Normal Form for the van der Pol equation
The purpose of these notes is to find the normal form for the van der Pol equation
J—2ay+y*y+y=0 (1)

First, we write the equation as the system
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Notice that the linear part of this system is
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The characteristic equation for A is A> —2a\ +1 = 0, so the eigenvalues of A are A = a % b,

) . We use this to introduce

where b = v/1 — a2, and the corresponding eigenvector is p = ( i\

a new complex variable
Yy . S
<x>—zp+zp. (4)

It follows easily that
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Now we try to find a transformation that simplifies this as much as possible, by elimi-
nating as many of the cubic terms as possible. We try
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with inverse transformation
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It follows that
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We see that we can eliminate three terms by setting
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However, since A + A\ = 2a we cannot use ho; to eliminate the fourth term. Instead, we set
hop = 3L so that
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and the equation reduces to
1
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The calculations to find the normal form are quite complicated. However, it is a bit easier

to find the periodic solution of the equation using perturbations methods. The following
MAPLE code does the job.

restart;

eq:=omega~2*diff (u(x),x,x) -a*xomega*xdiff (u(x),x)
+omegaxdiff (u(x) ,x)*u(x) "2 + u(x);

n:=3;

a:=sum(’al |kxeps"k’,’k’=1..n);

omega:=1+sum(’w/| |k*xeps~k’,’k’=1..n);

u(x) :=sum(’ul |k(x)*eps~k’,’k’=1..n);
eq:=collect(eq,eps):

for k from 1 to n do

eql |k:=coeff (eq,eps,k):

od;
ul(x):
u2(x):
wl:=0;
al:=0;
amp:=coeff (collect (simplify(eq3) ,exp(I*x)),exp(I*x),1);

al*xexp(I*x) + btxexp(-I*x);
0;



