Notes on resultant and bifurcation analysis

1 The Resultant

Given two polynomials,

$$
\begin{equation*}
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, \quad g(x)=b_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+b_{0} \tag{1}
\end{equation*}
$$

define the Sylvester matrix as the $(n+m) \times(n+m)$ matrix

$$
S=\left(\begin{array}{ccccccc}
a_{n} & a_{n-1} & a_{n-2} & \cdots & 0 & 0 & 0 \tag{2}\\
0 & a_{n} & a_{n-1} & \cdots & & & \\
0 & 0 & a_{n} & \cdots & a_{1} & a_{0} & 0 \\
& & & & & a_{1} & a_{0} \\
b_{m} & b_{m-1} & b_{m-2} & \cdots & 0 & & \\
0 & b_{m} & b_{m-1} & \cdots & & & \\
0 & 0 & & & b_{1} & b_{0} & 0 \\
& & & & & b_{1} & b_{0}
\end{array}\right)
$$

Specific example, let $f=a_{1} x+a_{0}, g=b_{1} x+b_{0}$, then

$$
S=\left(\begin{array}{ll}
a_{1} & a_{0} \tag{3}\\
b_{1} & b_{0}
\end{array}\right) .
$$

Define the resultant of f and g as

$$
\begin{equation*}
R(f, g)=\operatorname{det}(S) \tag{4}
\end{equation*}
$$

The main theorem, which we are about to prove is
Theorem Suppose $f(x)=a_{n} \prod_{i=1}^{n}\left(x-\xi_{i}\right)$ and $g(x)=b_{m} \prod_{i=1}^{m}\left(x-\eta_{j}\right)$. Then

$$
\begin{align*}
R(f, g) & =a_{n}^{m} b_{m}^{n} \prod_{i} \prod_{j}\left(\xi_{i}-\eta_{i}\right) \tag{5}\\
& =a_{n}^{m} \prod_{i} g\left(\xi_{i}\right) \tag{6}\\
& =(-1)^{n m} b_{m}^{n} \prod_{j} f\left(\eta_{j}\right) . \tag{7}
\end{align*}
$$

An example:

$$
\begin{equation*}
f=x^{2}+a x+b, \quad g=f^{\prime}=2 x+a, \tag{8}
\end{equation*}
$$

then

$$
S=\left(\begin{array}{ccc}
1 & a & b \tag{9}\\
2 & a & 0 \\
0 & 2 & a
\end{array}\right)
$$

and

$$
\begin{equation*}
\operatorname{det}(S)=4 b-a^{2}=4 f\left(-\frac{a}{2}\right) \tag{10}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\xi_{i}=\frac{1}{2}\left(-a \pm \sqrt{a^{2}-4 b}\right), \quad \eta=-\frac{a}{2}, \tag{11}
\end{equation*}
$$

so that

$$
\begin{equation*}
\prod_{i, j}\left(\xi_{i}-\eta_{j}\right)=-\frac{1}{4}\left(a^{2}-4 b\right) \tag{12}
\end{equation*}
$$

which agrees with the theorem.
Some interesting formulas:

1. Suppose $\operatorname{deg}(g)=k<m$. Then,

$$
\begin{equation*}
R_{n, m}(f, g)=a_{n}^{m-k} R_{n, k}(f, g) \tag{13}
\end{equation*}
$$

This follows since $g=0 x^{m}+0 x^{m-1}+\cdots+b_{k} x^{k}+\cdots$.
2. Suppose $\operatorname{deg}(f)=n, \operatorname{deg}(g)=m, \operatorname{deg}(h)=k$.
(a) If $m+k \leq n$, then

$$
\begin{equation*}
R(f+g h, g)=R(f, g) \tag{14}
\end{equation*}
$$

(b) If $n+k \leq m$, then

$$
\begin{equation*}
R(f, g+f h)=R(f, g) \tag{15}
\end{equation*}
$$

This follows directly from properties of determinants.

Proof of the main Theorem

We use induction on $m+n$.
First, for $n=m=1, f=a_{1} x+a_{0}, g=b_{1} x+b_{0}$,

$$
S=\left(\begin{array}{cc}
a_{1} & a_{0} \tag{16}\\
b_{1} & b_{0}
\end{array}\right)
$$

and

$$
\begin{equation*}
R(f, g)=a_{1} b_{0}-b_{1} a_{0}=a_{1} b_{1}\left(-\frac{a_{0}}{a_{1}}+\frac{b_{0}}{b_{1}}\right), \tag{17}
\end{equation*}
$$

as required. The case $m=0, n=1$ works as well by setting $b_{1}=0$ in which case $R(f, g)=$ $a_{1} g\left(-\frac{a_{0}}{a_{1}}\right)$ since $g=b_{0}$.

Now, for some n and m, suppose, without loss of generality, that $m \geq n$. Then, there is a polynomial h with $\operatorname{deg}(h)=m-n$ for which

$$
\begin{equation*}
g=h f+r \tag{18}
\end{equation*}
$$

and $\operatorname{deg}(r)=k<m$. Then,

$$
\begin{align*}
R(f, g)=R(f, g-h f)=R_{n, m}(f, r) & =a_{n}^{m-k} R_{n, k}(f, r) \tag{19}\\
& =a_{n}^{m-k} a_{n}^{k} \prod_{i} r\left(\xi_{i}\right) \tag{20}\\
& =a_{n}^{m} \prod_{i}\left(g\left(\xi_{i}\right)-h\left(\xi_{i}\right) f\left(\xi_{i}\right)\right) \tag{21}\\
& =a_{n}^{m} \prod_{i} g\left(\xi_{i}\right), \tag{22}
\end{align*}
$$

as required. QED

1.1 The Discriminant

For any polynomial f with roots ξ_{i}, the discriminant is defined as

$$
\begin{equation*}
\Delta(f)=\prod_{i<j}\left(\xi_{i}-\xi_{j}\right)^{2} \tag{23}
\end{equation*}
$$

A calculation: Since $f=a_{n} \prod_{j=1}^{n}\left(x-\xi_{j}\right)$, then $f^{\prime}\left(\xi_{i}\right)=a_{n} \prod_{j \neq i}^{n}\left(\xi_{i}-\xi_{j}\right)$. It follows that

$$
\begin{align*}
R\left(f, f^{\prime}\right) & =a_{n}^{n-1} \prod_{i=1}^{n} f^{\prime}\left(\xi_{i}\right) \tag{24}\\
& =a_{n}^{n-1} a_{n}^{n} \prod_{i=1}^{n} \prod_{j \neq i}^{n}\left(\xi_{i}-\xi_{j}\right) \tag{25}\\
& =a_{n}^{2 n-1} \prod_{i<j}\left(x_{i}-x_{j}\right)\left(x_{j}-x_{i}\right) \tag{26}\\
& =(-1)^{\frac{n(n-1)}{2}} a_{n}^{2 n-1} \prod_{i<j}\left(x_{i}-x_{j}\right)^{2}=(-1)^{\frac{n(n-1)}{2}} a_{n}^{2 n-1} \Delta(f) . \tag{27}
\end{align*}
$$

Examples:

1. For the quadratic polynominal $f=x^{2}+a x+b, f^{\prime}=2 x+a$,

$$
\begin{equation*}
R\left(f, f^{\prime}\right)=4 b-a^{2}=-\Delta(f) \tag{28}
\end{equation*}
$$

Obviously, if $4 b=a^{2}, f=x^{2}+a x+\frac{a^{2}}{4}=\left(x+\frac{a}{2}\right)^{2}$ has a double root.
2. For the cubic polynominal $f=x^{3}+a x+b$ (note that the quadratic term can always be eliminated with a shift of the variable x), then

$$
\begin{equation*}
R\left(f, f^{\prime}\right)=4 a^{3}+27 b^{2} . \tag{29}
\end{equation*}
$$

The curve along which $R\left(f, f^{\prime}\right)=0$ is the curve in parameter space along which f has a double zero. This is known as the cusp bifurcation.

2 Examples

We want to use the resultant to understand features of solutions of interesting problems.

2.1 Spruce budworm dynamics

Spruce budworm dynamics are governed by the differential equation (after a bunch of scaling)

$$
\begin{equation*}
\frac{d v}{d t}=\sigma v(1-v)-\frac{v^{2}}{\kappa^{2}+v^{2}}=f(v) \tag{30}
\end{equation*}
$$

We would like to understand for what parameter values this has bistable behavior. To find double zeros of f, we calculate the resultant of the numerators of f and f^{\prime}, which is

$$
\begin{equation*}
R=k^{2} \sigma\left(-4 k^{5} \sigma^{6}-8 k^{4} \sigma^{6}-12 k^{4} \sigma^{5}-4 k^{3} \sigma^{6}+20 k^{3} \sigma^{5}-12 k^{3} \sigma^{4}+k^{2} \sigma^{4}-4 k^{2} \sigma^{3}\right) \tag{31}
\end{equation*}
$$

where $k=\kappa^{2}$. The zero level surface of R is shown plotted in Fig. 1(Right).
To determine cusp point we first solve for σ as a function of v

$$
\begin{equation*}
\sigma=\frac{v^{2}}{(v(1-v))\left(\kappa^{2}+v^{2}\right)}=g(v) \tag{32}
\end{equation*}
$$

and look for double roots $g^{\prime}(v)=0$. The necessary resultant is

$$
\begin{equation*}
R_{\sigma}=-32 k^{3}(27 k-1)(k+1)^{2} \tag{33}
\end{equation*}
$$

so that the cusp occurs for $\kappa=\frac{1}{\sqrt{27}}$. Similarly, solving for k,

$$
\begin{equation*}
\kappa^{2}=\frac{v^{2}}{\sigma v(1-v)}-v^{2}=h(v) \tag{34}
\end{equation*}
$$

and we look for double roots of $h^{\prime}(v)=0$. The corresponding resultant is

$$
\begin{equation*}
R_{k}=-8 \sigma^{3}(8 \sigma-27) \tag{35}
\end{equation*}
$$

from which we learn that the cusp is at $\sigma=\frac{27}{8}$.

2.2 Quorum Sensing

The equations are (after a bunch of rescaling)

$$
\begin{align*}
\frac{d u}{d t} & =s_{0}+\gamma \frac{u^{2}}{1+u^{2}}+v-u \tag{36}\\
\frac{d v}{d t} & =-v+\frac{\rho}{1-\rho}(u-v) \tag{37}
\end{align*}
$$

It is not hard to determine that the steady states solutions are given by

$$
\begin{equation*}
\rho=-\frac{\gamma u^{2}+s_{0} u^{2}-u^{3}+s_{0}-u}{\left(u^{2}+1\right) u} \equiv f(u) . \tag{38}
\end{equation*}
$$

To find regions of different behavior we look for double zeros of $f^{\prime}(u)=0$ and double zeros of $f(u)=0$. We find that double zeros of $f^{\prime}(u)$ occur when

$$
\begin{equation*}
\gamma=8 s_{0} \tag{39}
\end{equation*}
$$

and double zeros of f occur when

$$
\begin{equation*}
4 \gamma^{3} s_{0}+12 \gamma^{2} s_{0}^{2}+12 \gamma s_{0}^{3}+4 s_{0}^{4} \gamma^{2}-20 \gamma s_{0}+8 s_{0}^{2}+4=0 \tag{40}
\end{equation*}
$$

Furthermore, the cusp intersect the straight line at $s_{0}=\frac{1}{\sqrt{27}}$.
Remark: This analysis can be applied to any rational system of equations to (first) reduce the system of polynomials to a single polynomial of one variable and then (second) understanding the bifurcation structure of the solutions as a function of parameters, using resultant analysis.

2.3 Oscillations; Hopf Bifurcations

Resultants can also be used to find Hopf bifurcation points. The idea is as follows. For a system of equations,

$$
\begin{equation*}
\frac{d X}{d t}=F(X, p) \tag{41}
\end{equation*}
$$

steady states are found as solutions of a polynomial equations $F(X, p)=0$. Hopf bifurcation points are those for which

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial F}{\partial X}-i \omega I\right)=0 \tag{42}
\end{equation*}
$$

This corresponds to two more equations (take real and imaginery parts) which must be simultaneously zero. The resultant of these two is a single polynomial in X and p. Now eliminate X using resultants to find a polynomial in p, which gives the locations of Hopf points.

2.4 Brusselator equations

Look for Hopf bifurcations for the Brusselator equations

$$
\begin{equation*}
u^{\prime}=a-(b+1) u+v u^{2}, \quad v^{\prime}=b u-v u^{2} \tag{43}
\end{equation*}
$$

Hopf bifurcation resultant analysis gives a Hopf bifurcation when $R=0$, where

$$
\begin{equation*}
R=a\left(-a^{2}+b-1\right) \tag{44}
\end{equation*}
$$

2.5 Lorenz Equations

The Lorenz equations are

$$
\begin{align*}
\frac{d x}{d t} & =\sigma(y-x) \tag{45}\\
\frac{d y}{d t} & =x(\rho-z)-y \tag{46}\\
\frac{d z}{d t} & =x y-\beta z \tag{47}
\end{align*}
$$

It is an easy matter to show that steady solutions are $x=0$, and $x^{2}=\rho \beta$. Further, there is a Hopf bifurcation at the nontrivial steady state provided

$$
\begin{equation*}
\beta \rho+\beta \sigma-\rho \sigma+\sigma^{2}+\rho+3 \sigma=0 \tag{48}
\end{equation*}
$$

(determined using the resultant).

2.6 Bazykin's Equations

$$
\begin{aligned}
x^{\prime} & =x-\frac{x y}{1+a x}-b x^{2} \\
y^{\prime} & =-g y+\frac{x y}{1+a x}-d y^{2}
\end{aligned}
$$

We can find the cusp bifurcation curve to be

$$
\begin{equation*}
R_{c u s p}=a(a g+b g-1)+8 b \tag{49}
\end{equation*}
$$

Clearly, this makes sense only if $g(a+b)<1$.
Similarly, the resultant analysis yields that Hopf bifurcations occur for $R=0$ where

$$
\begin{aligned}
R \equiv & a^{3} d g^{3}+a^{2} b d g^{3}+a^{3} d^{2} g+3 a^{2} b d^{2} g+4 a^{2} b d g^{2}+3 a b^{2} d^{2} g+4 a b^{2} d g^{2}+b^{3} d^{2} g-a^{3} d^{2} \\
& -a^{3} d g-3 a^{2} b d^{2}-7 a^{2} b d g-4 a^{2} b g^{2}-2 a^{2} d^{2} g-2 a^{2} d g^{2}-3 a b^{2} d^{2}-7 a b^{2} d g-4 a b^{2} g^{2} \\
& -4 a b d^{2} g-b^{3} d^{2}-b^{3} d g-2 b^{2} d^{2} g+a^{2} d^{2}+2 a b d^{2}-2 a b d g+a d^{2} g+b^{2} d^{2}+6 b^{2} d g \\
& +b d^{2} g+4 a b d+4 a b g+a d^{2}+a d g-4 b^{2} d-4 b^{2} g+b d^{2}-b d g-4 b d-d^{2}
\end{aligned}
$$

While this formula is complicated, it not difficult to make contour plots of this function

Figure 1: Top Left: Plot of $f(v)$ for $\kappa=0.0031$ and for selected values of σ for Eqn. (30). Top Right: plot of the zero level set, $R(\kappa, \sigma)=0$. Bottom Left: Plot of the steady solution v as a function of the parameter σ for several different values of κ, and Bottom Right: Plot of the steady solution v as a function of κ for several values of σ.

Figure 2: Left: Plot of the steady solution v as a function of the parameter ρ for several different values of γ with $s_{0}=0.1$ for Eqns. (36)-(37). Right: plot of the zero level set, $R\left(\gamma, s_{0}\right)=0$.

