Stochastic birth-death processes

September 8, 2006

Here is the problem. Suppose we have a finite population of (for example) radioactive particles,
with decay rate A\. When will the population disappear (go extinct)?

1 Poisson process as a birth process

To illustrate the ideas in a simple problem, consider a waiting time problem (Poisson process).
How long does it take for n events to occur, if all events are independent, and if the probability of
an event in time dt is Adt?

The equations
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for n > 1, with initial data Py(0) = 1, P,(0) = 0 for n > 1. The conjecture is that the solution is

of the form

1
P,(t) = m/\”t” exp(—At). (3)
This is certainly correct for Py(t). We check it inductively:
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as desired.

It is also easy to find the generating function. Set g(z,t) = > 72 P,.2* so that
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with initial data g(z,0) = 1. This is actually an ordinary differential equation, with solution

9(z,t) = exp((z — 1)),

and Taylor series
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so that P,(t) = LA™ exp(—At), as stated above.
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2 stochastic birth process

Start with the stochastic birth problem

dpn
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and p,(0) = 1. Then the solution is the negative binomial distribution
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The proof uses induction.
Mean and variance are ;1 = aexp(bt) and 02 = aexp(bt)(exp(bt) — 1).

We can also use a generating function
[e.e]
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and then observe that
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with initial data ¢(0, z) = 2.
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The solution can be found using the method of characteristics. Set g—j = f, % — 1, and then
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with % = b(z — 2?). This we solve easily: g = 2¢ along
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From this we easily find the solution using the negative binomial expansion
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The problem is that with the usual continuous population model

du
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the population never goes extinct, because the solution

u(t) = exp(—At), (24)

cannot become zero. Of course, the problem is that we are using a continuous model when only a
discrete model can work. So we write the master equation for P,, the probability that at time ¢
the population has n members
dpP,
dt
with initial conditions Px(0) =1 and P,(0) =0 for n # N.

=An+1)Py11 — AnPy, (25)

It takes some work, but one can show by induction, that the solution to this problem is

P;(t) = < ]j > exp(—ANt)(exp(At) — 1)V, (26)
The calculation is left to the reader. This is exactly the binomial distribution with p(t) = exp(—At).

Try a generating function, as well. g(z,t) = > "2, Pz, and observe that
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The initial data for this are
9(z,0) = 2" (28)

and the solution is found using the method of characteristics. The solution is constant along
characteristics, satisfying

dz
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S YE) (29)
It follows easily that
In(z —1) =In(zp — 1), (30)
or
20 =14 (z — 1) exp(—=At), (31)
Thus, the solution is
g(z,t) = (1 — exp(—=\t) + zexp(—Xt))Y, (32)

which can easily be expanded using the binomial expansion.

The mean and variance are easily calculated using facts about the binomial distribution, namely
wu(t) = Nexp(—At), var(t) = N(exp(—At) — exp(—2At)), (33)

which is the deterministic answer for the population size.
Now the extinction probability is

Po(t) = (1 — exp(—At)) ™. (34)

The expected time of going extinct is given by

E(t) = /0 - tP)(t)dt, (35)

but I can’t calculate this explicitly.

More generally, if A is a function of time,

In(z —1) =In(zp — 1)/0 A(s)ds, (36)
=1+ (2—-1) exp(—/0 A(s)ds), (37)

Thus, the solution is .
glet) = (14 (= 1)exp(—/0 A(s)ds))™, (38)

which can easily be expanded using the binomial expansion. More generally,



3 The full birth-death problem

Suppose we have a birth-death process

4P,
dt

Past experience tells us that there is a generating function g(z,t) = >, _, P,z*, and that
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Of course, the solution is found using the method of characteristics, g = z{ (say), where
dz
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which we can solve to find
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In( ] ) = —In( ) )« — B)t, (42)
from which we find that 5 5
z—« _ Ba—«a
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It is possible to find the Taylor series expansion of g, however, the original problem was to find
Py(t), which we can easily do. In fact,

aexp((a —B)t) — 04>N
Py(t) = . 45
0= (o (45)
It is interesting to calculate the probability of extinction: If o > (3, then
tlim P(](t) = 1, (46)
whereas if § > «, then
lim Py(t) = (%)N . (47)

Some questions to answer (maybe):

e What is the expected time of extinction in a birth-death process? (as a function of initial
population size, N)? (at least I can calculate this numeically, if not analytically)

e What is the variance in population size in a birth death process? (can the moment equations
be solved? How about the moment generating function?)



4 JTon Channels

A similar model describes the behavior of an ion channel with &k independent subunits, all of which
must be open in order for the ion channel to conduct ions. Let p; be the probability that j subunits
are open. Then

dp; _

5 =k —j+pj1+ B(7 + Dpjr1 — (B + a(k — 7))pj, (48)

with appropriate restriction on the indices.

There are two interesting observations about this model. First, it is relatively easy to show that
there is an invariant manifold given by

b= (5 ) w—np (19)

with J
n
i a(l —n) — pn. (50)

I don’t know how to show that this is a stable invariant manifold, but I believe it is. (I can show
it in a few easy cases, like k = 2,3.)

Second, we can find the equation for the generating function

k
g(t,2) = ijzj, (51)
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It is not hard to check that one solution of this pde is
g(z7t) = (nz +1- n)k7 (53)



provided (50) holds. And, of course, (49) follows from the binomial expansion.
Notice also that if n(0) = 0, then g(z,0) = 1, which implies all subunits are initially closed.

The general solution in the case that a and § are constant can be found using the method of charac-
teristics. We suppose that g(z,0) = 1 (all subunits are initially closed), and then the characteristic

equations are
dg dz

T ak(z—1)g, i (1=2)(8+ az). (54)

We find that the characteristic curves are

(ﬁ-i-ozz
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Zo—l

)exp(—(a+ B)t) = ( )- (55)

It is also possible to integrate the ”phase plane” equation for g,

d_g B akg

dz~  B+az’ (56)
to find N
o ﬁ + azg
g_<ﬂ+a2> ) (57)
To find ¢(z,t), we now solve (55) for zy and substitute into (57).
(a2 en(-(a+ 80 + 5 -1 .

(B+ az)exp(—(a+ B)t) —a(z — 1)

Something seems wrong here, since the answer is supposed to be a polynomial of degree k. Oh
well, this is not the interesting case, anyway.



