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SIAM REVIEW
Vol. 13, No. 3, July 1971

BRANCHING OF SOLUTIONS OF NONLINEAR EQUATIONS*
IVAR STAKGOLDY

Abstract. The article is concerned with aspects of the equation Au = Au, where 1 is a real parameter,
u is an element of a real Banach space B, and 4 is a nonlinear operator from B into itself such that
A0 = 0. Unlike the linear case, when the only nontrivial solutions are linear manifolds at particular
values of 4, the nonlinear problem may have a very complicated solution set that always includes,
however, the solution u = 0. Branching theory studies nontrivial solutions u(4) tending to zero as
/4 tends to some particular value J,, a so-called branch-point.

After some examples and definitions, the connection between branch-points and the eigenvalues
of the linearized problem is established through theorems of Leray-Schauder and Krasnoselskii.
The construction of branches is described using the methods of Lyapunov-Schmidt and Poincaré-
Keller. Three physical examples are then examined in some detail: the Taylor instability for rotating
viscous fluids, the nonexistence of buckled states for certain nonlinear rods, and the criticality condition
for a simple nuclear reactor.

1. Introduction. Nonlinearity by itself cannot serve as the foundation for a
useful mathematical structure. Indeed, finite-dimensional problems already
exhibit such a bewildering complexity that no hope can be held out for a compre-
hensive theory of nonlinear phenomena. Progress is made by settling for something
less than complete generality. Global information on the structure of the solution
set of a nonlinear problem can usually be obtained only by specifying the nature
of the nonlinearity. Here such concepts as convexity, monotonicity, and positivity
play their most important role. However, local information regarding solutions
in the neighborhood of a known solution can be secured under less restrictive
assumptions. This study of local behavior is known as branching theory or
bifurcation theory. These synonymous terms are also used, perhaps inappro-
priately, for recent developments shedding light on some global questions by
extending the local analysis in the large. In this category belong many results on
positive solutions and on secondary branching.

The present article is of an expository nature; it deals with the basic ideas
and techniques of branching theory, and their application to some typical physical
problems. Proofs based on topological arguments are omitted, although results
are quoted in §6 and used in § 11. A few historical notes are perhaps in order.
The systematic use of nonlinear perturbation theory can be traced to Poincaré’s
work on celestial mechanics [86]. In the early part of this century Schmidt [96]
and Lyapunov [68] spearheaded progress in nonlinear integral equations,
Lyapunov’s motivation stemming from the study of equilibrium figures for
rotating fluids. After a dormant period, the late twenties and early thirties saw
a renewal of interest in nonlinear integral equations (Hammerstein [37], Lichten-
stein [69], Iglisch [40], Golomb [115]). At about the same time, Hildebrandt
and Graves [38] proved the implicit function theorem in Banach space, an essential
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290 IVAR STAKGOLD

step in the development of branching theory. After World War II, the Soviet
school led by Krasnoselskii [63]-[65] and Vainberg [105]-[107] gave the field
great impetus. Among the important American contributions in that period are
those of Bartle [10], Cronin [27], and Kolodner [61]-[62]. The largest growth
has taken place in the sixties; reference to some of the important papers will be
made in the main body of the article, but there has been no attempt to make an
exhaustive search of the literature.

For the reader interested in further study, two recent books merit special
attention: G. H. Pimbley, Jr.: Eigenfunction Branches of Nonlinear Operators, and
their Bifurcation [85]; Bifurcation Theory and Nonlinear Eigenvalue Problems,
edited by J. B. Keller and S. Antman [54]. Pimbley’s book is devoted principally
to mathematical questions, whereas the other is concerned to a much larger
extent with physical problems and contains contributions from 14 authors.
A number of other pertinent books and review articles are mentioned in the
bibliography. The author is pleased to acknowledge his particular debt to the
article by Prodi [88].

Despite its role in nonlinear functional analysis, branching theory’s principal
stimulation arises from physical applications that have proliferated in recent
years. Without any claim to completeness, we mention some areas that are
drawing the attention of contemporary research workers. In fluid mechanics,
problems relating to instabilities of viscous flows are being investigated. A biblio-
graphy is given in connection with § 11 which treats the Taylor problem. The
buckling of structures is a fertile field for branching theory in solid mechanics.
Some references are given in § 12 which deals with the buckling of a rod made of
nonlinear material. The von Karman equations for buckling of plates have been
discussed by a number of authors: Friedrichs and Stoker [33], Keller, Keller and
Reiss [55], Wolkowisky [110], Berger [14], Berger and Fife [18], Knightly [58],
Knightly and Sather [59]. Attention is also drawn to the article by Reiss [92]
and the review article by Koiter [60]. Another area of current application is neutron
transport theory, a simple example of which is given in § 13. For problems in
chemical reactions and nonlinear heat transfer, the reader is referred to the book
by Gavalas [33a], and the articles by H. B. Keller and Cohen [46], H. B. Keller
(48], Simpson and Cohen [101]. The equations of superconductivity are discussed
in Odeh [74], and the Hartree equation by Bazley and Zwahlen [12] and Reeken
917.

The buckling of a thin rod under compression is perhaps the simplest and
oldest physical example to illustrate branching. Figure 1 shows a homogeneous,

Ay

A AT T

FiG. 1

IR



BRANCHING OF SOLUTIONS OF NONLINEAR EQUATIONS 291

thin rod whose ends are pinned, the left end being fixed, the right end free to
move along the x-axis. In its unloaded state the rod coincides with the portion of
the x-axis between 0 and 1. Under a compressive load P, a possible state for the
rod is that of pure compression, but experience shows that, for sufficiently large
values of P, transverse deflections can occur. Assuming that this buckling takes
place in the x, y-plane, we investigate the equilibrium of forces on a portion of the
rod including its left end (see Fig. 2). The forces and moments are taken positive
as drawn in the figure. Let X be the original x-coordinate of a material point
along the rod. This point is moved after buckling to (X + u, v). We let ¢ be the
angle between the tangent to the buckled rod and the x-axis, and s the arclength
measured from the left end.

FiG. 2

In § 12, we consider more general constitutive laws, but we restrict ourselves
here to the case of an inextensible rod with the Euler—Bernoulli law relating
the moment M on a cross section and the curvature d¢/ds. Thus

(1.1) s= X
and
d
(1.2) M= —£1%2,
ds

where E and I are given positive, physical constants. These two constitutive
equations are supplemented by the geometric relation

dv
(1.3) IZ = sing
and the equilibrium condition
(1.4) M = Pv.

The four equations reduce to the pair of nonlinear differential equations of
the first order.

de
'
(1.5b) L _ sing.

ds
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where u = P/EI, and the boundary conditions are
(1.5¢) v(0) = v(l) = 0.

A solution of (1.5) is a triplet (u, v, @); any solution with v(s) # 0 is called
a buckled state. We note that u = 0 implies v = 0 and cannot therefore generate
a buckled state. When p # 0, (1.5) is equivalent to the single equation of the
second order,
2

d .
(1.6) F‘2”+usm<p:o, 0<s<I, ¢0)=e¢()=0.
The lateral deflection v(s) can then be calculated from ¢ by using (1.5a). One
could also derive a single equation for v(s), but the equation is less convenient
to handle.

The linearized version of (1.5) for small deflections v and small angles ¢ is
obtained by substituting ¢ for sin ¢. Again u = 0 yields v = 0. The linearized
problem for v becomes

d2
53 +w=0, v0)=ul)=0,

which has eigenvalues n?n?/I?, n = 1,2, ---, with corresponding eigenfunctions
¢ sin (nmx/l). We would like to plot v versus u, but unfortunately v is itself a function
(that is, an infinite-dimensional vector). We therefore content ourselves with a
graph of the maximum deflection v,,,, versus u = P/EI in Fig. 3.

Vmax

0/4 / _/9:,2 H

w2 _4m?
FiZgz He™ 7 H3° 4

FiG. 3

For loads below the first critical load P, = n?EI/I?, no buckling is possible.
At the load P, buckling can take place in the mode ¢ sin (nx/l) but the size of the
deflection is undetermined owing to the presence of the constant c. As the load
slightly exceeds P,, the rod must return to its unbuckled state until the second
critical load P, = 4n*EI/I* is reached when buckling can again occur but now
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in the new mode ¢ sin (2zx/l), still of undetermined size. Except at the critical
loads P, = n?n?EI/I? there is no buckling. On physical grounds, the picture is
clearly unsatisfactory.

The nonlinear problem (1.5) gives a more reasonable prediction of the buckling
phenomenon. Again no buckling is possible until the compressive load reaches
the first critical load of the linearized theory, but now as this value is exceeded
the possible buckling deformation is completely determined except for sign.
For values of the load between the first two critical loads there are therefore
three possible solutions as shown, in Fig. 4. When P exceeds the second critical

Vmax

T
.

FiG. 4

load a new determinate pair of nontrivial solutions appears, and so forth. The
values of u corresponding to these critical loads are said to be branch-points of
the trivial solution because new solutions, initially of small size, appear at these
points. Figure 4 (as well as Fig. 3) is called a branching diagram.

We shall now justify these statements by exhibiting the closed-form solutions
of (1.6). The deflection v can then be obtained from (1.5a). First we observe certain
simple properties of the boundary value problem (1.5). If any one of the triplets
(4, v, @), (4, v, @ + 2nm), (4, —v, —¢), (—u, —v, @ + © + 2nmn) is a solution, so
are the other three. All four solutions yield congruent physical deflections. In fact
the first two are identical, the third is a reflection of the first about the x-axis;
the fourth is a reflection of the first about the origin. In this last case, the reversal
in sign of the load accounts for the interchange in the roles of the left and right ends
of the rod. Similar remarks apply to (1.6).

All nontrivial lateral deflections v(s) are therefore generated by those solutions
of the initial value problem

2

d
d_lg+usinl//=0, WO)=a, Y0)=0; u>0, 0<a<n,
S

(1.7
that happen to have a vanishing derivative at s = . This initial value problem has
one and only one solution that can be interpreted as the motion of a simple
pendulum, with x being the time and  the angle between the pendulum and



294 IVAR STAKGOLD

the downward vertical. In view of the initial conditions, y(s) will be periodic,
oscillating about y = 0, each period consisting of 4 congruent half-bays. After
multiplication by dy/ds, (1.7) becomes a first order equation which can be solved
explicitly by elliptic integrals:

W(s) = 2arc sin [ksn (/us + K)],

where

o
k = sin |=
sm(2,

/2 da
P [
0o /1 —k?sin’«
The parameter K takes on values between 7/2 and + oo and there is a one-to-one

correspondence between these values and those of « in 0 < « < n. The period of
oscillations of i is 4K. The condition y/'(I) = 0 is satisfied if and only if

K =(2n/u, n=1,2,--

Since K > /2 for nontrivial solutions, these will only be possible for u > n2/I2.
Given a value of u exceeding n?/I? there are as many distinct nontrivial solutions
o(s) (with 0 < @(0) < m) as there are integers n such that (l/2n)\/ﬁ exceeds /2.
Thus, we have

0<u<n?/l?, only the trivial solution,
n?/1? < u < 4n?/1?, one nontrivial solution,
n*n?/1> < u < (n + 1)*n%/12,  n nontrivial solutions.

If we then also take into account other values of ¢(0) and the possibility of negative
U, we obtain Fig. 5 showing the maximum value of ¢(s) versus u. The picture
is somewhat misleading for the only significant portion is that drawn solid (x > 0
and — 7 < @« < 7). The dotted curves for u > 0 are attributable to angles
being determined only modulo 2z. The dotted curves for negative p just mean
that the free end is at x = —[. The deflection v is obtained from (1.5a) and yields
the branching diagram of Fig. 4, where branches are not extended to infinity
because v,,,, does not grow monotonically (at large loads the rod forms a knot,
and further compression tightens the knot so the maximum deflection may decrease
although the maximum slope must increase).

2. Definitions and goals. We shall consider the equation

2.1) FA,u) =0,

where A is on the real line R, u is an element of a real Banach space B with norm
|- I, and F is a nonlinear transformation from R x B into B. In most physical
applications, B will be an infinite-dimensional function space. Nevertheless,
considerable insight can be derived from the study of finite-dimensional examples.
The term ‘‘nonlinear eigenvalue problem” is often applied to (2.1) but the de-
scription could be misleading. Of principal interest to us is the case where F
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depends nonlinearly on u and then, unfortunately, most associations brought to
mind by spectral terminology are no longer valid.!

Strictly speaking, a solution of (2.1) is, of course, an ordered pair (4, u),
but we shall often refer to u itself as the solution (either for fixed A or depending
parametrically on 4). To study branching we must have a simple, explicitly known
solution u(4) of (2.1). We shall assume that

(2.2) F(4,0) =0

for all 4, so that u = 0 is a solution of (2.1) for all A. This solution is known as
the basic solution. Our interest is in studying branching from this basic solution;
that is, we want to find solutions of (2.1) which are of small norm.

DEFINITION. We say 4 = A° is a branch-point of (2.1) if in every neighborhood
of (1% 0) in R x B, there exists a solution (4, ) of (2.1) with |u| # O.

Remark 2.1. A somewhat more precise, but unwieldy, terminology would be
that A° is a branch-point of the basic solution of (2.1).

Remark 2.2. The definition places the burden on small neighborhoods of
(4% 0). Observe that p, is a branch-point both in the linear case (Fig. 3) and the
‘nonlinear case (Figs. 4 and 5).

! The reader is referred to the article by Friedman and Shinbrot [32] for the case where F is linear
in « but nonlinear in .
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Remark 2.3. Our definition is clearly equivalent to the existence of a sequence
(A", u") of solutions of (2.1) with [[u"| # O such that (1", u") — (1, 0).

Remark 2.4. The definition does not guarantee the existence of a continuous
branch of solutions. Such a continuous branch will be formed if the boundary of
each sufficiently small open ball in R x B with center at (4°, 0) contains a solution
(4, u) with |lul| + 0.

Remark 2.5. The restriction to real A and B is based on the needs in applica-
tions where only real branching is of interest.

Now that we have a definition of a branch-point, we can list some of the
principal goals of branching theory:

1. Where are the branch-points? What is the relation of branch-points to
the eigenvalues of the linearized problem?

2. How many distinct branches emanate from a branch-point? Is the
branching to the left or right?

3. Can we describe the dependence of the branches on 4, at least in the
neighborhood of the branch-point?

4. In a physical problem which branch does the physical system follow?

5. How far can branches be extended? When dealing with a function space,
can we guarantee that a particular branch represents a positive function? Does
secondary branching occur?

The answers to 1-3 are the only ones that fall clearly within the domain
of branching theory. Question 4 is related to stability; it is of considerable im-
portance but we shall not have much to say about it. Question 5 deals with global
aspects that are not the principal concern of branching theory; nevertheless,
some partial answers will be given in some of the examples of physical applications.

In most of what follows we shall assume a particular form of (2.1):

(2.3) Au — Au =0 with 40 =0,

where A is a nonlinear operator from B into B. A branch-point of (2.3) is also
said to be a branch-point of A.

A preliminary transformation may be required to take a problem as originally
stated into (2.3); often this involves passing from a formulation as a differential
equation to one as an integral equation.

Although the natural setting for branching problems is in Banach spaces,
it is sometimes more convenient to deal with a real Hilbert space whose scalar
product will be denoted by <-, ->.

3. Linearization and the Fréchet derivative. The answer to the first question
in the previous section requires a precise notion of linearization. Let 4 be an
operator (possibly nonlinear) from B in 8. We say that 4 is linearizable at u if there
exists a bounded linear operator L, such that

(3.1) A(w + h) — Au = L,h + Rp - with  lim 'f}:ﬂ’” =
h—0

The operator L,, linear in h, is said to be the Fréchet derivative of A at u, and
is also denoted by A'(u). Of course both L, and R, vary with u, usually in a non-
linear manner. Formula (3.1) may be regarded as a Taylor expansion in h for
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A(u + h), consisting of the Oth order term Au, the linear term L,h and the remainder
R,h of higher order in A.
Examples and Remarks 3.1. If A is linear, then A'(u) = A independently of wu.
3.2. Let A be an operator from R, into R, ; Au is then an n-tuple whose com-
ponents are nonlinear functions a,(u,,---,u,), -, a,u,, -, u,), which we
assume to be continuously differentiable. We find

Al + h) — Au = L,h + R,

where L, is an n x n matrix, with the entries da;/0u;, that is, L, is the Jacobian
evaluated at u and L,h is a linear transformation acting on the vector h. The
remainder R, h is of higher order in A.

3.3. Consider the nonlinear integral operator

Au = fl k(x, t) fTu(t)] dt,

where f(u) is a differentiable function. Then
1
AW = L = [ Kex, tglutolho dr
0

with g(u) = f’(u). Since u is a fixed element in the function space, L, is a linear
operator on h.

3.4. If A is completely continuous, so is A'. (A nonlinear operator is completely
continuous if it is both compact and continuous.)

3.5. A similar definition of derivative can obviously be given for functionals.
Let f(u) be a nonlinear functional ; we say that f is linearizable at u if there exists a
bounded linear functional g, such that

: . |r(h)]

(3.2) S+ h) — f(u) = g,(h) + r(h) with }ll_{ré ] =0
We also write g,(h) = f'(u)(h). A critical point for f is a point u at which f" = 0.

Suppose we are dealing with a Hilbert space $. The Riesz representation
theorem guarantees the existence of a unique element z in  such that g, (h) = {z, h).
Here z is unambiguously determined from u so that z = Au, where A is an operator
(usually nonlinear) from $ into $. We speak of 4 as the gradient of f; observe
that f'is a functional but 4 is an operator. It is easy to see that this definition agrees
with the conventional one in n dimensions. It is useful to proceed in the opposite
direction: given a nonlinear operator A, there may exist a functional f(u) such that

(3.3) S+ h) = fu) = <{Au, by + r,(h),

where

lim (r,(R)I/[|h])) = 0.
h—0

If such a functional f exists, we say that A is a gradient operator. For gradient
operators the fundamental problem (2.3) is equivalent to finding the critical points
of the functional f(u) — 4||u||?/2. The existence of a variational principle raises the
hope of a global analysis of the solution of (2.3). In n dimensions, the condition



298 IVAR STAKGOLD

curl 4 = 0 is, modulo some technicalities, necessary and sufficient for 4 to be a
gradient. This is equivalent to the Jacobian at every u being symmetric. Similarly,
in Hilbert space, an operator A4, continuously differentiable in a ball, will be a
gradient if and only if A'(u) is symmetric for every u, that is,

CAW)(hy), hyp = Chyy AW (ha))

forall h, and h, and every u. If 4 is a gradient, a scalar potential f can be calculated
from

1
flu) = f CAtu), u dt;

see, for instance, the article by Berger in [54, p. 160].

3.6. A definition of linearization can be given even if the nonlinear operator A
is only defined on a domain dense in B. The operator L may then be an unbounded
operator defined only in a dense domain. This is a useful generalization when
dealing with differential equations (see Bazley and Zwahlen [11]).

4. Exampies in R,. We take B to be R, so that u is a real number.

Example 4.1. The most general linear operator is of the form [u. Its only
eigenvalue is A = [, and u is undetermined. The branching diagram is shown in
Fig. 6.

FiG. 6

Example 4.2. Consider the nonlinear operator
Au = lu + cu?, c#0.
Equation (2.3) becomes
lu + cu* = ju
which always admits the solution u = 0. For 4 # [ we also have the solution

u=(— .
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The branching diagram is shown in Fig. 7. The only branch-point of the basic
solution is at 4 = I. The linearized problem about u = 0 is lu = Au, which has
A =l as its only eigenvalue.

/

FiG. 7

/|

Example 4.3. Next we look at the nonlinear problem
Iu + cu® = Ju, c # 0.

Again u = Oisasolution for all 4. If ¢ > 0, we find two nonzero solutions for 4 > [,
given by

u=+/(h - he.
The branching diagram is shown in Fig. 8. Again A = [ is a branch-pointand 4 = |

is the only eigenvalue of the linearized problem lu = Au. If ¢ were negative, the
branching would be to the left of 4 = [ instead of to the right.

F1G. 8
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Example 4.4. Let
u, lul < 1,
Au =< W? + 1)/2, u>1,
—W? + 12, us —1.
The branching diagram for Au = Au is shown in Fig. 9. Although the problem is

nonlinear the branch begins as for a linear problem.

u

F1G. 9

5. Examples in R,.
Example 5.1 (Secondary bifurcation into closed loop). We look at nonlinear
operators of the form

Au = Lu + Cu,
where
N R
0 Bal\uy Bau,
and C is homogeneous of third degree:
Cloau) = o*Cu.

Clearly the linearization of A at u = 0 is just L. We take for C the operator

Cu — (')’1“1(“% + u%)

s Y1 >72>0.
Yo (Ui + ”%))

The problem (2.3) becomes

(5.1) Bruy + i + ud) = duy,  Bauy + yuyi + u3) = du,.
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The linearized problem has eigenvalues 8, and 8, with the respective eigenvectors

and
0

c
with u, = 0 and u, # 0, we have

) . Let us calculate next the solutions of the nonlinear problem. First,

uy = £/ — B

so that there is branching to the right from 4 = f, and the branch is a parabola in
the u,, A-plane. With u, # 0 and u, = 0, we find

uy = +/(4 — B2/

which branches to the right from 4 = ,; the branch is a parabola in the u,, 4-
plane. Finally we look for solutions with neither u, nor u, vanishing. Then we have
simultaneously

ui +us = — By, and ui+ud=(4— B,
so that

A= A% =By — By — 72) > B
and

ui +uj = B2 — By — 72) > 0.

This particular solution to the nonlinear problem (5.1) is a circle lying in the plane
A= A* At A = A* we find that the two earlier parabolas are equidistant from the
A-axis, the square of the common distance being just (8, — B8,)/(y; — 7,). Thus the
circle is connected to the parabolas as shown in Fig. 10. The circle may be regarded
as a secondary branching from either of the two nonintersecting parabolas. This

Uz

FiG. 10
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particularly simple example gives some hint as to the possible variety in branch
structure. If we linearize (5.1) about the solution represented, say, by one-half of the
first parabola, it must follow that the linearized problem has an eigenvalue at 4*.
This can be checked by a straightforward but slightly tedious calculation. The
type of secondary bifurcation illustrated here is unusual; instead there is usually a
“twig” growing some place along one of the two main branches without being
connected to the other branch. An example given by Pimbley [85] is of this type:

duy = Buuy + 3Bt + 3Bugud , Auy = Pouy + 3Pous + 3Boutu,,

with ,/8, > 1/2.

Example 5.2 (Typical branching from a multiple eigenvalue of the linearized
problem). Consider the operator of Example 5.1 with §, = f, = f. Our previous
calculations are unchanged but now there is no secondary branching. Both main
branches are parabolas starting at A = f. In this typical case two branches emanate
from A = B which is an eigenvalue of multiplicity two of the linearized problem.

Example 5.3 (A continuum of branches emanating from a multiple eigenvalue).
In the operator of Example 5.1 set §; = , = f, 7, = y, = y > 0. The nonlinear
problem (5.1) reduces to the single equation uf + u3 = (A — p)/y. These solutions
branch from 4 = B and form the surface of a paraboloid of revolution about the
J-axis as in Fig. 11. Observe that 4 = f is an eigenvalue of multiplicity 2 of the
linearized problem, but the number of branches of the nonlinear problem greatly
exceeds 2. We note for further reference that the operator in our case is an odd
gradient operator, that is, A(—u) = — Au. A branching diagram using |u| as
dependent variable would have completely masked the interesting nature of the
branching.

Uz

FiG. 11
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Example 5.4 (A single branch emanating from a multiple eigenvalue). Consider
the odd gradient operator defined by

A(ul) ( u; + 2uu, )
w,l  \up + ud + 202
Clearly 4 = 1isthe only eigenvalue of the linearized problem and has multiplicity 2.
The nonlinear problem Au = Au has only the solution u; = 0, u, = (4 — 1)/2 in

addition to the trivial solution. Thus a single branch emanates from 4 = 1.
Example 5.5 (No branching from an eigenvalue). Let

u, + u
Au=(1 2)
U, — uj

The nonlinear problem (2.3) becomes
u, +ud = Au,, Uy, — U3 = Au,.
Multiplying these equations by u, and u,, respectively, and subtracting, we find
ut +u5 =0,

so that u; = u, = 0. Thus the only solution of Au = Au is the basic solution u = 0
and there is no branching. The derivative of A at u = 0 is the identity operator
so that the linearized problem has the eigenvalue 4 = 1 with multiplicity 2. An
example of no branching from a geometrically simple eigenvalue is given in
Remark 6.3.

Remark 5.1. The two-dimensional examples just presented can be translated
into the language of integral equations by using appropriate degenerate kernels.
For instance, the picturesque example (5.1) is equivalent to the integral equation

Au(x) = f {lP1(Ip1(0) + P22 (O]ut) + [p1(x)44(t) + pa(x)q2()] (1)} dt,

—n<x<m,
where

pi(x) = (B,/2m)' 2, po(x) = (B,/m)*/? sin x,
and q,(x), q,(x) are even and odd, respectively, and satisfy

J q,p3dx =3 f p1p3q; dx = v,

-n

and

f q2p3 dx = 3f Pipag,dx = 7v,.

6. Basic theorems of branching. Let A4 be an operator with 40 = 0; assume
that A'(0) = L exists so that
IRAI

(6.1) Ah = Lh + Rh with lim~——
w0 [l
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We investigate branching from the basic solution for the equation
(6.2) Au— iu=0.

THEOREM 1. The number A° can be a branch-point of A only if it is in the spectrum
of L.

Proof. Let A° be a branch-point. There must therefore exist a sequence
(A", u™) — (A°,0) with |u"| # 0 and Au" — A"u" = 0, or, using (6.1),

Lu" — %" = (A" — 2%u" — Ru".

Setting z" = u"/||u"|, we find Lz" — 1°2" = f" where lim,_, _ || f"| = 0. If L — ;°I

had a bounded inverse, we would have
2" < I = 2°D~ Y /™)

which is impossible since ||z"|| = 1 and || f"|| — 0. Therefore the branch-point A°
must be in the spectrum of the linearized problem.

Remark 6.1. The theorem tells us that all branch-points of the nonlinear
problem are found in the spectrum of the linearized problem, but as we have seen in
Example 5.5, not every point of the spectrum generates a branch-point. Next we
state some theorems that guarantee that points in the spectrum of the linearized
problem in fact generate branches for the nonlinear problem.

THEOREM 2 (Leray-Schauder). If A is completely continuous, and i° # 0 is an
eigenvalue of odd multiplicity for L, then /° is a branch-point of the basic solution of
the nonlinear problem.

Remark 6.2. The proof is based on topological degree theory and is omitted
(see Krasnoselskii [65]). The nature of the proof is not constructive so that little
information is obtained about the structure of the branch. The theorem does not
contradict Example 5.5, for there the multiplicity of the eigenvalue is 2. In applying
Theorem 2, one is limited by the need for predicting the multiplicity of the eigen-
values for a linear problem. The only available theorems are those which state
that certain eigenvalues are simple. This is the case, for instance, for Sturm-Liou-
ville problems for ordinary differential equations, for oscillatory matrices and
kernels, and for the lowest eigenvalue of elliptic boundary value problems.

Remark 6.3. The multiplicity of 1° is the dimension of the union of the null
spaces of (L — A°Iy",m = 1,2, - - - . The Riesz theory guarantees that each null space
is strictly contained in the succeeding one until a certain index p is reached ; there-
after all the null spaces have the same dimension, necessarily finite (see [118]). This
notion of multiplicity reduces to that of algebraic multiplicity in finite-dimensional
problems. For symmetric prcblems, p = 1, and algebraic multiplicity coincides
with geometric multiplicity. The example in R*:(u,,u,) = (U} + u,, utu, — u3)
shows that a geometrically simple eigenvalue may not generate a branch.

Remark 6.4. In [26], Crandall and Rabinowitz have ingeniously applied
degree theory to the study of nonlinear Sturm—Liouville problems.

THEOREM 3 (Krasnoselskii). Let A be a completely continuous operator which is
the gradient of a uniformly differentiable functional, and let A have a second derivative
at the origin. Then any nonzero eigenvalue of L is a branch-point of A.

Remark 6.5. The proof, which is omitted, is based on the category theory of
Liusternik and Schnirelmann. For a generalization, see Browder [120].

n—aoc
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Remark 6.6. The operator in Example 5.5 is not a gradient operator so that
no contradiction arises.

Remark 6.7. Berger [13], [15] has announced the following improvement of
Theorem 3: For an odd gradient operator, the number of branches emanating
from the branch-point is greater than or equal to the multiplicity of the eigenvalue.
Example 5.3 shows the need for the ‘““greater than or equal” part of the theorem.
Example 5.4 is not odd, and Example 5.5 is not a gradient operator.

7. Pseudoinverse. Let L be a completely continuous linear operator and
4% one of its nonzero real eigenvalues. The null space i of L — A°I is of finite
dimension, say k. The range R of L — i°I is of codimension k but may not be
complementary to 9 (we say that 2 subspaces are complementary if every element
of $ has an unambiguous decomposition as the sum of two elements, one in each
subspace). Let us choose in a definite manner 2 subspaces I and 3 complemen-
tary to 9t and R, respectively. For instance, we could choose I = 9t* and 3 = R*,
the orthogonal complements of 9t and ‘R, but this choice is not always best for our
purposes.

By definition, the equation

(7.1) Lu—%u=f

has solution(s) if and only if f belongs to R. As is well known, R = (N*)*, where R*
is the null space, necessarily of dimension k, of the adjoint £* — A°I. If f belongs to
R, equation (7.1) has many solutions, any two of which differ by an element of 9%,
but there is one and only one solution w in 8. The mapping from f to w, when
extended to the whole space by setting w = 0 for fin 3, is known as a pseudo-
inverse of L — A°I. This pseudoinverse is a bounded transformation which
depends on the choices of 3 and 9, but when no confusion arises the dependence is
suppressed. Thus

0, fedJ,
(7.2) Tf={w’ fem,

where w is the one and only solution in 9 of Lu — A% = f. For arbitrary f, we
write [ = f, + f,, where f, belongs to 3 and f, to R, and define Tf = Tf,.

Special cases.

Case 7.1 (Riesz index 1). If the null spaces of L — A°I and (L — A°I)? coincide,
then 9 and R are complementary subspaces, although not necessarily orthogonal.
This covers all symmetric problems and some nonsymmetric ones. We then choose

3 =N, W = R, so that

(73) Tf={0’ feR,
w, fefR,

where w is the one and only solution in R of Lu — i = f.
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Case 7.2. A further specialization of Case 7.1 occurs when L is self-adjoint ; we
then have R = 9t* and we may (and do) choose 3 = 9, I = N*. Thus

w, feNt,

(7.4) Tf:{o e

where w is the one and only solution in R+ of Lu — A% = f.

8. Linear perturbation theory. Let L(¢) be a linear operator depending
“smoothly” on the parameter ¢, at least for |¢| sufficiently small. For small ¢, we
want to relate the eigenvalues and eigenfunctions of

(8.1) L(eu = Au

to those, presumably known, of L = L(0).

We shall assume that L(¢) is completely continuous and symmetric for every
¢in a neighborhood of 0, that A° # 0is an eigenvalue (necessarily isolated) of L. The
null space N of L — 1°I is of dimension k and has the orthonormal basis @, - - - , @;.
We want to find out what happens to A° under small perturbations. Our treatment
follows the one in Rellich [93].

THEOREM 4. For small ¢, there exist k numbers 1(€), - - - , A(¢) and k elements
@4(8), - - . @l¢e), orthonormal for real ¢, satisfying

Le)pfe) = hpde),  limAe) = 2%, limspan [@,(e), - -, ¢ule)] = N.
[l

=0

We shall only sketch the principal construciive ideas of the proof, stressing
the parts that will apply later to nonlinear investigations. Problem (8.1) can be
rewritten as

(8.2) Lu— 2% =6u— R(eu, 6=1—4"  R()=Le—L.
If (8.2) has a solution u, the right side must be in the range of L — 1°I, so that
(8.3) (Ou— Rieju, @) =0, =1,k

Anyelement u in § can be unambiguously decomposed as

k

(8.4) u=v+w, v=y cp;, Wop>=0, i=1, k.

i=1
Keeping in mind condition (8.3), and using (8.2) and (7.4), we find
(8.5) u=v+ T[] — R(e)]u,

where T is the pseudoinverse of L — 1°I.

Equation (8.1) is equivalent to the pair (8.3) and (8.5), to which we now turn
our attention. With v a fixed element of 9t and with 9, ¢ fixed and sufficiently small,
equation (8.5) has a unique solution u = #(c, -, ¢, 0,€) or (v, d,¢). This is a
consequence of the fact that the right side of (8.5), regarded as a transformation from
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u € Hinto 9, is continuous for all § and ¢ and is a contraction for any  and ¢ such
that

6] + [R@E) < -

This unique solution & of (8.5) is linear in v, and can be obtained by successive
approximations as

(8.6) i= Y (Tl — RE}™.

Thus

where S is a linear operator from § into $ depending on the parameters ¢ and o:
Sp; = S(0, e)p; = Z {T[I — R(e)]}"p;-
m=0

Observe that S(5,0) = I.
Substituting @ in (8.3) we find

a,[0] — R(e)]ep> =0, i=1,-,k,
or
k

Y. ¢{S¢;. [0 — R(e)lg;» =0, i=1,-,k,

j=1
which is a set of k equations in the k + 2 numerical variables ¢, - - -, ¢;, & 6. Note
that the equations are linear in ¢, - - -, ¢;, but not in g and 8. If we add a normaliza-
tion condition on the coefficients ¢, - - -, ¢,, we can hope to express them and o
in terms of &. To find ¢ in terms of ¢ is to determine the perturbed eigenvalues since
Me) = 2° + 8(g). Unlike the nonlinear perturbation problem to be studied later,
the perturbed eigenvalues are characterized independently of the eigenfunctions by

(8.7) det({S¢;, [0 — R(&)]p;?) = 0.

The first order change in the eigenvalues is obtained by setting S = I. If A° is a
simple eigenvalue we find

d = Me) — 2° ~ (o, R(e)p),

a result familiar to all physicists.

Consider the case where L(g) is a power series in ¢ for small .2 Then S(e, J)
is a power series in ¢ and ¢ for small ¢ and 6, and so is the k x k determinant (8.7).
Setting this determinant equal to F(J, ¢), we have the equation

F(0,¢e) =0,

where F(6,0) = 6* since the determinant is then diagonal.

2 We say L(e) is a power series in ¢, if for each u € $, L(¢)u is a power series in ¢ which converges
in the norm of §.
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According to the Weierstrass preparation theorem (see [93] and [20]), we can
write

F0,8) = (" + a,(e)6* ' + -+ + ay(e)]E(S, ¢),

where a,. - -, a,, E are power series near the origin and E(0,0) = 1, lim,_,, a{e)
= 0. There exist therefore k functions d,(¢), - - - , J,(¢) such that

O+ a(e)0* " + -+ a(e) = [0 — ,(e)] - [0 — Gye)]
and
lim o4¢) = 0.

~ e—0

Since the eigenvalues of L(e) are real, A° + J,(¢), which is an eigenvalue of L for ¢
small, must be real for ¢ small. We thus have established the existence of k real
“branches’ of eigenvalues. One can also show fairly easily that there are k associ-
ated eigenfunction branches ¢(¢), - -+, ¢,(¢) that form an orthonormal set for
real ¢.

If L(¢) is not analytic in ¢, the analysis is somewhat more difficult and we cannot
expect analytic dependence of 1 on &. We discuss some aspects of this question in the
next section.

9. Nonlinear perturbation theory by the Lyapunov-Schmidt method. We
return to the nonlinear problem (6.2), repeated here for convenience,

9.1) Au—Ju=0, A0 =0.

We assume that 4'(0) = L is completely continuous. From (6.1), we have

. . R
Au = Lu + Ru with lim IRul =
lull»o [l

The theorems of § 6 tell us a great deal about when branching can occur. We
now try to get more detailed information about the number and initial shape of the
branches. Let 2° # 0 be a real eigenvalue of L. We want to investigate branching
from A°. To this end we set 6 = 4 — A° so that (9.1) becomes

9.2) Lu — 2% = éu — Ru.

Although we are interested in solutions u of small norm with § small, our
preliminary transformations will be valid without restriction. Let 9% be the null
space (of dimension k, say) of L — 2°I, and let 83 be a fixed subspace complemen-
tary to 9. We choose a real orthonormal basis {¢,, - -+, ¢,} for . Any element u
of $ has a unique decomposition

k

(9.3) u=v+w=Pu+ Qu= ) ¢ + Qu,

i=1

where P and Q are complementary projections on 9t and 2.
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Equation (9.2) has solutions only if 6u — Ru is in the range R of L — A°I, so
that the consistency conditions

(9.4) {6 + w) — R(v + w),pf> =0, i=1,---,k,

s

must hold. Here ¥, - - -, ¢ is a basis for the null space N* of the adjoint L* — A°I.
Since Lv — A% = 0, (9.2) becomes

(9.5) Lw — A% = 6(v + w) — R(v + w).

Thus any solution (4, u) of (9.2) must satisfy (9.4) and (9.5) simultaneously,
where we have set v = Pu, w = Qu. Conversely, if v in 9t and w in 2B satisfy (9.4)
and (9.5), then (v + w) — R(v + w) belongs to Rand u = v + wsatisfies Lu — A%u
= ou — Ru. Therefore (9.2), and hence (9.1), is equivalent to (9.4) and (9.5) with v in
9t and w in W. Henceforth we study the pair (9.4) and (9.5).

In view of (9.4), equation (9.5) is consistent and is therefore equivalent to

(9.6) w = T[o(v + w) — R(v + w)],

where Tis the pseudoinverse of L — A°I defined in (7.2). Observe that any solution
of (9.6) automatically belongs to 2B. Problem (9.1) is therefore equivalent to finding
a real number J, an element v in N and an element w satisfying the pair

I — R)(v + w), 9f) =0, i=1,---,k,

9.7
w= T(©OI — R)(v + w).

Of course any element vin Nis of the form Y *_ | ¢,¢;, so that we are looking for real

numbers o, ¢;, - - -, ¢, and an element w satisfying
k \
(9-8a) <(51—R)(w+ ch(pj),<p§“>=0, i=1,---,k,
j=1
k
(9.8b) w = T(I — R)( Y cjo; + w).
j=1

The appearance of (9.8) is very similar to (8.3) and (8.5) for a linear problem.
We shall have occasion to comment from time to time on this analogy.

So far we have not said anything about “‘small” solutions. Let us now turn to
the branching problem where J, v and w are all small. We propose the following
program. Let 6 be a fixed number and v a fixed element of N, with |§| and | v
sufficiently small. It will be shown that under mild conditions on R (or equivalently,
on A), equation (9.8b) has one and only one small solution w = w(d,v) or w
= w(d, cq, -+, ¢). Moreover w depends continuously on its arguments and can
be constructed by the standard iterative procedure. We then substitute w into
the branching equation (9.8a) to obtain k nonlinear equations in the kK + 1 numbers
0,Cy, -+, C,. Thus the original problem is reduced to a finite-dimensional problem
that, unfortunately, can still be cumbersome. We want to predict the number of
solutions (which can range from 0 to infinity!) and perhaps express ¢,, - - -, ¢, in



310 IVAR STAKGOLD

terms of 4.> Quantitative information requires more knowledge about w than its
mere existence. Under more detailed assumptions on R, the needed asymptotic
behavior of w for small arguments can be obtained.

The difference between nonlinear branching theory and linear perturbation
theory can now be pointed out. In linear perturbation there is a natural small
parameter ¢ in the operator L(¢). In the nonlinear case the nearest equivalent
is ||lu||, but this is not entirely satisfactory. The right side of (9.8b) is a contraction
mapping only for small ¢q, - - -, ¢, J, and w, whereas the right side of (8.5) is a
contraction for small 6 and ¢, independently of ¢, - - -, ¢.

To carry out the nonlinear program, we want to first analyze the existence
and uniqueness of small solutions of (9.8b). We need the following hypothesis.

(H,) A4 is strictly differentiable at 0.

By definition, A is strictly differentiable at a if

IA(a + hy) — Ala + hy) — L(hy — hy)ll = K(a, hy, hy)lhy — hyl|,

where K(a, h,,hy) >0 as ||h;| » 0 and |h,|| = 0. Thus the remainder R,
satisfies the condition

IRy — Rahall = K(a, hy, hy)lhy — hyl|.

It is easy to show that if A is continuously differentiable at a, then it is strictly
differentiable (see [22]). Strict differentiability therefore lies somewhere between
differentiability and continuous differentiability.

THEOREM 5. Under (H,), there exist 6, > 0, &, > 0 such that || < 6, and
vl £ gq imply that equation (9.8b) has one and only one solution w = w(d, v) in the
ball |w| < &y. Moreover w depends continuously on its arguments and ||[w| < |v] .

Proof. This is a straightforward application of the contraction mapping
principle. Denote by Bw the mapping T[d(v + w) — R(v + w)] regarded as a
function of w, with & and v as parameters. Then by the strict differentiability,

(©.9) [Bwl = [IT[(o] + [KD(Iw] + Iwl),

where K — Oas ||v], |[w|| = 0. Choose é, = 1/(4| T|)and ¢, such that |[v|| < &, and
|wl| <&, imply |K| < 1/(4||T|). Then |Bw| < &, so that the ball |w| =< ¢, is
mapped into itself whenever |[v|| < ¢, and |§| < J,. To show that we have a
contraction, note that

[Bwy — Bw,| = [ITII(0] + [K'D(lwy — wall),

where |K'| = 0 as v,w;,w, —» 0. Thus we can choose ¢, such that |v|| < e,,
[will < &5, [w,]l < &, imply |K'| < 1/(4]T|). Then with || = d, [[Bw; — Bw,|
< 3wy — w,|l. If g, is the lesser of &, and ¢,, then for any 6 with |[§| < d, and any v
with ||v| £ &,, the mapping B is a contraction of the ball [|[w|| < g, into itself. It has
a unique fixed point w = w(d, v) which satisfies |[W| < [v|| uniformly for |§] < .
Clearly the fixed point depends continuously on ¢ and v.

3 Admittedly this is not always possible, for instance, when A is linear or when 4 is nonlinear
with a branch that is initially perpendicular to the A-axis (see Example 4.4; similar phenomena also
arise in differential equations or integral equations [111]).
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Next we wish to substitute w in (9.8a) and look for solutions. The general case is
quite complicated and even then progress is possible only by developing A4 in a
Taylor expansion to more terms. Fairly complete treatments can be found in
Pimbley [85] and Sather [94]. Instead we make a hypothesis which greatly simpli-
fies the basic equation (9.8).

(H,) The Riesz index of L — A°I is unity.

Now the operators (L — A°I)", m = 1,2, - - -, all have the same null space (of
dimension k, the multiplicity). We may therefore use the pseudoinverse defined in
(7.3), and (9.8b) becomes

k
(9.10) w=06Tw — TR( Y cip; + w),
j=1
whose fixed point w can now be shown to satisfy
(9.11) w = o(|[v]]),
uniformly in |6] < §,. The second simplification occurs in (9.8a), which states that

the element (61 — R)(v + w) belongs to R. Since 9 is complementary to R, the
projection of the element on 9t vanishes, that is,

k k
(9.12) 8 cijo; = PR( Y o+ v’v).
i=1 i=1

THEOREM 6. Let (H,) and (H,) hold and let A° be a simple eigenvalue of L. Thus,
N is one-dimensional and we let ¢ be a real normalized eigenelement. Then A° is a
branch-point of A.

Proof. Setv = co, ||v]| = |c|. Equation (9.12) becomes

dcep = PR[cop + W(d, c)].
The right side is proportional to ¢, equal, say, to y(J, ¢)@. It remains to show that
doc =y, c¢)
has a nontrivial solution. From (9.11), it follows that
lim 29
c—>0 C

uniformly for |6] £ d,- Therefore for any sufficiently small, fixed ¢ # 0, the function
(9, ¢)/c maps |6] £ J, into itself, and since it is a continuous function of ¢ it must
have at least one fixed point é = 8(c), which guarantees branching from A°.
Observe of course that the solution could be § = 0, which would be the case for a
linear operator A. In any event, we have proved part of the Leray-Schauder
theorem (Theorem 2).

To proceed with more concrete information on the branching we shall
assume that L is symmetric and that (H;) holds.

(Hs) Rh = Ch + Dh,
where

:0’

C(th) = t?Ch, p an integer =2,
also there exists a constant K such that, for all h,, h,,
IChy — Chyll = Kllhy — holl(IR P71 + [Iho]I77Y),
IDhy — Dh,|| = K|lhy — hyll([lhy [P + (b2 ]7).
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Remark 9.1. We are assuming that the leading nonlinear term is a homogene-
ous polynomial of degree p = 2. The Lipschitz conditions on C and D are needed
for technical reasons.

Since L is symmetric we may choose it and R = N+ as our complementary
subspaces. Equations (9.10) and (9.12) simplify further to

j=1

k
(9.13) w=030Tw — TR( Y cjp; + w) ,

k
(9.14) oc; = <<Pi,R( 2, Co; + W)>, i=1,---,k.
J

=1

Under (H3), we can easily show that the fixed point w of (9.13) satisfies
wicy, o, ¢, 6) = olvl]) = o(e?),

uniformly in ¢, |§] £ 8,, where ¢ = \/ci + -+ + ¢£. This estimate considerably
simplifies the analysis of the branching equation. We consider only the case of a
simple eigenvalue, so that
oc = {@,R(cp + W)y = (@, Clcop + W)y + (@, D(cp + W))
=<9, Cce)y + (@, Clcp + W) = Clcp))
+<¢,D(c)) + (@, D(cp + W) — D(cp)).

By hypothesis,

ICeg + W) — Cleo)ll < KW' + [W[P~" + &7~ ') = o(e* 1),

ID(co)| < KeP™ 1,

ID(co + W) — D(co)ll < KI|W](e” + [|W]? + &) = o(e??).

Therefore, by Schwarz’s inequality,

dc = c?{p,Cp) + o(eP*1)
or
dc = [, Cod> + Ylc,d)],

where Y(¢,8) - 0as ¢ —» 0and 6 — 0.
If (¢, Cop)> # 0, we can easily show that the solution of

(9.15) 0 =c"" o, Cop)

gives the leading term in the 9, ¢ relation near the origin. Clearly branching always
occurs in this case and the results are displayed in Fig. 12.

Remark 9.2. Branching always occurs for simple eigenvalues, but our method
fails if (¢, C> = 0. One may have to go to higher terms or the branch may not be
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p even> 2.

p odd

<¢, Cp>

positive
<¢,C¢>
negative
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expressible as a function of ¢. For instance if A4 is linear, (9.14) becomes éc = 0,
which has the nontrivial solution 6 = 0 representing a branch perpendicular to the
J-axis.

Remark 9.3. If the eigenvalue is not simple, the analysis is more complicated
(see, for instance, Sather [94]). Solutions can be constructed by adapting an old
device known variously as Newton’s polygon or diagram, or as the method of
Puiseux (see Hille [39], Pimbley [85], Dieudonné [29]).

10. Example treated by the method of Lyapunov-Schmidt and Poincaré-
Keller. Consider the nonlinear problem

(10.1) —u" =pusinuy, 0<x<I; u'(0) = u(l) = 0.

This is essentially the buckling problem (1.6) except for the boundary condition
at x = 1. Every solution of (1.6) corresponding to i > 0 and |¢(0)| < 7 generates a
solution of (10.1) by chopping off the last quarter-wave and rescaling ; furthermore
every solution of (10.1) can be obtained in this way. Since the linearized problem
corresponding to (10.1),

(10.2) —u' =, 0<x<l1; u'(0) = u(l) =0,

does not have 0 as an eigenvalue, the translation into an integral equation is
technically a little simpler than for (1.6). The eigenvalues of (10.2) are just
#, = (2n — 1)>n*/4, n = 1,2, --- , with corresponding normalized eigenfunctions
V2 cos(2n — 1)mx/2.
The Green’s function g(x, t) that will serve as kernel satisfies
dg

—ﬁi=5(x—z), 0<x,t<1l; 20,1 =gl,1)=0,
dx dx
so that
g(x,t) =1 — max (x,t).
The boundary value problem (10.1) is therefore equivalent to the integral equation

1
(10.3) Au(x) = f g(x, t) sin u(t) dt, A=1/u.

0

By multiplying (10.1) by u’ and integrating from O to 1, we can show that
u = 0 implies u = 0. Therefore (10.3) has only the trivial solution for negative A.
Also,

[Allul = (Gl sinull = G |ul,

where || G|| is the norm of the integral operator generated by the kernel g(x, t). As is
well known, ||G|| is the reciprocal of the lowest eigenvalue of the linear problem
(10.2); thus |G| = 4/n*. From the last inequality it follows that nontrivial solu-
tions of (10.3) can occur only for || < 4/n2. This is of course a global result not
related to branching theory.
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We now apply the Lyapunov—Schmidt method to (10.3). The only possible
nonzero branch-points are the simple eigenvalues 1, = 4/n?(2n — 1)? of the linear-
ized problem

Au = Jl g(x, t)u(t) dt.

0
We write

1 1

g(x, tu(r) dt + f g(x,t)(sinu — u)dt
0

Au = r g(x, t)sinu(t) dt = f

0 0
= Lu + Ru,

and

0 0

! u’(t) ! . ul
Ru = Cu + Du = —f g(x,t)—6—dt+f g(x, t)| sin u —u+-6— drt.

Now the nonlinear integral operators C and D are not defined on all of = L,;
but since it suffices to look for continuous solutions we may confine ourselves to
the Banach space of continuous functions. We proceed with the calculation of the
eigenvalue branches from (9.15) with 6 =1 — 4,, u = cp + w, where ||w| is

o(lcl?), ¢ = /2 cos (2n — 1)nx/2,
_ C2 1 1 s
o= 3 L o(x) dx Lg(x, te>(t)de.

Since g is symmetric and ¢ is an eigenfunction corresponding to 4,, we have
{5 &(x, p(x) dx = A,(t), so that

2 2

C2 1 c ¢
(104) 6 "L >0 47T TR -1y
The change in u is easily calculated:
1 1 S 5
10.5 - :__7:__~_v:v22 _12'
(10.5) Hob=7—7 F7y pE; 1671( n—1)

The branching diagram c versus u consists of branches, initially parabolic, that
emanate from each u, and point to the right, very much as the solid curves in Fig. 5.
With the existence theorems of §9 providing solid foundation, there is no
need to treat (10.1) through an integral equation formulation. This saves a certain
amount of work, particularly when higher order approximations are desired.
Writing u = c¢ + win (10.1), we find that w satisfies
—w = uw = ( — p)(co + w) + pfsin(co + w) — (co + W),

(10.6)
w'(0) = w(l) = 0.

Consistency requires that the right side of the differential equation be orthog-
onal to ¢ ; therefore

(10.7) cu — py) = —pdsin(cp + w) — (co + w), ),
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which can be shown to be equivalent to (9.14). To the usual order we find from
(10.7),

c3 1
C(.u_#n)z%f @4dt9
0

or

1

3
O — )= -1

4 dt
s O@ >

which is precisely (10.4).

Another perturbation approach was suggested by Poincaré and fully de-
veloped by J. Keller [51]. The method is closely linked to the existence theorem for
initial value problems of ordinary differential equations. We illustrate the proce-
dure on (10.1). We expect that solutions of small norm branch fromu = Oatu = u,.
We wish to introduce a numerical scale factor that can serve easily as a perturba-
tion parameter. Since any nontrivial solution of (10.1) has u(0) # 0, we may set
u(x) = az(x), where z(0) = 1 and the amplitude a will serve as a perturbation
parameter that will be small for solutions near the branch-point.

Consider the following initial value problem for a function z:

SN2 _ 0, Z20) =1, Z(0) =0,

(10.8) " 4+ u
a
where primes denote differentiation with respect to x.
Problem (10.8) has one and only one solution z(x, 4, a), depending analytically
on u and a. We define z(x, u, 0) by continuity and z(x, u, 0) satisfies the linearized
problem

u' +pu =0, u0=1, w0 =0,
so that
(10.9) z(x, u,0) = cos /ux.

Every nontrivial solution of (10.1) generates a solution of (10.8) with a = u(0),
z = u(x)/u(0). Conversely, any solution of (10.8) with a # 0, that also satifies the
boundary condition at the right end, yields a nontrivial solution of (10.1) with u(x)
= az. We therefore look for a relation between u and a so that the solution of
(10.8) also obeys

(10.10) z(1,u,a) =0.

Of course we have z(1, u,, 0) = 0; for branching we wish to find solutions of
(10.10) with p near u, and a near 0, a # 0. The function z(1, u, a) is unambiguously
determined but not usually explicitly calculable. In our case z(1, u,a) can be
expressed in terms of elliptic functions, but we do not want to take advantage of this.
Instead we want to calculate the solutions (u, a) of (10.10) near (u,, 0) by applying
results on implicit functions.

Setting z(1, u, a) = b(u, a), our first task is to calculate b (u,,0) and b, (u,, 0),
where the subscript denotes differentiation with respect to that variable. It is clear
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that z(x, u, a) = z(x, u, —a) so that b,(u,,0) = 0. The result can also be obtained
by differentiating (10.8) with respect to a. To calculate b,(u,, 0) we first differentiate
(10.8) with respect to y,

sin az

z, + + w(cosaz)z, =0, z,0,u,a)=0, z,(0,u,a) =0,

and upon setting u = u,,a = 0,
(10.11) zy + ,z, = —z(x, py, 0) = — cos /p,x.

If z (1, w,, 0) were 0, it would mean that (10.11) with the boundary conditions
2,(0, p,, 0) = z,(1, u,, 0) = 0 would have a solution. Since y, is an eigenvalue of
the self-adjoint homogeneous problem corresponding to (10.11) and these bound-
ary conditions, the consistency condition

1
f — (cos /ux)p(x)dx = 0
0

would have to hold, and this is clearly impossible, since ¢(x) is proportional to
cos \/ u,x. Therefore z,(1, u,, 0) is not 0. Of course the result could be obtained
more simply in this special case by using (10.9) to find

2n — )
s

Thus we know that b,(u,, 0) # 0. By the implicit function theorem there is a
unique function ¢ = p(a) defined near a = 0, such that u(0) = 0 and b(u(a), a) = 0.
This unambiguous function u(a) generates a solution az(x, u(a), a) of (10.1) which
completely describes the branching at 4 = yu,. With the suitable expansion para-
meter a, we are now prepared to find a regular perturbation solution of (10.1) in the
form

2l s 0) = =/l sin /= (= 1)"

k= + ', +o0@®),  z=g,+d’p, + ola?),
where we have used the evenness of 4 and z as functions of a. The equation for the
leading terms ¢, and [, is
By + WPo = — @ + 1Pa/6,  7,(0) = 3,(1) = 0.

Since u, is an eigenvalue of the homogeneous equation, the consistency
condition

1 1 4
_ﬁnJ‘ (pfdx + :unf &dx =0
0 o 6
must hold. Therefore,

_%ﬁn + :un/16 = 07
or

ﬂn = Aun/8 = (27’1 - 1)271'2/32,
and

(10.12) u—p, ~a*n — 1)*rn%/32,
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which is in agreement with (10.5) if we take into account the different normaliza-
tions. Indeed, ¢, = cos ./ u,x, @(x) = ﬁcos u,x, and (10.12) yields to first
nonvanishing order,

u~ ap, = \F \/H Hy COS / X

whereas (10.5) gives

4
Uu~cp= 1) /n— ,u,,ﬁcos U X .

The Poincaré—Keller method is very suitable for ordinary differential equa-
tions since it uses the amplitude a which is a natural perturbation parameter. The
calculations are simpler and higher order terms easier to compute. Unfortunately,
the theoretical background relies on existence theory for initial value problems,
which limits the scope of rigorous applications.

11. The Taylor problem. A wealth of experimental evidence shows that a
steady viscous flow may become unstable as some controllable parameter exceeds
a critical value. In some cases the postcritical flow is turbulent and therefore highly
unsteady, but in other cases a new steady flow of a cellular type may appear. The
best known examples of this latter phenomenon are the Taylor vortices for flow
between rotating cylinders and the Bénard cells in fluid layers heated from below.

The usual procedure for finding the critical value of the parameter is to
investigate the effect of small disturbances on the original steady flow. The lowest
value of the parameter which causes such small disturbances to increase in time is
then regarded as the critical value of the parameter. Such a method fails to predict
the presence of a new steady flow and cannot calculate the nature of the postcritical
flow. We shall investigate another approach due to Velte [109], which at least
proves the existence of a second steady flow for the Taylor problem. This, then, is an
example of nonuniqueness for the steady Navier-Stokes equations (see also Iudo-
vich [41], Kirchgidssner [56], and the review article by Gortler and Velte [34]).

A viscous fluid occupies the space between concentric circular cylinders, the
outer one being at rest and the inner one rotating with angular velocity w. The
steady motion of the fluid is governed by the Navier—Stokes equations whose non-
dimensional form is

1
(11.1) q-gradq — IVZq = —gradp, divg=0,

where g is the vector velocity, p the scalar pressure, and 4 a physical parameter—
the Reynolds number. The boundary condition at a wall states that there is no
relative velocity between fluid and wall. The particular geometry clearly calls for
cylindrical coordinates r, ¢,z with respective velocity components u, v, w. The
scaling is such that the inner radius is 1, the outer radius a, and the Reynolds
number is proportional to w. An elementary solution of the nonlinear boundary
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value problem is the familiar circular Couette flow:

1 2 2
(112) Uy = 07 Vg = _ l(g‘ — r) Wo = 0, Do = J‘vr—odr

This flow is a solution for all values of the Reynolds number. The experimental
evidence (see Coles [25] for a particularly thorough discussion) shows that for low
values of w Couette flow is stable in the presence of small disturbances and first
becomes unstable when w reaches a critical value w, . The new motion for v > w,
is itself laminar, consisting of toroidal vortices spaced regularly in the axial direc-
tion. As w increases further a new instability occurs at w = w, leading to a flow in
which the axially-periodic vortices are simultaneously periodic traveling waves in
the azimuth. A general discussion can be found in Davey, DiPrima and Stuart [28].
We shall be interested only in the first critical value of w (or 4), that is, in branching
from Couette flow into a flow independent of ¢.

Introducing new variables u, v, w, p to denote the differences between the total
flow variables and the Couette flow variables, we find on substitution in (11.1) that
u, v, w, p satisfy the equations

1, 2 1 u
u, — —v: — Zvvg = —p, + -(Viu — 5|,
uu, + wu, ru rvvo P, l( rz)

1 1 1 v
uv, + wo, + —uv + —(vy + rvpu = Z(Vzv - 7),
r r
(11.3) |
uw, + ww, = —p, + ;Vzw
(ru), + rw, =0,
where the subscript indicates differentiation with respect to that variable. We are
now looking for nontrivial solutions (u, v, w, p) of small norm of (11.3), that is, for
branching from the basic solution u = v = w = p = 0, which corresponds to
Couette flow in the new variables. The problem has been treated in a number of
ways; here we follow Velte’s work where the principal interest is in proving the
existence of a branch of the type found experimentally rather than in studying
quantitatively the new flow. Introducing the stream function f(r,z) from the

divergence equation, we can eliminate the pressure by cross-differentiation to
obtain (assuming no net flow through a cross section)

1

EBzf + a(ryv, + M(f,v) =0,

1
(11.4) EBU + Bf, + N(f,v) =0,

Boundary conditions: f=f,=v=0 atr=1,aq.
The operator B is linear and of the second order,

B =V~ L=+ L
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and M and N are homogeneous polynomials of degree 2 in v, f and their derivatives
of order less than or equal to 3 and 1, respectively:

1
MU0 = ~(B0), + | T8 |+ e

1
N = =), fe + o),

and

2v4(r) 2

k)
r

ar) =

Obviously f = v = Oisasolution of (11.4) for all .. We shall look for branching
into a solution with period [ in the z-direction. A naive approach is to linearize
(11.4) about f = v = 0 by striking out the nonlinear terms M and N. The resulting
linear equations may have a smallest eigenvalue 4, which can be expected to be
a branch-point of the nonlinear problem. This is all very nice but unfortunately
is not backed by theorems. To proceed rigorously we shall reformulate the problem
(11.4) in terms of completely continuous operators to enable us to apply the
Leray—Schauder theory (Theorem 2). Let — L, be the inverse of the fourth order
operator B? with the boundary conditions f = f, =0 at r = 1,a; let —L, be
the inverse of B with the boundary conditions v = 0 at r = 1, a. There are many
choices of the underlying, z-periodic, function spaces that turn these inverses
into compact operators. The particular choice of these spaces will be dictated
by other considerations, but, in any event, (11.4) takes the form

AL fow, + M(f,v)] = f =0,

11.5
(a3 AL,[Bf. + N(f,v)] —v=0.

If the function spaces are correctly chosen, the Fréchet derivatives of the quadratic
operators M and N are in fact 0 at f = v = 0. This actually requires a minor
modification of the norm proposed by Velte, but the rest of his development
needs no change. The linearized problem corresponding to (11.5) is then

(11.6) ALy(aw,) = f,  ALy(ff) = v.

Branching from f = v = 0 will be established if (11.6) has a simple eigenvalue.
In view of the symmetry of the equations we can restrict ourselves to stream
functions that are odd in z and circumferential velocities that are even in z. With
o = 2n/l, we develop f and v in the trigonometric series

fir )= Y fi(r)sinnoz,
n=1

u(r,z) = Y. v,(r)cosnoz.
n=0
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Substitution in (11.6) is equivalent to substitution in (11.4) with omission of
nonlinear terms. This yields the infinite system of ordinary linear differential
equations

[S — (no)*1*£,(r)
=[S — (n0)*Jv,(r) = Apnaf,(r),

S 1d| d 1
= ——|r—] — —=
rdr\ dr] ¥
and the boundary conditions require f,, f,, and v, to vanish at r = 1, a.
Let us look for the moment at the pair of equations
(S — k?f = Ja(r)ko(r),
—(8 = kv = ABKf (r),

Aa(r)nov,(r),
(11.7)

where

(11.8)

with f, f', v vanishing at r = 1, a.

The system (11.8) is just the one that arises in linear stability theory. By
using Green’s functions one can translate (11.8) first into a pair of integral equations
and then, by eliminating v, into a single integral equation having the form

(11.9) ) = ﬂf' W s R f(s)ds,  p= A2
1

The kernel h is positive in the open square 1 < r, s < a. From Jentzsch’s theorem,
it follows that (11.9) has an eigenfunction f;(r) that is positive in 1 < r < a. The
corresponding eigenvalue y, is real and positive and any other eigenfunction
belongs to an eigenvalue whose abolute value exceeds u,. Thus with 4, = \/EI
and v, expressed in terms of f; from the integral equation corresponding to
(11.8b), we have a solution of (11.8). Setting k = o, we also have a solution 4,,
f1, vy of (11.7) (the other v,, f, being set equal to 0). By a clever argument, Velte
is able to show that ¢ can be chosen so that this eigenvalue A, cannot belong to
any other of the equations (11.7) with n = 2,3, ---. Thus for an appropriate
choice of o, (11.7) has a single eigenfunction corresponding to its lowest positive
eigenvalue. This in turn means that in the space of 27/g-periodic functions, (11.6)
has a lowest positive eigenvalue 4, to which corresponds a single eigenfunction.
This does not guarantee that A, is simple in the sense required by Theorem 2.
Our operators are not symmetric so that we must still prove that the Riesz index
is unity. The proof is given in Velte and is omitted here. By using a Lyapunov—
Schmidt procedure, Kirchgédssner [56] has obtained more detailed information
on the solution. He has, for instance, shown that the branching is to the right and
that it differs asymptotically from the Couette flow by terms having a A-dependence
V4 — 4;. In a recent paper, Kirchgidssner and Sorger [57] have analyzed the
stability of the new branch by using results of Prodi [87].

Similar methods have also been used to study the onset of convection (see
Velte [108], Ukhovskii and Iudovich [104], Tudovich [42], Fife and Joseph [31],
Fife [30], Rabinowitz [89], Joseph [43], [44], Segel [98], Busse [21]).
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12. Buckling of a thin rod. We shall investigate the buckling of a pin-ended,
thin rod (see Fig. 1) under more general constitutive laws than in § 1. J. M. Green-
berg [36] considered this problem and showed that there exist reasonable materials
for which the rod has only a finite number of critical buckling loads. Antman [4]
noted a similar phenomenon for curved rods. In Greenberg’s treatment the
constitutive laws are not in accord with the known forms of the equilibrium
equations for a plane elastica (see Antman and Warner [8], A. E. Green [35]).
Greenberg’s analysis is readily modified to take account of compatible constitutive
laws.

A material point whose initial coordinates were x = X, y = 0 is found after
buckling at x = X + u(X), y = v(X), where u and v are as smooth as necessary
and satisfy the boundary conditions u(0) = v(0) = v(l) = 0. The functions u and
v completely describe the deformation, but it will be more convenient to use the
pair of functions v and ¢, where ¢ is the angle in Fig. 2. As strain measures we
choose

0 = ds/dX for elongation,
u = —dp/dX for bending.

The more usual measure of bending is the curvature k = —d¢/ds = u/d. The
reason for using u instead of x has to do with the equilibrium equations of a
plane elastica which have the form

(12.1) M = oW/ou, N = 0W/ds,

where W(u, 0) is a strain energy function, M the bending moment and N the
axial force (see Fig. 2). Other considerations aside, (12.1) is compatible with the
pair of constitutive equations M = M(u) and N = N(5), where M and N are
arbitrary. On the other hand a pair of the type M = M(x), N = N(5), as considered
by Greenberg, would violate (12.1). We shall therefore adopt a pair,

(12.2) M=Mw, N=~No),
that we assume can be solved for p and 6 to give
(12.3) p=paM), =34(N),

where 4 is an odd function with positive derivative and & is positive and mono-
tonically decreasing with §(0) = 1 (see Fig. 13). The case of the Euler—Bernoulli,
inextensible rod of § 1 corresponds to é = 1, A(M) = M/(EI), since now s = X.

In addition to the constitutive equations (12.3), we have the geometric
relation

(12.4) dv/ds = sin ¢
and the equilibrium equations

(12.5) N = Pcos¢o
and

(12.6) M = Pv.
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From (12.6) we deduce u = A(Pv), and from (12.5), 6 = 8(P cos ¢). Using
(12.4) and the definitions of ¢ and u, we obtain the pair of nonlinear differential
equations of the first order in v and ¢:

d .
(12.7) 49 _ a(p), (7;2 = §(P cos @) sin ¢,

with the boundary conditions v(0) = v(/) = 0. For any value of P, a particular
solution of (12.7) is v = 0, ¢ = 0, which corresponds to pure compression with
d = const. = §(P). Although principally interested in the branching from this
compressive solution, we shall carry out much of the analysis globally and explicitly.

The equations (12.7) have the same symmetry properties as the example in
§ 1. It will therefore suffice to consider the initial value problem for (12.7) with
P>0,0v0) =0, ¢0) =0« 0 <a <z, and then to choose those solutions that
also satisfy the boundary condition v(/) = 0. Under rather mild assumptions on
o and 4, the initial value problem has one and only one solution (v, ¢) which
oscillates about (0, 0). The graph of v and ¢ over a period consists of 4 congruent
half-bays resembling a sine wave and a cosine wave, respectively. Quantitative
information can be found by multiplying the first of (12.7) by dv/d X, the second
by de/dX, and adding. After integration, we obtain

(12.8) A(Pv) = B(P cos ¢) — B(P cos a),

where

t

Ar) = f l Az)dz,  B@t) = f o(z)dz.

0 0

For small t, A(t) ~ (0)t?/2 and B(t) ~ t. Since B is monotonically increasing
and A = 0, we have cos ¢ = cosa or |¢| < a. The half-period T of oscillations
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is found from

24X =
T=-2| —d =2JA—d¢

® ¢ o A(Py)
(12.9)

_» f do
~ " Jo f{A™[B(P cos ¢) — B(P cos )]}’

The singularity at ¢ = « is integrable, and the limiting half-period of small
oscillations (x — 0+) can be calculated directly from (12.9) or from the linearized
problem

de

., dv
—ix = FOPv, - = 0d(P)

whose solution has the half-period =['(0)PS(P)]~ /2.
Branching from the compressive solution of (12.7) can occur if and only if
[ is an integral multiple of a half-period, that is,

(12.10) A(0)PS(P) = n*n?/I2, n=1,2,3,.--.

Equation (12.10) determines the critical loads. From Fig. 13 it is clear that there
are many possible behaviors for PO(P). If the rod is inextensible or sufficiently
resistant to compression, PS(P) » oo as P — co. This means that (12.10) has an
infinite number of roots P,, that is, an infinite number of critical loads. If the
material is soft enough in compression, we could have PS(P) —» 0 as P — oo,
which yields at most a finite number of buckling loads. In fact if the maximum of
Q(0)PS(P) is less than 2/12, no buckling occurs regardless of the compressive load.
This amusing result may or may not be physically significant. High compression
of a soft material will make it bulge, thereby ruining the assumption that the
rod is thin and of homogeneous cross section. Such bulging is perhaps interpretable
as a form of skin buckling that occurs in 3-dimensional problems. The reader
is also referred to the papers by Antman [6], [7] and by Tadjbakhsh and Odeh
[102].

13. Chain reaction in a rod. We shall consider a one-dimensional version of a
more complicated neutron transport problem investigated by Pazy and Rabino-
witz [80]. A thin rod, 0 < x < q, is regarded as a simple nuclear reactor. Between
collisions with atoms of the reactor, neutrons are assumed to move with unit
velocity along the rod. Neutrons do not interact with one another. When a neutron
collides with a fixed atom, the outcome is instantaneous replacement of the

original neutron by O, 1, ---, or N neutrons, the respective probabilities being
denoted by ¢, ¢y, + -+, cy, With

N
(13.1) Yea=1, ¢ =0.
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The neutrons arising from a collision are equally likely to be moving to the left
or the right with unit velocity. The expected number of neutrons arising from a
collision is the multiplying factor

N
(13.2) c= Y ke.
k=1

Collisions of neutrons with atoms are assumed to be governed by the Poisson
process. In an infinitesimal interval (x, x + A), there is a probability oA of a
collision with an atom, where ¢ is a given positive physical constant—the reciprocal
of the mean free path. The probability of no collision in a path of length b is
therefore e~ ??. When a neutron reaches the end of the rod, it is absorbed.

A single neutron moving to the right is introduced at the point x at t = 0.
We want to calculate the probability u(x) that at least 1 neutron is alive at t = c0.
The quantity v(x) is similarly defined for a neutron initially moving to the left.
Clearly, v(x) = u(a — x). On physical grounds one can infer that if ¢ is large
(small mean free path) there will be nearly certain survival if ¢ > 1, nearly certain
extinction if ¢ < 1. If ¢ is small, the neutron will nearly always be absorbed at the
ends of the rod unless the multiplying factor ¢ is very large. We now derive a
governing equation for u(x), or rather, for the extinction probability 1 — u(x).
There are two roads to extinction : (i) the neutron reaches the end x = a without
collision; (ii) the neutron has its first collision in some interval (y, y + dy) and
all products ultimately die. Thus

1 —ux)=e 797 4 f e O™ p(y)dy,

X

where p(y) is the probability of all products of the collision from (y, y + dy)
becoming extinct. There is a probability ¢, of k neutrons being generated so that

N

py) = Y abily),
k=0
where p,(y) is the probability that none of the k neutrons generated yield a chain

k\ (1\*
reaction. Of the k neutrons produced there is a probability ( )(5) that p will
p

move to the right and the rest to the left ; the corresponding extinction probability
is [1 — u(»)]"[1 — v(y)]*~*. Therefore,

1 — u(x) = e*(a*x)au ) v
+—L<w-w-wl§gaggipﬂi)n~—uwn%1—UUMkPd»
A similar equation holds for v(x). Setting
(13.3) z(x) = (u(x) + v(x))/2,

we obtain after some simplification,

(134) 29 = [ Ex, 960 dy = Nz, 0sx=a
0
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where
(13.5) E(x,y) = (6/2)e” "7,
N
(13.6) G(z) = cz — i all —2F—1+kzl=1-) ¢fl — 2
k=2 k=0

The following properties of the kernel E(x, y) and of the polynomial G(z) play
a role in the sequel:

(13.7) Ex,y)2d>0 on0=x,y=a,

(13.8) f Ex,y)dy=1, O0Osxsa,
0

(13.9) G(z2) strictly increasing 0 <z =<1, G0) =0, G(1)=1—¢, £ 1.

(13.10) G'(0) = ¢, G'(1) = ¢; <c¢, G'(2) strictly decreasing,
. G(z) strictly concave, c,, ---, cy not all zero.

Equation (13.4) is a nonlinear integral equation of the Hammerstein type.
Clearly z = 0 is always a solution. In view of (13.3) and the probability definitions
of u and v, we shall be interested in nontrivial z(x) satisfying 0 < z(x) < 1. We
pause to observe that (13.4) is equivalent to the nonlinear differential equation

d’z

_W.ngz:azG[z(x)], 0<x<a,

7'(0) — oz(0) = 0, z'(a) + oz(a) = 0.

If ¢ is regarded as a parameter, (13.4) is nearly the kind of nonlinear problem
studied in earlier sections. The linearization of (13.4) about z = 0 yields the
linear integral equation

(13.11)

(13.12) h(x) = ch E(x, y)h(y)dy = cLh,
0

where ¢ may be viewed as an eigenvalue parameter. The corresponding lineariza-
tion of (13.11) is —h” + o2h = co?h, with the same boundary conditions. One
can obtain branching information for solutions of small norm of (13.4) by using
our previous methods, but as has already been stated, we are looking only for
positive solutions whose maximum does not exceed 1. We shall use entirely
different methods to prove the existence and uniqueness of these solutions. It
turns out that the branch that emanates from the lowest eigenvalue of (13.12)
corresponds to the desired solution.

Following Pazy and Rabinowitz, we set the problem of solving (13.4) in the
Banach space B of continuous functions on 0 < x < a. Let S be the subset of B
consisting of functions z(x) satisfying 0 < z(x) < 1. The nonlinear operator N
maps S into & and can be shown to be compact and continuous on & ; moreover, N
is monotonic in the sense thatif zz weSandz S won0 < x < a,then Nz < Nw
on 0 < x < a. We seek nontrivial solutions of (13.4) in . A function z(x)e S is
called a maximal solution if z = z for all z in & satisfying (13.4).
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THEOREM 7. For all ¢ > 0, (13.4) has a maximal solution.
Proof. We construct the solution by successive approximations. Let zy(x) = 1
and let z; . ; = Nz;. We have z,(x) < zy(x), and, successively, z, < z,, etc. There-

fore,
0=z, =Nz; =Nz =z=1.

The sequence z(x) is a uniformly bounded monotonically decreasing sequence
which is easily shown to be equicontinuous. There exists therefore a subsequence
converging uniformly to Z in S, and by monotonicity, the original sequence has the
same property, so that Nz = z and Z satisfies (13.4). It is also easy to see that Z is
maximal.

Of course, it might be possible at this stage that Z = 0. To show otherwise, we
shall need information about the linearized problem (13.12). The kernel in (13.12)
is positive; we can therefore use once more the theorem of Jentzsch (see §11).
Rephrased in the new notation it states that there exists a positive eigenvalue c*
which has smaller modulus than any other eigenvalue and that the corresponding
eigenfunction can be chosen positive. In our particular case many of the difficulties
of Pazy and Rabinowitz’s paper disappear. Our kernel is symmetric and strictly
positive ; moreover, (13.12) corresponds to a linear self-adjoint, Sturm-Liouville
problem. We know therefore that c* is a simple eigenvalue. We normalize the
corresponding eigenfunction h* by

0r£1a§ h*(x) = 1.

We note from (13.12) that ¢* > 1. From the linearized version of (13.11) we
deduce further that ¢* — 1 as ¢ — o0 and ¢* — o0 as g — 0, just as conjectured in
the early part of the section. Our experience with branching problems guarantees
that a branch for (13.4) emanates from ¢ = c¢*. We show that this branch exists for
all ¢ > ¢* and belongs to .

THEOREM 8. If ¢ > c*, (13.4) has nontrivial solutions.

Proof. We know that if ¢ exceeds c¢* by a small amount, the branch is essenti-
ally proportional to h*. This suggests using an iteration process beginning with a
small multiple of h* to build up to the desired nontrivial solution.

With ¢ fixed, ¢ > ¢*, we can choose 6,0 < § < 1, such that

(I — d)c/c* = 1.

Now G'(z) is continuous and takes on the value ¢ at z = 0. With ¢ already fixed, we
may select ¢y, 0 < ¢, =< 1, such that

G'(z) =2 (1 — d)c, 0=sz=¢.

With 0 < ¢ < ¢4, and recalling that G(0) = 0, we find by the mean value theorem,

N(eh*) = f E(x, y)Gleh*(y)] dy
0
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Now let ty(x) = eh*(x) and t;, ,(x) = Nt;. Arguments similar to those used in
Theorem 7 show that ¢; is a monotonically increasing sequence with limit z(x)
satisfying 0 < ¢h* <z < 1.

This solution z can be shown to be independent of ¢ and is clearly nontrivial.
Since z = z, z is itself nontrivial for ¢ > ¢*. The notation suggests that z is a
minimal solution; that is, if z is any solution of (13.4) belonging to &, then z < z.
Indeed, let z be a nontrivial solution of (13.4) in &; using (13.7),

> dfa Glz(y)]dy > 0,
0

since G > 0 for 0 < z =< 1. Because h* is also positive in 0 < x < a, we can find
¢ > O such that 0 < sh* < z. The construction used in Theorem 8 will then show
that 0 < z < z.

Next we would like to show that the only solution in S for ¢ < ¢*is z = 0 and
that there is a unique nontrivial solution in & for ¢ > ¢* (the solution being
z = Z = z). The first result depends on the fact that G is concave. Using the mean
value theorem and the concavity of G,

z—f E(x. y)G ]dy—f E(x, )G Tw()]2(0) dy

< [ B 0G0z dy = cLz.
0
By taking L,-norms or by quoting a theorem of Krein and Rutman, we see that

nontrivial solutions are possible only for ¢ = c¢*. Finally we show that z = z for
¢ > c*. Since zZ and z both satisfy (13.4), we find on using the symmetry of E(x, y),

0= f {z(x)G[z(x)] — z(x)G[Z(x)]} dx,

or

0= fﬂ z(x)z(x) {G[z(x)] - G[Z(x)]} dx.

0 z(x) z(x)

Of course, we have z < z; if the inequality held for some x interval, then the strict
concavity of G would imply that the term in brackets is positive on that interval;
butzz > 0in 0 < x < a so that the integral from 0 to a would be positive. There-
fore z = z and (13.4) has a unique nontrivial solution in € for ¢ > c*.
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