Normal Form for the van der Pol equation

The purpose of these notes is to find the normal form for the van der Pol equation

$$
\begin{equation*}
\ddot{y}-2 a \dot{y}+y^{2} \dot{y}+y=0 . \tag{1}
\end{equation*}
$$

First, we write the equation as the system

$$
\begin{equation*}
\frac{d}{d t}\binom{y}{x}=\binom{x}{2 a x-y^{2} x-y} \tag{2}
\end{equation*}
$$

Notice that the linear part of this system is

$$
\frac{d}{d t}\binom{y}{x}=\left(\begin{array}{cc}
0 & 1 \tag{3}\\
-1 & 2 a
\end{array}\right)\binom{y}{x}=A\binom{y}{x}
$$

The characteristic equation for A is $\lambda^{2}-2 a \lambda+1=0$, so the eigenvalues of A are $\lambda=a \pm i b$, where $b=\sqrt{1-a^{2}}$, and the corresponding eigenvector is $p=\binom{1}{\lambda}$. We use this to introduce a new complex variable

$$
\begin{equation*}
\binom{y}{x}=z p+\overline{z p} . \tag{4}
\end{equation*}
$$

It follows easily that

$$
\begin{equation*}
(\bar{\lambda}-\lambda) \dot{z}=(\bar{\lambda}-\lambda) \lambda z+(z+\bar{z})^{2}(z \lambda+\bar{z} \bar{\lambda}) \tag{5}
\end{equation*}
$$

Now we try to find a transformation that simplifies this as much as possible, by eliminating as many of the cubic terms as possible. We try

$$
\begin{equation*}
z=w+\frac{h_{30}}{6} w^{3}+\frac{h_{21}}{2} w^{2} \bar{w}+\frac{h_{12}}{2} w \bar{w}^{2}+\frac{h_{03}}{6} \bar{w}^{3} \tag{6}
\end{equation*}
$$

with inverse transformation

$$
\begin{equation*}
w=z-\frac{h_{30}}{6} z^{3}-\frac{h_{21}}{2} z^{2} \bar{z}-\frac{h_{12}}{2} z \bar{z}^{2}-\frac{h_{03}}{6} \bar{z}^{3}+O\left(|z|^{4}\right) \tag{7}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\dot{w}= & \dot{z}\left(1-\frac{h_{30}}{2} z^{2}-h_{21} z \bar{z}-\frac{h_{12}}{2} \bar{z}^{2}\right)+\dot{\bar{z}}\left(-\frac{h_{21}}{2} z^{2}-h_{12} z \bar{z}-\frac{h_{03}}{2} \bar{z}^{2}\right)+\cdots \\
= & \dot{z}-\dot{z}\left(\frac{h_{30}}{2} z^{2}+h_{21} z \bar{z}+\frac{h_{12}}{2} \bar{z}^{2}\right)-\dot{\bar{z}}\left(\frac{h_{21}}{2} z^{2}+h_{12} z \bar{z}+\frac{h_{03}}{2} \bar{z}^{2}\right)+\cdots \\
= & \left(\lambda z+\frac{1}{\bar{\lambda}-\lambda}(z+\bar{z})^{2}(z \lambda+\bar{z} \bar{\lambda})\right)-\lambda z\left(\frac{h_{30}}{2} z^{2}+h_{21} z \bar{z}+\frac{h_{12}}{2} \bar{z}^{2}\right)-\bar{\lambda} \bar{z}\left(\frac{h_{21}}{2} z^{2}+h_{12} z \bar{z}+\frac{h_{03}}{2} \bar{z}^{2}\right)+\cdots \\
= & \lambda w+\frac{1}{\bar{\lambda}-\lambda}\left(w^{3}+(2 \lambda+\bar{\lambda}) w^{2} \bar{w}+(\lambda+2 \bar{\lambda}) w \bar{w}^{2}+\bar{\lambda} \bar{w}^{3}\right) \\
& -\lambda \frac{h_{30}}{3} w^{3}-(\lambda+\bar{\lambda}) \frac{h_{21}}{2} w^{2} \bar{w}-\bar{\lambda} h_{12} w \bar{w}^{2}+\left(\frac{\lambda}{6}-\frac{\bar{\lambda}}{2}\right) h_{03} \bar{w}^{3}+\cdots
\end{aligned}
$$

We see that we can eliminate three terms by setting

$$
\begin{equation*}
h_{30}=\frac{3}{\lambda(\bar{\lambda}-\lambda)}, h_{12}=\frac{\lambda+2 \bar{\lambda}}{\bar{\lambda}(\bar{\lambda}-\lambda)}, h_{03}=\frac{6 \bar{\lambda}}{(3 \bar{\lambda}-\lambda)(\bar{\lambda}-\lambda)}, \tag{8}
\end{equation*}
$$

so that

$$
\begin{equation*}
\dot{w}=\lambda w+\left(\frac{2 \lambda+\bar{\lambda}}{\bar{\lambda}-\lambda}-(\lambda+\bar{\lambda}) \frac{h_{21}}{2}\right) w^{2} \bar{w} . \tag{9}
\end{equation*}
$$

However, since $\lambda+\bar{\lambda}=2 a$ we cannot use h_{21} to eliminate the fourth term. Instead, we set $h_{21}=\frac{3 i}{4 b}$ so that

$$
\begin{equation*}
\frac{2 \lambda+\bar{\lambda}}{\bar{\lambda}-\lambda}-(\lambda+\bar{\lambda}) \frac{h_{21}}{2}=-\frac{1}{2}+\frac{3 i a}{2 b}-2 a h_{21}=-\frac{1}{2} \tag{10}
\end{equation*}
$$

and the equation reduces to

$$
\begin{equation*}
\dot{w}=\lambda w-\frac{1}{2} w^{2} \bar{w} . \tag{11}
\end{equation*}
$$

The calculations to find the normal form are quite complicated. However, it is a bit easier to find the periodic solution of the equation using perturbations methods. The following MAPLE code does the job.

```
restart;
eq:=omega^2*diff(u(x),x,x) -a*omega*diff(u(x),x)
+omega*diff(u(x),x)*u(x)^2 + u(x);
n:=3;
a:=sum('a||k*eps^k','k'=1..n);
omega:=1+sum('w||k*eps^k','k'=1..n);
u(x):=sum('u||k(x)*eps^k','k'=1..n);
eq:=collect(eq,eps):
for k from 1 to n do
eq||k:=coeff(eq,eps,k):
od;
u1(x):= al*exp(I*x) + bt*exp(-I*x);
u2(x):=0;
w1:=0;
a1:=0;
amp:=coeff(collect(simplify(eq3), exp(I*x)), exp(I*x),1);
```

