cannot exhibit oscillations.
(c) How does the steady state solution depend on influx?
(d) Use a bifurcation tracking program such as XPPAUT to plot the bifurcation

diagram of this model, using r as the bifurcation parameter. Find the Hopf
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k = 10 s−1 K1 = 1 µM
K2 = 2 µM K3 = 0.9 µM
V1 = 65 µMs−1 V2 = 500 µMs−1

kf = 1 s−1 m = 2
n = 2 p = 4

Table 4: Typical parameter values for the two-pool model of Ca++ oscillations (Goldbeter
et al., 1990).

bifurcation points and locate the branch of stable limit cycle solutions. Plot
some typical limit cycle solutions for different values of r.

Solution
(a) Introduce dimensionless variables x = c

K1
, y = ce

K1
, and τ = kf t, in terms of

which the nondimensional equations are

dx

dτ
= ρ− κx− f̂(x, y), (77)

dy

dτ
= f̂(x, y), (78)

f̂(x, y) = ν1
xn

1 + xn
− ν2

(
ym

km
2 + ym

)(
xp

kp
3 + xp

)
− x, (79)

with the six nondimensional parameters ρ = r
kfK1

, κ = k
kf

, ν1 = V1

K1kf
, ν2 =

V2

K1kf
, k2 = K2

K1
, and k3 =

K3

K1
.

(b) Set ρ = κ = 0, and then x satisfies the first order differential equation

dx

dτ
= −f̂(x,XT − x), (80)

where XT = x + y is the total calcium in the cell. Solutions of a first order
differential equation are monotone increasing or decreasing, never oscillatory.

(c) At steady state x = ρ
κ
, and f(x, y) = 0 determines y, but not easily.

(d) The bifurcation diagram in terms of the variable c, using r as a parameter,
is shown in Figure 12. As expected, the steady state of cytosolic calcium
changes linearly with r. However, there are supercritical Hopf bifurcations at
r = 3.109 and r = 6.652. Thus, as the diagram shows, for r ∈ [3.109, 6.652],
a stable oscillation exists.
Sample traces of the calcium dynamics are shown in Figure 13 for r = 3.54
and r = 5.92. Notice that as r increases the amplitude of the calcium oscil-
lations decreases, while their frequency increases.

2. Use XPPAUT to provide a fast-slow analysis of the polynomial system

dx

dT
= y − x3 + 3x2 + I − z, (81)
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Figure 12: Bifurcation diagram of c with r as the parameter.
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Figure 13: Some traces of the stable limit cycle for r = 3.54 (left) and r = 5.92 (right).

dy

dT
= 1− 5x2 − y, (82)

dz

dT
= r[s(x− x1)− z], (83)

where x1 = −1
2
(1 +

√
5) is the x-coordinate of the resting state in the reduced

two-variable model and where I, is the applied current, with r = 0.001 and s = 4.
(a) Make a bifurcation diagram of the reduced two variable system, as a function

of the ”parameter” z, with I = 2.
(b) Superimpose this bifurcation diagram over trajectories of the full system in

the x-z plane.
(c) Describe the mechanism of this bursting. What happens to the bursting

pattern if I is increased or decreased?
Solution
(a) XPP was used to create the bifurcation diagram shown in Figure 14 of the fast

subsystem (variables x and y), using the slow variable z as a parameter, and
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I = 2. As the digram illustrates, as z decreases from a large value, oscillations
begin via a homoclinic saddle node bifurcation. These oscillations eventually
end via a supercritical Hopf bifurcation.
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Figure 14: The bifurcation diagram for the slow system (81,82).

(b) We use XPP to superimpose the bifurcation diagram from part (a) onto the
solution of the full system in the z − x plane, shown in Figure 15.
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Figure 15: Bifurcation diagram of the fast subsystem.

(c) The bursting mechanism can be described by examining Figure 15 in more
detail. Suppose initial conditions place the trajectory along the lower stable
branch of the bifurcation diagram. On this branch, the fast variables are
approximately at steady state. Further we know that x < x1 and as a result,
dz
dt

< 0.
As z decreases, eventually the saddle node bifurcation is reached, and the
system jumps into the oscillatory regime. Here, fast variables are oscillating
with x > x1, and consequently, dz

dt
> 0.
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Now, as the slow variable (z) increases, eventually we fall out of the region of
oscillation through a homoclinic bifurcation, and the trajectory falls to the
lower stable branch. This cycle repeats itself, and bursting occurs.
This bursting behavior is dependent on the parameter I. This is because
the quantity (I + z) appears in the governing equation for x, so changing
I shifts the bifurcation diagram and hence the transitions between bursting
and quiescence.

3. (a) Numerically simulate the system of differential equations

dv

dt
= f(v)− w − gs(v − vθ), (84)

5
dw

dt
= w∞(v)− w, (85)

ds

dt
= fs(s) + αs(x− 0.3), (86)

dx

dt
= βx ((1− x)H(v)− x) , (87)

where f(v) = 1.35v(1−1
3
v2), fs(s) = −0.2(s−0.05)(s−0.135)(s−0.21), w∞(v) =

tanh(5v), and H(v) = 3
2
(1 + tanh(5v − 2.5)), and vθ = −2, αs = 0.002, βx =

0.00025, g = 0.73.
(b) Give a fast–slow analysis of this burster. Hint: The equations for v, w com-

prise the fast subsystem, while those for s, x comprise the slow subsystem.
(c) Describe the bursting mechanism in this model. For what kind of burster

might this be a reasonable model?
Solution
(a) The numerical simulation of v vs. t is shown in Figure 16. As the figure

illustrates, the system bursts very rapidly for approximately 2000 time units.
The system then “rests” for 2000 time units before returning to the oscillatory
behavior.

(b) The fast-slow analysis of this burster is begun by examining the fast, (v, w)
subsystem:

dv

dt
= f(v)− w − gs(v − vθ), (88)

dw

dt
=

w∞(v)− w

5
, (89)

with s as a parameter. The bifurcation diagram is shown in Figure 17. As
the diagram illustrates, there are two homoclinic saddle-node bifurcations,
one occurring at s = 0.1343 and another at s = −0.04553. As a result, for
s ∈ [−.04553, .1343], this fast subsystem is oscillating. For 0.1343 < s <
0.4128, there are three steady states, with only one of them stable. In this
regime, all trajectories go to the low steady state for v. For −0.3155 <
s < −0.04553, there are also three steady states, but the trajectories are all
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Figure 16: Numerical simulation of the system of differential equations (84-87), with v
plotted as a function of t.

-1.5

-1

-0.5

0

0.5

1

1.5

2

V

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
s

Figure 17: Bifurcation diagram of the fast subsystem (88)-(89) using s as a bifurcation
parameter.

attracted to the higher steady state for v. These behaviors are illustrated in
the phase portraits shown in Figure 18.
The slow variables s and x are governed by the equations

ds

dt
= fs(s) + αs(x− 0.3), (90)

dx

dt
= βx((1− x)H(v)− x). (91)

The fast variable w does not appear in these equations, and the variable v
appears only in the differential equation for x. Further, the nullclines for this
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Figure 18: (v, w) phase-plane digram for high s (left), for s between the two homoclinic
bifurcations (middle), and for low s (right).

system are

s−nullcline :x = −−0.2(s− 0.05)(s− 0.135)(s− 0.21)

αs

+ 0.3, (92)

x−nullcline :x =
H(v)

1 +H(v)
. (93)

Since v is fast, the slow variable x only “sees” the average value of v over
some period of time. Treating v as a parameter, we can look at two possible
phase planes of this subsystem. These nullclines can be seen in Figure 19.
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Figure 19: Phase plane of the slow subsystem (90)-(91) with v ≈ −1.2 (horizontal line at
x = 0.2) and v ≈ 0.33 (horizontal line at x = 0.38).

(c) Suppose s starts in the non-oscillatory regime of the burster. According to
the bifurcation diagram, v is approximately -1.2. With this value of v, the
steady state of the slow system is at s ≈ 0.01 so that s decreases slowly.
As it does so, it eventually passes the homoclinic saddle node bifurcation
(at s ≈ 0.13), and the system starts to burst. While bursting, the average
value of v, the value that is “seen” by x, is approximately .33. As a result
the steady state of the slow subsystem shifts to x ≈ 0.38, s ≈ 0.25, so that
s increases. Eventually, s crosses the critical point and thereby leaves the

23



oscillatory regime. This process repeats, creating the bursting pattern seen
in the simulation.

4. Suppose that the production of an enzyme is turned on by m molecules of the
enzyme according to

G+mP
k+−→
←−
k−
X,

where G is the inactive state of the gene and X is the active state of the gene.
Suppose that mRNA is produced when the gene is in the active state and the
enzyme is produced by mRNA and is degraded at some linear rate. Find a
system of differential equations governing the behavior of mRNA and enzyme.
Give a phase portrait analysis of this system and show that it has a “switch-like”
behavior.

Solution
Let Px be the probability that the gene is in the active state. Then,

dPx

dt
= k+E

m(1− Px)− k−Px. (94)

where E represents the concentration of enzyme. When the gene is in the activated
state, the mRNA that codes for the enzyme E is produced at a linear rate. Further-
more, this mRNA produces E at a linear rate, and both mRNA and E decay at a
linear rate. It follows that

dM

dt
= αmPx − α−mM, (95)

dE

dt
= βeM − β−eE. (96)

To give a phase portrait analysis of this system, take Equation (94) to be steady state,
so that

0 = k+E
m(1− Px)− k−Px ⇒ Px =

k+E
m

k+Em + k−
. (97)

Substituting this into the equation for M yields the equation
dM

dt
= αm

k+E
m

k+Em + k−
− α−mM. (98)

Nondimensionalization reduces this system to a system with two parameters
dM

dt
= ρ

k+E
m

k+Em + k−
− κM, (99)

du

dt
= m− u. (100)

A phase plane portrait for this system with 3 different values of ρ = 1, 10, 100 is shown
in Figure 20.
Switching behavior is illustrated in the diagram Figure 21.
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Figure 20: Phase portrait for the system (99)-(100) for 3 different values of ρ = 1, 10, 100,
plotted on a log-log scale.
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Figure 21: Equilibria for the enzyme level in the system (99)-(100) plotted as a function of
ρ.
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