Notes on resultant and bifurcation analysis

1 The Resultant

Given two polynomials,

f(z) = aa™ + An1 2"V 4 -+ a, g(x) = bpa™ + Q2™+

define the Sylvester matrix as the (n 4+ m) x (n 4+ m) matrix
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Specific example, let f = a1z + ag, g = byx + by, then
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R(f,g) = det(S).

Define the resultant of f and g as

The main theorem, which we are about to prove is

Theorem Suppose f(z) = a, [[_,(x — &) and g(z) = b, [[1~,(z
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An example:

f=2*+azx+b, g=f =2x+a,
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and

det(S) = 4b — a* = 4f(—%).
Note that ]
& =5(-axVa@—a),  g=-3.
so that
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which agrees with the theorem.
Some interesting formulas:

1. Suppose deg(g) = k < m. Then,

Rn,m(.fa g) = a:?_kRn,k(fa g)
This follows since g = 02™ + 0™ + -+ - + bpa® + - - -.
2. Suppose deg(f) = n, deg(g) = m, deg(h) = k.

(a) If m+ k <mn, then
R(f + gh,9) = R(f.9).
(b) If n+ k < m, then
R(f,9+ fh) = R(f,9).
This follows directly from properties of determinants.
Proof of the main Theorem

We use induction on m -+ n.
First, forn=m =1, f = a1x + ag, g = byx + by,
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as required. The case m = 0, n = 1 works as well by setting b; = 0 in which case R(f,g) =

a1g(—52) since g = bo.

Now, for some n and m, suppose, without loss of generality, that m > n. Then, there is

a polynomial h with deg(h) = m — n for which

g=nhf+r,

(18)



and deg(r) = k < m. Then,

R(f.9) = R(f,9 = hf) = Rom(f.7) = @) " Rux(fir) (19)
= a e[ &) (20)

= ar [ (ste) -nerr) @
= a” H 9(&), (22)
as required. QED

1.1 The Discriminant

For any polynomial f with roots &;, the discriminant is defined as

Af) =TT - &) (23)

i<j
A calculation: Since f = a, [[}_, (v — §;), then f'(&) = a5 [[}.;(& — &) Tt follows that

n

R(f.[") = aﬁ‘lllf’(&) (24)
- az—lazﬁi[@—@) (25)
- ai"_ln(xz—xj)(xj—xi) (26)
= <—1>’€j”ai"—1ﬂ<xi—xj>2=<—1>’“”2”ai"-1A<f>. (27)
Examples:

1. For the quadratic polynominal f = 2% 4+ azx + b, f' = 2z + a,
R(f, ') = 4b —a® = —A(f). (28)
Obviously, if 4b = a2, f = 2% + ax + % = (z + %)? has a double root.

2. For the cubic polynominal f = z® + az + b (note that the quadratic term can always
be eliminated with a shift of the variable x), then

R(f, f) = 4a® + 270, (29)

The curve along which R(f, f’) = 0 is the curve in parameter space along which f has
a double zero. This is known as the cusp bifurcation.
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2 Examples

We want to use the resultant to understand features of solutions of interesting problems.

2.1 Spruce budworm dynamics

Spruce budworm dynamics are governed by the differential equation (after a bunch of scaling)

dv v?

= :Uv(l—v)—m:f(v)~ (30)

We would like to understand for what parameter values this has bistable behavior. To find
double zeros of f, we calculate the resultant of the numerators of f and f’, which is

R = k*o(—4k°0® — 8k*c® — 12k*0® — 4k30® + 20k%0° — 12k30* + K?0* — 4k%0®),  (31)

where k = £?. The zero level surface of R is shown plotted in Fig. 1(Right).
To determine cusp point we first solve for ¢ as a function of v

2

v
= = 32
and look for double roots ¢'(v) = 0. The necessary resultant is
R, = —32k*(27k — 1)(k + 1)? (33)
so that the cusp occurs for kK = # Similarly, solving for k,
) (34
K= ——— —v"=h(v
ov(l —v) ’
and we look for double roots of h'(v) = 0. The corresponding resultant is
Ry, = —80°*(8c — 27), (35)
from which we learn that the cusp is at ¢ = %7.
2.2 Quorum Sensing
The equations are (after a bunch of rescaling)
du u?
o = 30+71+u2+v u, (36)
dv
- = —v—l—l_p(u—v) (37)
It is not hard to determine that the steady states solutions are given by
2 2 _ .3 _
:_vu + Sou U’ + 89— u Ef(u). (38)

(u?+1u
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To find regions of different behavior we look for double zeros of f'(u) = 0 and double
zeros of f(u) = 0. We find that double zeros of f’(u) occur when

v = 83y, (39)
and double zeros of f occur when

450 4+ 129282 + 127s) + 4s5y? — 20ysg + 852 + 4 = 0, (40)

Furthermore, the cusp intersect the straight line at sqg = #
Remark: This analysis can be applied to any rational system of equations to (first)
reduce the system of polynomials to a single polynomial of one variable and then (second)
understanding the bifurcation structure of the solutions as a function of parameters, using

resultant analysis.

2.3 Oescillations; Hopf Bifurcations

Resultants can also be used to find Hopf bifurcation points. The idea is as follows. For a

system of equations,

X
steady states are found as solutions of a polynomial equations F'(X, p) = 0. Hopf bifurcation
points are those for which

oF
det(=—= —iwl) =0 42

et 5 — ) (42)
This corresponds to two more equations (take real and imaginery parts) which must be
simultaneously zero. The resultant of these two is a single polynomial in X and p. Now
eliminate X using resultants to find a polynomial in p, which gives the locations of Hopf

points.

2.4 Brusselator equations

Look for Hopf bifurcations for the Brusselator equations

u'=a— (b+1)u+vu?, v = bu — vu’. (43)
Hopf bifurcation resultant analysis gives a Hopf bifurcation when R = 0, where
R=a(-a*+b—-1). (44)
2.5 Lorenz Equations
The Lorenz equations are
d
= = oly-a), (45)
d
= = alp-2)-v, (46)
d
d_i = xy— Pz (47)



It is an easy matter to show that steady solutions are x = 0, and 22 = pS3. Further, there is
a Hopf bifurcation at the nontrivial steady state provided

Bp+ Bo — po+c* +p+ 30 =0. (48)
(determined using the resultant).

2.6 Bazykin’s Equations

/ Ty

S QEp —ba?,
vo= gyt iyax — dy?,
We can find the cusp bifurcation curve to be
Reysp = alag + bg — 1) + 8b. (49)

Clearly, this makes sense only if g(a + b) < 1.
Similarly, the resultant analysis yields that Hopf bifurcations occur for R = 0 where

R = d*dg® + a*bdg® + a®d*g + 3a*bd*g + 4a*bdg* + 3ab’d*g + 4ab’dg® + b d*g — a*d?
—a?dg — 3a*bd® — Ta*bdg — 4a*bg* — 2a*d?g — 2a*dg® — 3ab*d® — Tab*dg — 4ab*¢>
—4abd*g — b*d* — b*dg — 2b%d*g + a*d® + 2abd* — 2abdg + ad®g + b*d* + 6b*dg
+bd?g + 4abd + 4abg + ad® + adg — 4b*d — 4b*g + bd* — bdg — 4bd — d*

While this formula is complicated, it not difficult to make contour plots of this function
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Figure 1: Top Left: Plot of f(v) for kK = 0.0031 and for selected values of ¢ for Eqn. (30).
Top Right: plot of the zero level set, R(k,c) = 0. Bottom Left: Plot of the steady solution
v as a function of the parameter o for several different values of x, and Bottom Right: Plot
of the steady solution v as a function of  for several values of o.
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Figure 2: Left: Plot of the steady solution v as a function of the parameter p for several
different values of v with so = 0.1 for Eqns. (36)-(37). Right: plot of the zero level set,
R(v, s0) = 0.



