
Homework Exercises for Mathematics 6770 - Fall 2016

Remark: Solutions may include maple files or matlab files.

Assignment 1: (due Sept. 27, 2016)

1. In the real world trimolecular reactions are rare, although trimerizations are not.
Consider the following trimerization reaction in which three monomers of A com-
bine to form the trimer C,

A + A
k1

−→

←−

k
−1

B,

A + B
k2

−→

←−

k
−2

C.

(a) Use the law of mass action to find the rate of production of the trimer C.

(b) Suppose k−1 ≫ k−2, k2A. Use the appropriate quasi-steady state approxima-
tion to find the rates of production of A and C, and show that the rate of
production of C is proportional to [A]3. Explain in words why this is so.

2. The length of microtubules changes by a process called treadmilling, in which
monomer is added to one end of the microtubule and taken off at the other end.
To model this process, suppose that monomer A1 is self-polymerizing in that it
can form dimer A2 via

A1 +A1

k+−→A2. (1)

Furthermore, suppose A1 can polymerize an n-polymer An at one end making an
n + 1-polymer An+1

A1 +An

k+−→An+1. (2)

Finally, degradation can occur one monomer at a time from the opposite end at
rate k−. Find the steady state distribution of polymer lengths after an initial
amount of monomer A0 has fully polymerized.

3. An enzyme-substrate system is believed to proceed at a Michaelis- Menten rate.
Data for the (initial) rate of reaction at different concentrations is shown in Table
1.

(a) Plot the data V vs. s. Is there evidence that this is a Michaelis-Menten type
reaction?

(b) Plot V vs. V/s. Is this data well approximated by a straight line?

(c) Use linear regression to estimate Km and Vmax. Compare the data to the
Michaelis-Menten rate function using these parameters. Does this provide a
reasonable fit to the data?

4. Suppose the maximum velocity of a chemical reaction is known to be 1 mM/s,
and the measured velocity V of the reaction at different concentrations s is shown
in Table 2.
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Table 1: Data for Problem 3.
Substrate Reaction

Concentration (mM) Velocity (mM/s)
0.1 0.04
0.2 0.08
0.5 0.17
1.0 0.24
2.0 0.32
3.5 0.39
5.0 0.42

Table 2: Data for Problem 4.
Substrate Reaction

Concentration (mM) Velocity (mM/s)
0.2 0.01
0.5 0.06
1.0 0.27
1.5 0.50
2.0 0.67
2.5 0.78
3.5 0.89
4.0 0.92
4.5 0.94
5.0 0.95
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(a) Plot the data V vs. s. Is there evidence that this is a Hill type reaction?

(b) Plot ln( V
Vmax−V

) vs. ln(s). Is this approximately a straight line, and if so,
what is its slope?

(c) Use linear regression to estimate Km and the Hill exponent n. Compare the
data to the Hill rate function with these parameters. Does this provide a
reasonable fit to the data?

5. Suppose that a substrate can be broken down by two different enzymes with
different kinetics. (This happens, for example, in the case of cAMP or cGMP,
which can be hydrolyzed by two different forms of phosphodiesterase).

(a) Write the reaction scheme and differential equations, and nondimensionalize,
to get the system of equations

dσ

dt
= −σ + α1(µ1 + σ)x+ α2(µ2 + σ)y, (3)

ǫ1
dx

dt
=

1

λ1

σ(1− x)− x, (4)

ǫ2
dy

dt
=

1

λ2

σ(1− y)− y. (5)

where x and y are the nondimensional concentrations of the two complexes.
Identify all parameters.

(b) Apply the quasi-steady-state approximation to find the equation governing
the dynamics of substrate σ. Under what conditions is the quasi-steady state
approximation valid?

(c) Solve the differential equation governing σ.

(d) For this system of equations, show that the solution can never leave the pos-
itive octant σ, x, y ≥ 0. By showing that σ+ ǫ1λ1α1x+ ǫ2λ2α2y is decreasing
everywhere in the positive octant, show that the solution approaches the
origin for large time.

6. ATP is known to inhibit its own dephosphorylation. One possible way for this to
occur is if ATP binds with the enzyme, holding it in an inactive state, via

S1 + E
k4

−→

←−

k
−4

S1E.

(a) Add this reaction to the Sel’kov model for glycolysis and derive the corre-
sponding equations governing glycolysis of the form

dσ1

dτ
= ν − f(σ1, σ2), (6)

dσ2

dτ
= αf(σ1, σ2)− ησ2. (7)

Explain from the model why this additional reaction is inhibitory.
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(b) Give an analysis of these equations using xpp. In particular, modify the
file selkov.ode and find phase portraits of periodic solutions as well as the
bifurcation diagram, similar to Fig. 1.9 in the text.

Assignment 2: (due Oct. 25, 2016)

1. (a) Suppose a semi-infinite tube with cross-sectional area A initially has only
water, and that the concentration of a chemical species (with diffusion coef-
ficient D), in a large bath at the end of the tube has fixed concentration C0.
Find the total number of molecules in the tube at time t.

(b) The following data were used by Segel, Chet and Henis (1977) to estimate
the diffusion coefficient for bacteria. With the external concentration C0 at
7 × 107ml−1, at times t = 2, 5, 10, 12.5, 15, and 20 minutes, they counted
N of 1,800, 3,700, 4,800, 5,500, 6,700, and 8,000 bacteria, respectively, in a
capillary of length 32 mm with 1 µl total capacity. In addition, with external
concentrations C0 of 2.5, 4.6, 5.0, and 12.0 ×107 bacteria per milliliter, counts
of 1,350, 2,300, 3,400, and 6,200 were found at t = 10 minutes. Estimate D.

2. Find the maximal enhancement for diffusive transport of carbon dioxide via bind-
ing with myoglobin using Ds = 1.92 × 10−5 cm2/s, k+ = 2 × 108 cm3/M · s,
k− = 1.7×10−2/s. Compare the amount of facilitation of carbon dioxide transport
with that of oxygen at similar concentration levels.

3. Almost immediately upon entering a cell, glucose is phosphorylated in the first
reaction step of glycolysis. How does this rapid and nearly unidirectional reaction
affect the transmembrane flux of glucose (Find an expression for glucose flux that
incorporates this reaction.) How is this reaction affected by the concentration of
ATP?

4. A 1.5 oz bag of potato chips (a typical single serving) contains about 200 mg of
Na+. When eaten and absorbed into the body, how many osmoles does this bag
of potato chips represent?

5. (a) Consider a vertical tube with a cross-sectional area of 1 cm2. The bottom of
the tube is closed with a semi-permeable membrane and 1 gram of sugar is
placed in the tube. The membrane-closed end of the tube is then put into
an inexhaustible supply of pure water at T = 300K. What will be the height
of the water in the tube at equilibrium? (The weight of a sugar molecule is
3× 10−22 gm, and the density of water is 1 gm/cm3).

(b) Two columns with cross-sectional area 1 cm2 are initially filled to a height of
one meter with water at T = 300◦K. Suppose 0.001 gm of sugar is dissolved in
one of the two columns. How high will the sugary column be when equilibrium
is reached?.

(c) Suppose in the previous question 1 gm of sugar is dissolved in one of the two
columns. What is the equilibrium height of the two columns?

6. Ouabain is known to compete with K+ for external potassium binding sites of
the Na,K-ATPase. Many animal cells swell and burst when treated with the drug
ouabain. Why? (Explain this using a model of cell volume control.)
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Assignment 3 (due Nov. 17, 2014)

1. Suppose the Na+ Nernst potential of a cell is 56 mV, its resting potential is −70
mV, and the extracellular Ca++ concentration is 1 mM. At what intracellular
Ca++ concentration is the flux of a three-for-one Na+–Ca++ exchanger zero? (Use
that RT/F = 25.8 mV at 27◦C.)

2. Intestinal epithelial cells have a glucose–Na+ symport that transports one Na+

ion and one glucose molecule from the intestine into the cell. Model this trans-
port process. Is the transport of glucose aided or hindered by the cell’s negative
membrane potential?

3. Explore the behavior of the reduced Hodgkin-Huxley model (you may use the code
hhred.ode). In particular, for what values of applied current are there oscillatory
solutions? Produce phase portraits for several different parameter values showing
the different types of possible behaviors, and use xppaut to produce a bifurcation
diagram.

4. Morris and Lecar (1981) proposed the following two-variable model of membrane
potential for a barnacle muscle fiber:

Cm

dV

dT
+ Iion(V,W ) = Iapp, (8)

dW

dT
= φΛ(V )[W∞(V )−W ], (9)

where V = membrane potential, W = fraction of open κ+ channels, T = time,
Cm = membrane capacitance, Iapp = externally applied current, φ = maximum
rate for closing κ+ channels, and

Iion(V,W ) = gCaM∞(V )(V − V 0
Ca) + gKW (V − V 0

K) + gL(V − V 0
L ), (10)

M∞(V ) =
1

2

(

1 + tanh

(

V − V1

V2

))

, (11)

W∞(V ) =
1

2

(

1 + tanh

(

V − V3

V4

))

, (12)

Λ(V ) = cosh

(

V − V3

2V4

)

. (13)

Typical parameter values for these equations are shown in Table 3.

(a) Make a phase portrait for the Morris–Lecar equations. Plot the nullclines and
show some typical trajectories, demonstrating that the model is excitable.

(b) For what range of applied current is this system oscillatory? Use XPP to find
the bifurcation diagram and determine the types of bifurcations. (You can
use the file ML.ode to get started.)

5. The Hodgkin-Huxley equations are

Cm

dv

dt
= −ḡKn

4(v − vK)− ḡNam
3h(v − vNa)− ḡL(v − vL) + Iapp, (14)
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Cm = 20 µF/cm2 Iapp = 0.06 mA/cm2

gCa = 4.4 mS/cm2 gK = 8 mS/cm2

gL = 2 mS/cm2 φ = 0.04 ms−1

V1 = −1.2 mV V2 = 18 mV

V3 = 2 V4 = 30 mV

V 0
Ca = 120 mV V 0

K = −84 mV

VL = −60 mV

Table 3: Typical parameter values for the Morris–Lecar model.

dm

dt
= αm(1−m)− βmm, (15)

dn

dt
= αn(1− n)− βnn, (16)

dh

dt
= αh(1− h)− βhh, (17)

with the functions αj and βj , in units of (ms)−1,

αm = 0.1
25− v

exp
(

25−v
10

)

− 1
, (18)

βm = 4 exp

(

−v

18

)

, (19)

αh = 0.07 exp

(

−v

20

)

, (20)

βh =
1

exp(30−v
10

) + 1
, (21)

αn = 0.01
10− v

exp(10−v
10

)− 1
, (22)

βn = 0.125 exp

(

−v

80

)

. (23)

For these expressions, the potential v is the deviation from rest, measured in
units of mV, current density is in units of µA/cm2, conductances are in units of
mS/cm2, and capacitance is in units of µF/cm2. The remaining parameters are

ḡNa = 120, ḡK = 36, ḡL = 0.3, Cm = 1, (24)

and with shifted equilibrium potentials

vNa = 115, vK = −12, vL = 10.6. (25)

(a) Simulate these equations with current input Iapp = 0. What are the steady
state values for all variables?

6



k = 10 s−1 K1 = 1 µM
K2 = 2 µM K3 = 0.9 µM
V1 = 65 µMs−1 V2 = 500 µMs−1

kf = 1 s−1 m = 2
n = 2 p = 4

Table 4: Typical parameter values for the two-pool model of Ca++ oscillations (Goldbeter
et al., 1990).

(b) Starting with all variables at steady state, apply a piecewise constant current
that is nonzero for 0.5 ms. Plot the voltage response for several different
values of Iapp. Identify the threshold value of Iapp.

(c) For what range of constant applied current is this system oscillatory? Use
XPP to find the bifurcation diagram and determine the types of bifurcations.

Assignment 4: (due Dec. 15, 2014)

1. One of the earliest models of Ca++ oscillations was the two-pool model of Gold-
beter, Dupont and Berridge (1990). They assumed that IP3 causes an influx, r,
of Ca++ into the cell and that this influx causes additional release of Ca++ from
the ER via an IP3-independent mechanism. Thus,

dc

dt
= r − kc− f(c, ce), (26)

dce
dt

= f(c, ce), (27)

f(c, ce) = Juptake − Jrelease − kfce, (28)

where

Juptake =
V1c

n

Kn
1 + cn

, (29)

Jrelease =

(

V2c
m
e

Km
2 + cme

)(

cp

Kp
3 + cp

)

. (30)

Here, kfce is a leak from the ER into the cytoplasm. Typical parameter values
are given in Table 4. (All the concentrations in this model are with respect to
the total cell volume, and thus there is no need for the correction factor γ to take
into account the difference in the ER and cytoplasmic volumes.)

(a) Nondimensionalize these equations. How many non-dimensional parameters
are there?

(b) Show that in a closed cell (i.e., one without any interaction with the extra-
cellular environment) the two-pool model cannot exhibit oscillations.

(c) How does the steady state solution depend on influx?
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(d) Use a bifurcation tracking program such as XPPAUT to plot the bifurcation
diagram of this model, using r as the bifurcation parameter. Find the Hopf
bifurcation points and locate the branch of stable limit cycle solutions. Plot
some typical limit cycle solutions for different values of r.

2. Use XPPAUT to provide a fast-slow analysis of the polynomial system

dx

dT
= y − x3 + 3x2 + I − z, (31)

dy

dT
= 1− 5x2 − y, (32)

dz

dT
= r[s(x− x1)− z], (33)

where x1 = −1
2
(1 +

√
5) is the x-coordinate of the resting state in the reduced

two-variable model and where I, is the applied current, with r = 0.001 and s = 4.

(a) Make a bifurcation diagram of the reduced two variable system, as a function
of the ”parameter” z, with I = 2.

(b) Superimpose this bifurcation diagram over trajectories of the full system in
the x-z plane.

(c) Describe the mechanism of this bursting. What happens to the bursting
pattern if I is increased or decreased?

3. (a) Numerically simulate the system of differential equations

dv

dt
= f(v)− w − gs(v − vθ), (34)

5
dw

dt
= w∞(v)− w, (35)

ds

dt
= fs(s) + αs(x− 0.3), (36)

dx

dt
= βx ((1− x)H(v)− x) , (37)

where f(v) = 1.35v(1−1
3
v2), fs(s) = −0.2(s−0.05)(s−0.135)(s−0.21), w∞(v) =

tanh(5v), and H(v) = 3
2
(1 + tanh(5v − 2.5)), and vθ = −2, αs = 0.002, βx =

0.00025, g = 0.73.

(b) Give a fast–slow analysis of this burster. Hint: The equations for v, w com-
prise the fast subsystem, while those for s, x comprise the slow subsystem.

(c) Describe the bursting mechanism in this model. For what kind of burster
might this be a reasonable model?

4. Suppose that the production of an enzyme is turned on by m molecules of the
enzyme according to

G +mP
k+
−→

←−

k
−

X,

where G is the inactive state of the gene and X is the active state of the gene.
Suppose that mRNA is produced when the gene is in the active state and the
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enzyme is produced by mRNA and is degraded at some linear rate. Find a
system of differential equations governing the behavior of mRNA and enzyme.
Give a phase portrait analysis of this system and show that it has a “switch-like”
behavior.

9


