Normal Form for the Fold Bifurcation

The purpose of these notes is to give a simple proof (simpler than Kuznetsov) that the normal form for the fold bifurcation is

$$
\begin{equation*}
\frac{d x}{d t}=a \pm x^{2} \tag{1}
\end{equation*}
$$

Theorem: If the function $f(y, a)$ is smooth and

1. $f(0,0)=0$
2. $f_{y}(0,0)=0$
3. $f_{y y}(0,0) \neq 0, f_{a}(0,0) \neq 0$,
then the flow $\frac{d y}{d t}=f(y, a)$ is topologically equivalent to the flow (1) in some sufficiently small neighborhood of the origin $y=0, a=0$.

The proof is in three steps. Step 1: For $f(y, a)$ there is a function $y=Y(a)$ so that $f_{y}(Y(a), a)=0$. This follows immediately from the Implicit Function Theorem. (Proof below)

Let $z=y-Y(a)$. Then

$$
\begin{equation*}
\frac{d z}{d t}=g(z, a)=g_{0}(a)+g_{2}(a) z^{2}+g_{3}(a) z^{3}+\cdots \tag{2}
\end{equation*}
$$

a power series in z, with coefficients which are functions of $a, g_{0}(a)=f(Y(a), a)$. Introduce the (invertible) change of parameter $b=g_{0}(a)$ so that

$$
\begin{equation*}
\frac{d z}{d t}=G(z, b)=b+G_{2}(b) z^{2}+G_{3}(b) z^{3}+\cdots \tag{3}
\end{equation*}
$$

Proof: To find solutions of $f_{y}(Y(a), a)=0$, notice that $Y(0)=0$, since $f_{y}(0,0)=0$. Differentiate with respect to a and find

$$
\begin{equation*}
f_{y y}(Y(a), a) Y^{\prime}(a)+f_{y a}(Y(a), a)=0 \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
f_{y y}(0,0) Y^{\prime}(0)+f_{y a}(0,0)=0 \tag{5}
\end{equation*}
$$

which means that $Y^{\prime}(0)$ (hence $Y(a)$) exists and is unique provided $f_{y y}(0,0) \neq 0$, which it is.
Step 2: There is a linear change of variables $z=\alpha(b)+\beta(b) x$ with $\alpha=O(b), \beta=O(1)$, so that for $F(x, b)=G(\alpha(b)+\beta(b) x, b)$

$$
\begin{equation*}
F(r, b)=(G(\alpha(b)+\beta(b) r, b)=0 \tag{6}
\end{equation*}
$$

on $b=\sigma r^{2}$, for all sufficiently small r.
The proof follows from the Implicit Function Theorem. In fact, the transformation is (use Maple; see the Maple code at the bottom of these notes)

$$
\begin{equation*}
z=\frac{G_{30}}{2 f_{20}^{4}}+\frac{x}{f_{20}}, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{20}=\sigma f_{20}^{2}, \quad \sigma^{2}=1 \tag{8}
\end{equation*}
$$

to leading order in b.
Furthermore,

$$
\begin{equation*}
f(x, b)=\left(b+\sigma x^{2}\right)\left(1+\frac{G_{30} x}{\sigma f_{20}^{3}}+\cdots\right) \tag{9}
\end{equation*}
$$

Step 3: Suppose $f(\pm \sqrt{-b \sigma}, b)=0$ for all b with $\sigma b<0$, where $\sigma=\operatorname{sgn} f_{x x}(0,0)$. Then the function

$$
\begin{equation*}
\mu(y, b)=\frac{b+\sigma x^{2}}{f(x, b)} \tag{10}
\end{equation*}
$$

is a bounded positive function. It follows that the flow $\frac{d x}{d t}=f(x, b)$ is topologically equivalent to the flow $\frac{d x}{d t}=b+\sigma x^{2}$ since

$$
\begin{equation*}
b+\sigma x^{2}=\mu(x, b) f(x, b) \tag{11}
\end{equation*}
$$

This same technique can be used to prove the following:
Theorem: Suppose $f(y, a)=a y+y^{2} g(y, a)$ and $g(0,0) \neq 0$. Then the normal form for the flow

$$
\begin{equation*}
\frac{d y}{d t}=f(y, a) \tag{12}
\end{equation*}
$$

is

$$
\begin{equation*}
\frac{d x}{d t}=a x \pm x^{2} \tag{13}
\end{equation*}
$$

Theorem: Suppose $f(y, a)=a y+y^{3} g(y, a)$ and $g(0,0) \neq 0$. Then the normal form for the flow

$$
\begin{equation*}
\frac{d y}{d t}=f(y, a) \tag{14}
\end{equation*}
$$

is

$$
\begin{equation*}
\frac{d x}{d t}=a x \pm x^{3} \tag{15}
\end{equation*}
$$

Here is the Maple code to do Step 2:

```
# Suppose g(y,b) = b +G_2(b) *z^2 + G_3(z,b)*z^3; The following maple
# code determines the transformation z = c(b) + d(b) x so that
#f(x,b) = g(c(b) + d(b) x,b) has roots at x = +/- sqrt(-b sgn G_2(0))
restart;
# define f;
n:=4;
g:=b +add(add(G||j|k*b^k*z^j,j=2..n),k=0..n);
z:= add(c||j*b^j,j=1..n)+add(d| | j*b^j,j=0..n)*x;
eq1:=subs(b=-s*r^2,x=r,g):
coeff(eq1,r,0);
```

```
coeff(eq1,r,1);
coeff(eq1,r,2);
    d0:=1/f20;
c1:=solve(coeff(eq1,r,3),c1);
d1:= solve(coeff(eq1,r,4),d1);
c2:=solve(coeff(eq1,r,5),c2);
d2:=solve(coeff(eq1,r,6),d2);
```

